Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.080
Filter
1.
Biomaterials ; 313: 122754, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39197237

ABSTRACT

A critical shortage of donor corneas exists worldwide. Hydrogel patches with a biological architecture and functions that simulate those of native corneas have garnered considerable attention. This study introduces a stromal structure replicating corneal patch (SRCP) composed of a decellularized cornea-templated nanotubular skeleton, recombinant human collagen, and methacrylated gelatin, exhibiting a similar ultrastructure and transmittance (above 80 %) to natural cornea. The SRCP is superior to the conventional recombinant human collagen patch in terms of biomechanical properties and resistance to enzymatic degradation. Additionally, SRCP promotes corneal epithelial and stromal cell migration while preventing the trans-differentiation of stromal cells into myofibroblasts. When applied to an ocular surface (37 °C), SRCP releases methacrylated gelatin, which robustly binds SRCP to the corneal stroma after activation by 405 nm light. Compared to gelatin-based photocurable hydrogel, the SRCP better supports the restoration of normal corneal curvature and withstands deformation under an elevated intraocular pressure (100 mmHg). In an in vivo deep anterior-corneal defect model, SRCP facilitated epithelial healing and vision recovery within 2 weeks, maintained graft structural stability, and inhibited stromal scarring at 4 weeks post-operation. The ideal performance of the SRCP makes it a promising humanized corneal equivalent for sutureless clinical applications.


Subject(s)
Corneal Stroma , Hydrogels , Humans , Animals , Hydrogels/chemistry , Gelatin/chemistry , Wound Healing/drug effects , Collagen/chemistry , Rabbits , Sutureless Surgical Procedures/methods , Cornea
2.
J Ethnopharmacol ; 336: 118704, 2025 Jan 10.
Article in English | MEDLINE | ID: mdl-39182703

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Viral pneumonia is the leading cause of death after SARS-CoV-2 infection. Despite effective at early stage, long-term treatment with glucocorticoids can lead to a variety of adverse effects and limited benefits. The Chinese traditional herb Pogostemonis Herba is the aerial part of Pogostemon Cablin (Blanco) Benth., which has potent antiviral, antibacterial, anti-inflammatory, and anticancer effects. It was used widely for treating various throat and respiratory diseases, including COVID-19, viral infection, cough, allergic asthma, acute lung injury and lung cancer. AIM OF THE STUDY: To investigate the antiviral and anti-inflammatory effects of chemical compounds from Pogostemonis Herba in SARS-CoV-2-infected hACE2-overexpressing mouse macrophage RAW264.7 cells and hACE2 transgenic mice. MATERIALS AND METHODS: The hACE2-overexpressing RAW264.7 cells were exposed with SARS-CoV-2. The cell viability was detected by CCK8 assay and cell apoptotic rate was by flow cytometric assay. The expressions of macrophage M1 phenotype markers (TNF-α and IL-6) and M2 markers (IL-10 and Arg-1) as well as the viral loads were detected by qPCR. The mice were inoculated intranasally with SARS-CoV-2 omicron variant to induce viral pneumonia. The levels of macrophages, neutrophils, and T cells in the lung tissues of infected mice were analyzed by full spectrum flow cytometry. The expressions of key proteins were detected by Western blot assay. RESULTS: Diosmetin-7-O-ß-D-glucopyranoside (DG) presented the strongest anti-SARS-CoV-2 activity. Intervention with DG at the concentrations of 0.625-2.5 µM not only reduced the viral replication, cell apoptosis, and the productions of inflammatory cytokines (IL-6 and TNF-α) in SARS-CoV-2-infected RAW264.7 cells, but also reversed macrophage polarity from M1 to M2 phenotype. Furthermore, treatment with DG (25-100 mg/kg) alleviated acute lung injury, and reduced macrophage infiltration in SARS-COV-2-infected mice. Mechanistically, DG inhibited SARS-COV-2 gene expression and HK3 translation via targeting YTHDF1, resulting in the inactivation of glycolysis-mediated NF-κB pathway. CONCLUSIONS: DG exerted the potent antiviral and anti-inflammatory activities. It reduced pneumonia in SARS-COV-2-infected mice via inhibiting the viral replication and accelerating M2 macrophage polarization via targeting YTHDF1, indicating its potential for COVID-19 treatment.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Macrophages , SARS-CoV-2 , Virus Replication , Animals , Mice , RAW 264.7 Cells , Virus Replication/drug effects , Macrophages/drug effects , Macrophages/metabolism , Macrophages/virology , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Mice, Transgenic , Pogostemon/chemistry , Cytokines/metabolism , Apoptosis/drug effects , Lung/drug effects , Lung/virology , Lung/pathology , Glucosides/pharmacology , Glucosides/isolation & purification , Flavonoids/pharmacology , Flavonoids/isolation & purification , Flavonoids/therapeutic use , Angiotensin-Converting Enzyme 2/metabolism , Anti-Inflammatory Agents/pharmacology , Male , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Humans
3.
Proc Natl Acad Sci U S A ; 121(42): e2404470121, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39374399

ABSTRACT

Replication stress describes endogenous and exogenous challenges to DNA replication in the S-phase. Stress during this critical process causes helicase-polymerase decoupling at replication forks, triggering the S-phase checkpoint, which orchestrates global replication fork stalling and delayed entry into G2. The replication stressor most often used to induce the checkpoint response in yeast is hydroxyurea (HU), a clinically used chemotherapeutic. The primary mechanism of S-phase checkpoint activation by HU has thus far been considered to be a reduction of deoxynucleotide triphosphate synthesis by inhibition of ribonucleotide reductase (RNR), leading to helicase-polymerase decoupling and subsequent activation of the checkpoint, facilitated by the replisome-associated mediator Mrc1. In contrast, we observe that HU causes cell cycle arrest in budding yeast independent of both the Mrc1-mediated replication checkpoint response and the Psk1-Mrc1 oxidative signaling pathway. We demonstrate a direct relationship between HU incubation and reactive oxygen species (ROS) production in yeast and human cells and show that antioxidants restore growth of yeast in HU. We further observe that ROS strongly inhibits the in vitro polymerase activity of replicative polymerases (Pols), Pol α, Pol δ, and Pol ε, causing polymerase complex dissociation and subsequent loss of DNA substrate binding, likely through oxidation of their integral iron-sulfur (Fe-S) clusters. Finally, we present "RNR-deg," a genetically engineered alternative to HU in yeast with greatly increased specificity of RNR inhibition, allowing researchers to achieve fast, nontoxic, and more readily reversible checkpoint activation compared to HU, avoiding harmful ROS generation and associated downstream cellular effects that may confound interpretation of results.


Subject(s)
Cell Cycle Checkpoints , DNA Replication , Hydroxyurea , Reactive Oxygen Species , Saccharomyces cerevisiae , Hydroxyurea/pharmacology , Humans , DNA Replication/drug effects , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Reactive Oxygen Species/metabolism , Cell Cycle Checkpoints/drug effects , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Ribonucleotide Reductases/metabolism , Signal Transduction/drug effects , DNA Damage/drug effects , S Phase/drug effects , S Phase Cell Cycle Checkpoints/drug effects
4.
Mol Cancer ; 23(1): 224, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375715

ABSTRACT

Recent studies indicate that replication checkpoint modulators (RCMs) such as inhibitors of CHK1, ATR, and WEE1 have promising monotherapy activity in solid tumors, including platinum-resistant high grade serous ovarian cancer (HGSOC). However, clinical response rates are generally below 30%. While RCM-induced DNA damage has been extensively examined in preclinical and clinical studies, the link between replication checkpoint interruption and tumor shrinkage remains incompletely understood. Here we utilized HGSOC cell lines and patient-derived xenografts (PDXs) to study events leading from RCM treatment to ovarian cancer cell death. These studies show that RCMs increase CDC25A levels and CDK2 signaling in vitro, leading to dysregulated cell cycle progression and increased replication stress in HGSOC cell lines independent of homologous recombination status. These events lead to sequential activation of JNK and multiple BH3-only proteins, including BCL2L11/BIM, BBC3/PUMA and the BMF, all of which are required to fully initiate RCM-induced apoptosis. Activation of the same signaling pathway occurs in HGSOC PDXs that are resistant to poly(ADP-ribose) polymerase inhibitors but respond to RCMs ex vivo with a decrease in cell number in 3-dimensional culture and in vivo with xenograft shrinkage or a significantly diminished growth rate. These findings identify key cell death-initiating events that link replication checkpoint inhibition to antitumor response in ovarian cancer.


Subject(s)
Apoptosis , Ovarian Neoplasms , Xenograft Model Antitumor Assays , Female , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Animals , Apoptosis/drug effects , Cell Line, Tumor , Mice , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , DNA Replication/drug effects , Signal Transduction/drug effects
5.
mBio ; : e0263524, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39377575

ABSTRACT

Hepatitis E virus (HEV) is distinct from other hepatotropic viruses because it is zoonotic. HEV-1 and HEV-2 exclusively infect humans, whereas HEV-3 and HEV-4 are zoonotic. However, the viral and/or host factors responsible for cross-species HEV transmission remain elusive. The hypervariable region (HVR) in HEV is extremely heterogenetic and is implicated in HEV adaptation. Here, we investigated the potential role of Serine phosphorylation in the HVR in HEV replication. We first analyzed HVR sequences across different HEV genotypes and identified a unique region at the N-terminus of the HVR, which is variable in the human-exclusive HEV genotypes but relatively conserved in zoonotic HEV genotypes. Using predictive tools, we identified four potential phosphorylation sites that are highly conserved in zoonotic HEV-3 and HEV-4 genomes but absent in human-exclusive HEV-1 strains. To explore the functional significance of these putative phosphorylation sites, we introduced mutations into the HEV-3 infectious clone and indicator replicon, replacing each Serine residue individually with alanine or aspartic acid, and assessed the impact of these substitutions on HEV-3 replication. We found that the phospho-blatant S711A mutant significantly reduced virus replication, whereas the phospho-mimetic S711D mutant modestly reduced virus replication. Conversely, mutations in the other three Serine residues did not significantly affect HEV-3 replication. Furthermore, we demonstrated that Ser711 phosphorylation did not alter host cell tropism of zoonotic HEV-3. In conclusion, our results showed that potential phosphorylation of the Ser711 residue significantly affects HEV-3 replication in vitro, providing new insights into the potential mechanisms of zoonotic HEV transmission.IMPORTANCEHEV is an important zoonotic pathogen, causing both acute and chronic hepatitis E and extrahepatic manifestation of diseases, such as neurological sequelae. The zoonotic HEV-3 is linked to chronic infection and neurological diseases. The specific viral and/or host factors facilitating cross-species HEV infection are unknown. The intrinsically disordered HVR in ORF1 is crucial for viral fitness and adaptation, both in vitro and in vivo. We hypothesized that phosphorylation of Serine residues in the HVR of zoonotic HEV by unknown host cellular kinases is associated with cross-species HEV transmission. In this study, we identified a conserved region within the HVR of zoonotic HEV strains but absent in the human-exclusive HEV-1 and HEV-2. We elucidated the important role of phosphorylation at the Ser711 residue in zoonotic HEV-3 replication, without altering the host cell tropism. These findings contribute to our understanding the mechanisms of cross-species HEV transmission.

6.
R Soc Open Sci ; 11(10): 240850, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39359470

ABSTRACT

Independent replications are very rare in the behavioural and social sciences. This is problematic because they can help to detect 'false positives' in published research and, in turn, contribute to scientific self-correction. The lack of replication studies is, among other factors, due to a rather passive editorial approach concerning replications by many journals, which does not encourage and may sometimes even actively discourage submission of replications. In this Perspective article, we advocate for a more proactive editorial approach concerning replications and suggest introducing journal-based replication marketplaces as a new publication track. We argue that such replication marketplaces could solve the long-standing problem of lacking independent replications. To establish these marketplaces, a designated part of a journal's editorial board identifies the most relevant new findings reported within the journal's pages and publicly offers them for replication. This public offering could be combined with small grants for authors to support these replications. Authors then compete for the first accepted registered report to conduct the related replications and can thus be sure that their replication will be published independent of the later findings. Replication marketplaces would not only increase the prevalence of independent replications but also help science to become more self-correcting.

7.
Biomol NMR Assign ; 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39365420

ABSTRACT

Chromosomal replication is a ubiquitous and essential cellular process. In bacteria, the master replication initiator DnaA plays a key role in promoting an open complex at the origin (oriC) and recruiting helicase in a tightly regulated process. The C-terminal domain IV specifically recognises consensus sequences of double-stranded DNA in oriC, termed DnaA-boxes, thereby facilitating the initial engagement of DnaA to oriC. Here, we report the 13Cß and backbone 1H, 15N, and 13C chemical shift assignments of soluble DnaA domain IV from Bacillus subtilis at pH 7.6 and 298 K.

8.
Clin Nutr ; 43(11): 133-134, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39366300
9.
Front Cell Dev Biol ; 12: 1420033, 2024.
Article in English | MEDLINE | ID: mdl-39364137

ABSTRACT

Mcm10 plays an essential role in the activation of replicative helicase CMG through the cell cycle-regulated interaction with the prototype MCM double hexamer in Saccharomyces cerevisiae. In this study, we reported that Mcm10 is phosphorylated by S-phase cyclin-dependent kinases (S-CDKs) at S66, which enhances Mcm10--MCM association during the S phase. S66A single mutation or even deletion of whole N-terminus (a.a. 1-128) only causes mild growth defects. Nevertheless, S66 becomes indispensable in the absence of the Mcm10 C-terminus ((a.a. 463-571), the major MCM-binding domain. Using a two-degron strategy to efficiently deplete Mcm10, we show that mcm10-S66AΔC has a severe defect in proceeding into the S phase. Notably, both lethality and S-phase deficiency can be rescued by artificially tethering mcm10-S66AΔC to MCM. These findings illustrate how the Mcm10-MCM association is regulated as a crucial event in DNA replication initiation.

10.
Proc Natl Acad Sci U S A ; 121(42): e2415231121, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39365830

ABSTRACT

I had my eyes set on DNA replication research when I took my first molecular biology course in graduate school. My election to the National Academy of Sciences came just when I was retiring from active research. It gives me an opportunity to reflect on my personal journey in eukaryotic DNA replication research, which started as a thought experiment and culminated in witnessing the determination of the cryoelectron microscopic structure of the yeast replisome in the act of transferring histone-encoded epigenetic information at the replication fork. I would like to dedicate this inaugural article to my talented trainees and valuable collaborators in gratitude for the joy they gave me in this journey. I also want to thank my mentors who instilled in me the purpose of science. I hope junior scientists will not be disheartened by the marathon nature of research, but mindful enough to integrate and pause for other equally fun and meaningful activities of life into the marathon.


Subject(s)
Cryoelectron Microscopy , DNA Replication , Saccharomyces cerevisiae , Cryoelectron Microscopy/methods , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , History, 20th Century , History, 21st Century
11.
Cell Rep Med ; : 101758, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39368479

ABSTRACT

Biallelic loss of cyclin-dependent kinase 12 (CDK12) defines a metastatic castration-resistant prostate cancer (mCRPC) subtype. It remains unclear, however, whether CDK12 loss drives prostate cancer (PCa) development or uncovers pharmacologic vulnerabilities. Here, we show Cdk12 ablation in murine prostate epithelium is sufficient to induce preneoplastic lesions with lymphocytic infiltration. In allograft-based CRISPR screening, Cdk12 loss associates positively with Trp53 inactivation but negatively with Pten inactivation. Moreover, concurrent Cdk12/Trp53 ablation promotes proliferation of prostate-derived organoids, while Cdk12 knockout in Pten-null mice abrogates prostate tumor growth. In syngeneic systems, Cdk12/Trp53-null allografts exhibit luminal morphology and immune checkpoint blockade sensitivity. Mechanistically, Cdk12 inactivation mediates genomic instability by inducing transcription-replication conflicts. Strikingly, CDK12-mutant organoids and patient-derived xenografts are sensitive to inhibition or degradation of the paralog kinase, CDK13. We therein establish CDK12 as a bona fide tumor suppressor, mechanistically define how CDK12 inactivation causes genomic instability, and advance a therapeutic strategy for CDK12-mutant mCRPC.

12.
J Med Virol ; 96(10): e29958, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39370884

ABSTRACT

Kaposi's Sarcoma Herpesvirus (KSHV) is the causative agent of several human diseases. There are no cures for KSHV infection. KSHV establishes biphasic lifelong infections. During the lytic phase, new genomes are replicated by seven viral DNA replication proteins. The processivity factor's (PF-8) functions to tether DNA polymerase to DNA, so new viral genomes are efficiently synthesized. PF-8 self-associates, interacts with KSHV DNA replication proteins and the viral DNA. Inhibition of viral DNA replication would diminish the infection within a host and reduce transmission to new individuals. In this review we summarize PF-8 molecular and structural studies, detail the essential protein-protein and nucleic acid interactions needed for efficient lytic DNA replication, identify future areas for investigation and propose PF-8 as a promising antiviral target. Additionally, we discuss similarities that the processivity factor from Epstein-Barr virus shares with PF-8, which could promote a pan-herpesvirus antiviral therapeutic targeting strategy.


Subject(s)
Herpesvirus 8, Human , Viral Proteins , Virus Replication , Herpesvirus 8, Human/genetics , Herpesvirus 8, Human/physiology , Virus Replication/drug effects , Humans , Viral Proteins/metabolism , Viral Proteins/genetics , DNA Replication , Antiviral Agents/pharmacology , DNA, Viral/genetics
13.
AIDS Behav ; 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375289

ABSTRACT

Despite advances in HIV care and treatment in the U.S., disparities in outcomes along the HIV care continuum persist. The widespread replication of effective and sustainable interventions that prioritize the engagement of underserved populations has been identified as a promising path to ending the HIV epidemic in the U.S. Intervention dissemination products, however, rarely provide the comprehensive and accessible information needed to replicate interventions within community settings. To bridge the divide between research and community-based implementation, the Using Evidence-informed Interventions to Improve Health Outcomes among People Living with HIV (E2i) initiative-grounded in the HIV/AIDS Bureau Implementation Science Framework-created a suite of tools to promote the rapid replication of interventions focused on transgender women, Black men who have sex with men, behavioral health integration, and identifying and addressing trauma. The resulting dissemination products are detailed and digestible multimedia toolkits that follow adult learning theory principles and align with the Template for Intervention Description and Replication criteria for adapting non-pharmacological interventions. Each E2i toolkit consists of five components: implementation guides, narrative videos of site implementation, best practice demonstration videos, interactive learning modules, and recruitment posters and brochures. Over 2 years (2022-2024), the E2i toolkit webpages amassed 7703 unique users and 17,666 pageviews. These toolkits can serve as a blueprint for designing comprehensive and accessible dissemination products for replication of HIV interventions in care settings. Dissemination products that bridge the gap between intervention research and replication in community settings are a crucial missing tool for ending the HIV epidemic.

14.
Front Genet ; 15: 1438375, 2024.
Article in English | MEDLINE | ID: mdl-39350767

ABSTRACT

Introduction: Male pattern baldness (MPB), also known as androgenetic alopecia, represents the most prevalent form of progressive hair loss in humans. It is characterized by a distinctive pattern of hair loss progression from the scalp; however, its underlying mechanism remains elusive and is influenced by hereditary, immune, and environmental factors. Genome-wide association studies (GWASs) have uncovered numerous risk genes/loci among European individuals with MPB. However, the validation of these susceptibility genes/loci within Han Chinese men remains largely unexplored. The aim of this study was to investigate whether the 71 susceptibility loci identified in a recent GWAS among European men also confer risk for MPB in Chinese men. Methods: Forty-seven single nucleotide polymorphisms (SNPs) previously reported in GWASs of MPB were selected and genotyped in independent individuals comprising 499 Han Chinese cases and 1,489 controls using the Sequenom MassArray system. After stringent quality control measures, 25 SNPs were subjected to statistical analyses. Cochran-Armitage trend test was used to evaluate the association between SNPs and disease susceptibility. To address multiple tests, Bonferroni correction was conducted, setting the threshold for statistical significance at a p-value <2 × 10-3 (0.05/25). Results: The rs13405699 SNP located at 2q31.1 exhibited a significant association with MPB in Han Chinese men (p = 4.84 × 10-5, OR = 1.37, 95% CI: 1.18-1.59). Moreover, the difference in rs13405699 genotype distribution between MPB cases and controls was statistically significant (p = 7.00 × 10-5). Genotype-based association analysis suggested that the recessive model provided the best fit for the rs13405699 polymorphism. Conclusion: This study represents the first confirmation of the association between the rs13405699 SNP at 2q31.1 and MPB within the Han Chinese population, thereby enhancing our understanding of the genetic underpinnings of MPB.

15.
Cell Rep ; 43(10): 114820, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39368091

ABSTRACT

Oncogenic mutations (such as in KRAS) can dysregulate transcription and replication, leading to transcription-replication conflicts (TRCs). Here, we demonstrate that TRCs are enriched in human pancreatic ductal adenocarcinoma (PDAC) compared to other common solid tumors or normal cells. Several orthogonal approaches demonstrated that TRCs are oncogene dependent. A small interfering RNA (siRNA) screen identified several factors in the base-excision repair (BER) pathway as main regulators of TRCs in PDAC cells. Inhibitors of BER pathway (methoxyamine and CRT) enhanced TRCs. Mechanistically, BER pathway inhibition severely altered RNA polymerase II (RNAPII) and R-loop dynamics at nascent DNA, causing RNAPII trapping and contributing to enhanced TRCs. The ensuing DNA damage activated the ATR-Chk1 pathway. Co-treatment with ATR inhibitor (VX970) and BER inhibitor (methoxyamine) at clinically relevant doses synergistically enhanced DNA damage and reduced cell proliferation in PDAC cells. The study provides mechanistic insights into the regulation of TRCs in PDAC by the BER pathway, which has biologic and therapeutic implications.

16.
Virology ; 600: 110257, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39369673

ABSTRACT

Most Mononegavirales viruses have a GDNQ motif within the L protein, whereas Novirhabdovirus species feature a GDNV motif. This study examined the function of the GDNV motif within the L protein of viral hemorrhagic septicemia virus (VHSV) by modifying its amino acid composition. Substituting the aspartic acid (D) with valine (V) completely abolished polymerase activity in a minigenome assay. Replacing GDNV with GDNQ showed no significant difference in luciferase activity. Further characterization using reverse genetically engineered recombinant viruses revealed that rVHSV-LGDNQ exhibited an accelerated replication rate and higher virus titer in EPC cells than rVHSV-wild. Olive flounder infected with rVHSV-LGDNQ experienced higher early-stage mortality but lower overall mortality than those infected with rVHSV-wild. These findings suggest that while the GDNQ motif may positively influence VHSV replication speed, it may not confer an overall advantage for the ultimate viral pathogenicity.

17.
Psychol Sport Exerc ; : 102759, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39369832

ABSTRACT

Psychological science is often being criticized for failing to reproduce some of its findings. Considering this critique, Iso-Ahola (2024) argues that it is important to establish a demarcation line between artifact and a real phenomenon, recognizing that psychological phenomena are not constant particles that can be definitively declared to exist or not exist upon discovery. In this brief paper, we utilize newly available large-scale data to replicate a finding by Lidor et al. (2022), who reported a psychological effect wherein professional basketball players shoot better under tight defensive pressure rather than free of it. The current analysis of 781,633 three-point shots over 11 seasons in NBA (as compared to 382 shots taken by 12 players during 12 games in the original study) failed to support the idea of the three-point shooting paradox but instead strongly supports the commonsense hypothesis that tight defense hinders shooting performance.

18.
Int J Biol Macromol ; : 136314, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39370064

ABSTRACT

Viral circRNAs play important roles in host-virus interactions. Previous reports showed that grass carp reovirus (GCRV) encodes 32 circRNAs, and circ_20 from the negative strand of GCRV genome segment 7 has the potential to regulate GCRV replication. However, the regulatory mechanism of circ_20 on GCRV remains unknown. In this study, circ_20 was further validated, and circ_20 negatively regulated ERS, the PERK pathway, and ROS production in GCRV-infected cells. Furthermore, circ_20 inhibited the PERK pathway by forming a ternary complex with BIP and PERK, resulting in delaying GCRV replication. RNA pull-down results indicated that the 51-102 nt region of circ_20 interacts with BIP, while the 451-502 and 514-565 nt regions interact with PERK. After the deletion of these interaction regions, the ability of circ_20 to promote BIP-PERK interaction decreases, leading to a decrease in the ability to inhibit GCRV proliferation. These findings uncovered new insights into the complex interplay between viruses and host cells and provided a novel understanding of the significance of viral circRNAs in virus-host interactions.

19.
J Mol Biol ; : 168808, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39357815

ABSTRACT

Several machineries concurrently work on the DNA, but among them RNA Polymerases (RNAPs) are the most widespread and active users. The homeostasis of such a busy genomic environment relies on the existence of mechanisms that allow to limit transcription to a functional level, both in terms of extent and rate. Sen1 is a central player in this sense: using its translocase activity this protein has evolved the specific function of dislodging RNAPs from the DNA template, thus ending the transcription cycle. Over the years, studies have shown that Sen1 uses this same mechanism in a multitude of situations, allowing termination of all three eukaryotic RNAPs in different contexts. In virtue of its helicase activity, Sen1 has also been proposed to have a prominent function in the resolution of co-transcriptional genotoxic R-loops, which can cause the stalling of replication forks. In this review, we provide a synopsis of past and recent findings on the functions of Sen1 in yeast and of its human homologue Senataxin (SETX).

20.
Int J Biol Macromol ; 279(Pt 2): 135274, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39226976

ABSTRACT

Stress granules (SGs) are cytoplasmic aggregates of proteins and mRNA that form in response to diverse environmental stressors, including viral infections. Several viruses possess the ability to block the formation of stress granules by targeting the SGs marker protein G3BP. However, the molecular functions and mechanisms underlying the regulation of SGs formation by Getah virus (GETV) remain unclear. In this study, we found that GETV infection triggered the formation of Nsp3-G3BP aggregates, which differed in composition from SGs. Further studies revealed that the presence of these aggregates was dependent on the activation of the PKR/eIF2α signaling pathway. Interestingly, we found that Nsp3 HVD domain blocked the formation of SGs by binding to G3BP NTF2 domain. Moreover, knockout of G3BP in NCI-H1299 cells had no effect on GETV replication, while overexpression of G3BP to form the genuine SGs significantly inhibited GETV replication. Overall, our study elucidates a novel role GETV Nsp3 to change the composition of SG as well as cellular stress response.

SELECTION OF CITATIONS
SEARCH DETAIL