Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 861
Filter
1.
Mol Phylogenet Evol ; : 108216, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39384123

ABSTRACT

Studies of widely distributed species can inform our understanding of how past demographic events tied to historic glaciation and ongoing population genetic processes interact to shape contemporaneous patterns of biodiversity at a continental scale. In this study, we used whole-genome resequencing to investigate the current population structure and genetic signatures of past demographic events in the widespread migratory American goldfinch (Spinus tristis). Phylogenetic relationships inferred from whole mitochondrial genomes were poorly resolved. In contrast, a genome-wide panel of > 4.5 million single nucleotide polymorphisms (SNPs) strongly supported the existence of eastern and western populations separated by western mountain ranges and additional population structuring within the western clade. Demographic modeling estimated that the eastern and western populations diverged approximately one million years ago, and both populations experienced subsequent population bottlenecks during the last glacial period. Species distribution models showed a severe contraction of suitable habitat for the American goldfinch during this period, with predicted discontinuities that are consistent with multiple, isolated glacial refugia that coincide with present-day population structure. Low overall genetic differentiation between the eastern and western populations (FST ∼ 0.01) suggests ongoing gene flow accompanied divergence, and individuals with admixed genomic signatures were sampled along a potential contact zone. Nevertheless, outlier SNPs were identified near genes associated with feather color, song, and migratory behavior and provide strong candidates for further study of the mechanisms underlying reproductive isolation and speciation in birds.

2.
Immunogenetics ; 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39367971

ABSTRACT

Conservation genomics can greatly improve conservation outcomes of threatened populations, including those impacted by disease. Understanding diversity within immune gene families, including the major histocompatibility complex (MHC) and toll-like receptors (TLR), is important due to the role they play in disease resilience and susceptibility. With recent advancements in sequencing technologies and bioinformatic tools, the cost of generating high-quality sequence data has significantly decreased and made it possible to investigate diversity across entire gene families in large numbers of individuals compared to investigating only a few genes or a few populations previously. Here, we use the koala as a case study for investigating functional diversity across populations. We utilised previous target enrichment data and 438 whole genomes to firstly, determine the level of sequencing depth required to investigate MHC diversity and, secondly, determine the current level of diversity in MHC genes in koala populations. We determined for low complexity, conserved genes such as TLR genes 10 × sequencing depth is sufficient to reliably genotype more than 90% of variants, whereas for complex genes such as the MHC greater than 20 × and preferably 30 × sequencing depth is required. We used whole genome data to identify 270 biallelic SNPs across 24 MHC genes as well as copy number variation (CNV) within class I and class II genes and conduct supertype analysis. Overall, we have provided a bioinformatic workflow for investigating variation in a complex immune gene family from whole genome sequencing data and determined current levels of diversity within koala MHC genes.

3.
Gene ; 933: 148957, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39306203

ABSTRACT

Ladakhi cattle, native to the high-altitude region of Ladakh in northern India (ranging from 3,000 to 5,000 m above sea level), have evolved unique genetic adaptations to thrive in harsh environmental conditions, such as hypoxia, extreme cold, and low humidity. This study explored the genome of Ladakhi cattle to investigate genetic structure, selection signatures, and adaptive mechanisms. Whole genome sequencing reads, generated on Illumina NovaSeq 6000 platform, were aligned to the Bos taurus reference genome with BWA-MEM. SNPs were identified and filtered using GATK and bcftools, and functionally annotated with SnpEff. For population genomic analysis, PCA and admixture modeling assessed genetic structure, while Neighbor-Joining trees, LD decay, nucleotide diversity (π), and FST evaluated phylogenetic relationships and genetic variation. Selective sweeps were detected using RAiSD, and gene-set enrichment and protein-protein interaction analyses were conducted to explore functional pathways related to adaptation. The study revealed 3,759,279 unique SNPs and demonstrated that Ladakhi cattle form a distinct genetic cluster with an estimated admixture of 68 % Bos indicus and 32 % Bos taurus ancestry. Key findings include rapid linkage disequilibrium decay, low inbreeding level, and the identification of selection signatures and genes associated with hypoxia response, energy metabolism, and cold adaptation. Mean nucleotide diversity (π, 0.0037) and FST values indicated moderate genetic differentiation from other breeds. The analysis highlighted selection signatures for genes like HIF1A, ENO4, ANGPT1, EPO, NOS3, MAPK3, HMOX1, BCL2,CAMK2D, MTOR, AKT2,PIK3CB, and MAP2K1, among others, including various keratin and heat shock proteins. The interaction between genes associated with hypoxia signaling (HIF-1) and other enriched pathways such as PI3K, mTOR, NFκB, ERK, and ER stress, reveals a complex mechanism for managing hypoxic stress in Ladakhi cattle. These findings offer valuable insights for breeding programs aimed at enhancing livestock resilience in extreme environments and enhance understanding of mammalian adaptation to high-altitude conditions.

4.
Front Plant Sci ; 15: 1390936, 2024.
Article in English | MEDLINE | ID: mdl-39297015

ABSTRACT

Goji berries are a small-fruited shrub with industrial importance whose fruit considered beneficial in both fresh and dried forms. Current germplasms of goji berries include small fruits with a short shelf life, less sweet and bitter taste, and a lack of appropriate genetic information. This study aimed to employ whole genome resequencing to generate an ultra-dense bin linkage map and to elucidate the genetic basis of goji fruit quality and size using quantitative trait loci (QTL) mapping analysis in a cross-pollinated hybrid population. To achieve this goal, human sensory tests were carried out to determine the bitter taste (BT) and sweet taste (ST), and to quantify the soluble solid content (SSC), fruit firmness (FF), and fruit size-related traits of fresh goji fruits over three or four years. The results revealed that the goji bin linkage map based on resequencing spanned a total length of 966.42 cM and an average bin interval of 0.03 cM. Subsequent variant calling and ordering resulted in 3,058 bins containing 35,331 polymorphic markers across 12 chromosomes. A total of 99 QTLs, with individual loci in different environments explaining a phenotypic variance of 1.21-16.95% were identified for the studied traits. Ten major effects, including colocalized QTLs corresponding to different traits, were identified on chromosomes 1, 3, 5, 6, 7, and 8, with a maximum Logarithm of Odds (LOD) of 29.25 and 16.95% of explained phenotypic variance (PVE). In addition, four stable loci, one for FF, one for fruit weight (FW), and two for fruit shape index (FSI), were mainly mapped on chromosomes 5, 6, and 7, elucidating 2.10-16.95% PVE. These findings offer valuable insights into the genetic architecture of goji fruit traits along with identified specific loci and markers to further improve and develop sweeter, less bitter and larger fruited goji berry cultivars with extended shelf life.

5.
J Basic Microbiol ; : e2400253, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39286860

ABSTRACT

Escherichia coli depletion of chaperone trigger factor and DnaK/J were not viable at 37°C, but viable below 30°C. Among the engineered E. coli depleted of trigger factor and DnaK/J, one strain Z625, exhibited survival at 37°C, while another strain Z629 only survived below 30°C. Comparative analysis of fatty acid profiles of Z625 and Z629 revealed absence of numerous saturated fatty acids in Z625 as compared to the wild-type E. coli BW25113. In addition, increased unsaturated fatty acids were present in Z625, whereas the fatty acids profile of Z629 closely resembled that of BW25113. Whole genome sequencing revealed a 9-bp insertion in rpoB of Z625. Combined structural analysis of simulated RpoB protein bearing the amino acid sequence L451G452N453 insertion and susceptibility analysis to rifampicin suggested that the insertion did not disturb the individual RpoB structure as beta subunit of RNA polymerase. Comparative transcriptomic analysis of Z625 and Z629 suggested that this insertion impacted transcription of the overall RNA polymerase in Z625, leading to potential repression of some genes whose overexpression was toxic to E. coli. Additionally, Z625 exhibited distinctive metabolic adaptations, likely contributing to its survival at 37°C. In summary, our study elucidated one LGN insertion in rpoB that impacts transcriptional regulation in E. coli, thereby explaining the survival of E. coli depletion of trigger factor and DnaK/J at 37°C, and these founding suggested that some simple mutations in critical genes like rpoB might play an important role in driving adaptive evolution.

6.
Front Plant Sci ; 15: 1449006, 2024.
Article in English | MEDLINE | ID: mdl-39253572

ABSTRACT

The genus Camellia contains three types of domesticates that meet various needs of ancient humans: the ornamental C. japonica, the edible oil-producing C. oleifera, and the beverage-purposed tea plant C. sinensis. The genomic drivers of the functional diversification of Camellia domesticates remain unknown. Here, we present the genomic variations of 625 Camellia accessions based on a new genome assembly of C. sinensis var. assamica ('YK10'), which consists of 15 pseudo-chromosomes with a total length of 3.35 Gb and a contig N50 of 816,948 bp. These accessions were mainly distributed in East Asia, South Asia, Southeast Asia, and Africa. We profiled the population and subpopulation structure in tea tree Camellia to find new evidence for the parallel domestication of C. sinensis var. assamica (CSA) and C. sinensis var. sinensis (CSS). We also identified candidate genes associated with traits differentiating CSA, CSS, oilseed Camellia, and ornamental Camellia cultivars. Our results provide a unique global view of the genetic diversification of Camellia domesticates and provide valuable resources for ongoing functional and molecular breeding research.

7.
BMC Biol ; 22(1): 187, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39218870

ABSTRACT

BACKGROUND: Introgression has repeatedly been shown to play an important role in the adaptation of species to extreme environments, yet how introgression enables rodents with specialized subterranean lifestyle to acclimatize to high altitudes is still unclear. Myospalacinae is a group of subterranean rodents, among which the high-altitude plateau zokors (Eospalax baileyi) and the low-altitude Gansu zokors (E. cansus) are sympatrically distributed in the grassland ecosystems of the Qinghai-Tibet Plateau (QTP). Together, they provide a model for the study of the role of introgression in the adaptation of low-altitude subterranean rodents to high altitudes. RESULTS: Applying low-coverage whole-genome resequencing and population genetics analyses, we identified evidence of adaptive introgression from plateau zokors into Gansu zokors, which likely facilitated the adaptation of the latter to the high-altitude environment of the QTP. We identified positively selected genes with functions related to energy metabolism, cardiovascular system development, calcium ion transport, and response to hypoxia which likely made critical contributions to adaptation to the plateau environment in both plateau zokors and high-altitude populations of Gansu zokors. CONCLUSIONS: Introgression of genes associated with hypoxia adaptation from plateau zokors may have played a role in the adaptation of Gansu zokors to the plateau environment. Our study provides new insights into the understanding of adaptive evolution of species on the QTP and the importance of introgression in the adaptation of species to high-altitude environments.


Subject(s)
Altitude , Genetic Introgression , Rodentia , Animals , Rodentia/genetics , Rodentia/physiology , Tibet , Adaptation, Physiological/genetics , Ecosystem , Acclimatization/genetics
8.
BMC Genomics ; 25(1): 906, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39350030

ABSTRACT

BACKGROUND: The Tibetan sheep is one of the three major primitive sheep breeds in China, representing a unique and high-quality genetic resource in the Qinghai-Tibet Plateau and neighboring high-altitude regions, exhibiting exceptional adaptability to high-altitude climatic environments. However, research on the genetic relationships among different populations of Tibetan sheep at the whole-genome level remains insufficient. This study aims to explore the population structure and historical dynamics among 11 Tibetan sheep populations, accurately assess the genetic diversity within the populations, and providing a theoretical basis for the development of targeted genetic breeding strategies for Tibetan sheep. RESULTS: In this study, a total of 10,884,454 high-quality SNPs were obtained. All Tibetan sheep populations exhibited varying degrees of linkage disequilibrium, with similar decay rates; among them, the WT population showed the fastest decay, while the TS population exhibited the slowest decay rate. Analyses using Tajima's D and π indicated that the genetic diversity levels of the Tibetan sheep populations are generally low. Fst results revealed that most populations exhibited moderate to low levels of genetic differentiation. The effective population size among Tibetan sheep populations showed an increasing trend over time. The evolutionary relationships among Tibetan sheep populations reflect the correlation between their geographical locations and genomic genetic distances, while also indirectly confirming the impact of historical activities such as early human migration, admixture, fusion, and expansion on the population sizes and distributions of Tibetan sheep. CONCLUSIONS: The results indicate that the genetic diversity levels and genetic differentiation among Tibetan sheep populations are relatively low. In this study, we identified the genetic characteristics of Tibetan sheep populations, which exhibit low levels of diversity, genetic differentiation, and a strong population structure. A deeper genomic exploration of the population structure and diversity status of Tibetan sheep populations will provide theoretical support for subsequent genetic breeding and diversity conservation efforts.


Subject(s)
Genetic Variation , Genetics, Population , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Animals , Tibet , Sheep/genetics , Phylogeny , Genomics
9.
Genomics ; 116(5): 110933, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39218165

ABSTRACT

Yaks are crucial genetic resources in the Tibetan Plateau and surrounding regions. Throughout the long process of domestication, natural and artificial selection pressures have enabled yaks to demonstrate adaptive characteristics to the environment in terms of physiological structure and genetic molecules, but no systematic cell analysis has been carried out on this phenomenon of yaks. Here, the population structure and genetic diversity of yak were studied by WGRS, and the genes related to yak adaptability were excavated. Combined with scRNA-seq method, the transcription map of yak lung tissue and skin tissue was constructed, which provided a new comprehensive insight into yak adaptability. The analysis of yak population structure showed that there was obvious genetic differentiation between TZ _ yak and other seven yak populations, while there was significant genetic exchange between PL _ yak and SB _ yak at high altitude. WGRS and scRNA-seq analysis revealed that the gene HIF1A related to high altitude adaptation was expressed in various cell types, while EPAS1 was predominantly expressed in epithelial and endothelial cells of yak lung tissue. Endothelial cells play a critical role in hypoxia-adapted VEGF signaling, which correlates closely with the high expression of KDR and VEGFA genes in endothelial cells and monocytes. Furthermore, in the selection signal of High _ yak vs Low _ yak, 19.8 % of the genes overlapped with the genes screened by skin scRNA-seq, including genes related to coat color such as RORA, BNC2, and KIT. Notably, BNC2 is a gene associated with melanin deposition and shows high expression levels in HS cells. Additionally, GRN in melanocytes and SORT1 in IRS play an important role in cell communication between melanocytes and IRS. These findings offer new insights into the natural polymorphism of yaks and provide a valuable reference for future research on high-altitude mammals, and potentially even human genetics.


Subject(s)
Adaptation, Physiological , Animals , Cattle/genetics , Adaptation, Physiological/genetics , Altitude , Selection, Genetic , Basic Helix-Loop-Helix Transcription Factors
10.
Proc Natl Acad Sci U S A ; 121(37): e2410324121, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39231210

ABSTRACT

A central goal in evolutionary biology is to understand how different evolutionary processes cause trait change in wild populations. However, quantifying evolutionary change in the wild requires linking trait change to shifts in allele frequencies at causal loci. Nevertheless, datasets that allow for such tests are extremely rare and existing theoretical approaches poorly account for the evolutionary dynamics that likely occur in ecological settings. Using a decade-long integrative phenome-to-genome time-series dataset on wild threespine stickleback (Gasterosteus aculeatus), we identified how different modes of selection (directional, episodic, and balancing) drive microevolutionary change in correlated traits over time. Most strikingly, we show that feeding traits changed by as much 25% across 10 generations which was driven by changes in the genetic architecture (i.e., in both genomic breeding values and allele frequencies at genetic loci for feeding traits). Importantly, allele frequencies at genetic loci related to feeding traits changed at a rate greater than expected under drift, suggesting that the observed change was a result of directional selection. Allele frequency dynamics of loci related to swimming traits appeared to be under fluctuating selection evident in periodic population crashes in this system. Our results show that microevolutionary change in a wild population is characterized by different modes of selection acting simultaneously on different traits, which likely has important consequences for the evolution of correlated traits. Our study provides one of the most thorough descriptions to date of how microevolutionary processes result in trait change in a natural population.


Subject(s)
Biological Evolution , Gene Frequency , Selection, Genetic , Smegmamorpha , Animals , Smegmamorpha/genetics , Smegmamorpha/physiology , Phenotype
11.
Genomics ; 116(5): 110934, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39236771

ABSTRACT

The south China carp (Cyprinus carpio rubrofuscus) is an indigenous and important fish species, widely cultured in south China. However, part of individuals experienced retarded growth, the genetic basis of which has yet to be elucidated. In this study, whole-genome resequencing of 35 fast-growing and 35 retarded-growing south China carp were conducted to identify promising genes associated with retarded growth. Twelve candidate SNPs were detected and annotated to the Gpr75 gene, which has been reported to be related with body weight through regulating insulin homeostasis. RNA-seq analysis of muscle suggested that differentially expressed genes were significantly enriched in the insulin signaling pathway. Additionally, the fasting serum insulin level was significantly lower while the blood glucose level was significantly higher in the retarded-growing group. Our preliminary study provides insights into the genetic basis underlying the retarded growth and may facilitate further genetic improvement of south China carp.


Subject(s)
Carps , Fish Proteins , Polymorphism, Single Nucleotide , Receptors, G-Protein-Coupled , Whole Genome Sequencing , Animals , Carps/genetics , Carps/growth & development , Carps/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , RNA-Seq , Insulin/metabolism , Insulin/blood , Insulin/genetics , Blood Glucose/metabolism
12.
Mol Ecol Resour ; 24(8): e14013, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39233613

ABSTRACT

Fish ear bones, known as otoliths, are often collected in fisheries to assist in management, and are a common sample type in museum and national archives. Beyond their utility for ageing, morphological and trace element analysis, otoliths are a repository of valuable genomic information. Previous work has shown that DNA can be extracted from the trace quantities of tissue remaining on the surface of otoliths, despite the fact that they are often stored dry at room temperature. However, much of this work has used reduced representation sequencing methods in clean lab conditions, to achieve adequate yields of DNA, libraries and ultimately single-nucleotide polymorphisms (SNPs). Here, we pioneer the use of small-scale (spike-in) sequencing to screen contemporary otolith samples prepared in regular molecular biology (in contrast to clean) laboratories for contamination and quality levels, submitting for whole-genome resequencing only samples above a defined endogenous DNA threshold. Despite the typically low quality and quantity of DNA extracted from otoliths, we are able to produce whole-genome libraries and ultimately sets of filtered, unlinked and even putatively adaptive SNPs of ample numbers for downstream uses in population, climate and conservation genomics. By comparing with a set of tissue samples from the same species, we are able to highlight the quality and efficacy of otolith samples from DNA extraction and library preparation, to bioinformatic preprocessing and SNP calling. We provide detailed schematics, protocols and scripts of our approach, such that it can be adopted widely by the community, improving the use of otoliths as a source of valuable genomic data.


Subject(s)
Fishes , Otolithic Membrane , Polymorphism, Single Nucleotide , Animals , Otolithic Membrane/chemistry , Fishes/genetics , Fishes/classification , DNA/genetics , Whole Genome Sequencing/methods , Sequence Analysis, DNA/methods , Specimen Handling/methods
13.
Plants (Basel) ; 13(18)2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39339523

ABSTRACT

Coconut (Cocos nucifera L.) is an important agricultural commodity with substantial economic and nutritional value, widely used for various products, including coconut water. The sweetness is an important quality trait of coconut water, which is influenced by genetic and environmental factors. In this study, we utilized next-generation sequencing to identify genetic variations in the coconut genome associated with the sweetness of coconut water. Whole-genome resequencing of 49 coconut accessions, including diverse germplasm and an F2 population of 81 individuals, revealed ~27 M SNPs and ~1.5 M InDels. Sugar content measured by °Bx was highly variable across all accessions tested, with dwarf varieties generally sweeter. A comprehensive analysis of the sugar profiles revealed that sucrose was the major sugar contributing to sweetness. Allele mining of the 148 genes involved in sugar metabolism and transport and genotype-phenotype association tests revealed two significant SNPs in the hexose carrier protein (Cnu01G018720) and sucrose synthase (Cnu09G011120) genes associated with the higher sugar content in both the germplasm and F2 populations. This research provides valuable insights into the genetic basis of coconut sweetness and offers molecular markers for breeding programs aimed at improving coconut water quality. The identified variants can improve the selection process in breeding high-quality sweet coconut varieties and thus support the economic sustainability of coconut cultivation.

14.
Animals (Basel) ; 14(16)2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39199873

ABSTRACT

Acanthopagrus latus and Rhabdosargus sarba are economically important marine species along the coast of China, with similar external morphological characteristics and living habits, with wide distribution and strong adaptability. To investigate the molecular mechanisms underlying the adaptive evolution of these two species, we conducted whole-genome resequencing of 10 individuals of both species from the coastal waters of Wuyu Island, Fujian, China, using high-throughput sequencing technology. We obtained SNP, InDel, CNV, and SV variation information and annotated these variations, constructing a genomic variation database for both species. By comparing the resequencing data with reference genomes, we identified 9,829,511 SNP loci in the population of A. latus and 34,051,056 SNP loci in the population of R. sarba. Using whole-genome SNP data, we employed Fst and ROD methods to identify candidate genomic regions under selection. Functional annotation and enrichment analysis using GO and KEGG databases revealed potential adaptive evolution in R. sarba associated with immune response, feeding, growth and development, and locomotion, while A. latus showed potential adaptive evolution associated with immune response, nervous system, growth and development, and metabolism.

15.
Poult Sci ; 103(10): 104107, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39094499

ABSTRACT

Plumage color is an intuitive external poultry characteristic with rich manifestations and complex genetic mechanisms. In our previous study, we observed that there were more dark variations in plumage color in the F2 population derived from the hybridization of 2 white duck varieties. Therefore, based on the statistics of plumage color of 308 F2 populations, we further used the resequencing data of these individuals to detect copy number variations (CNVs) in the whole genome and conducted genome-wide association studies (GWAS) to determine the genetic basis related to plumage color traits. The CNV detection revealed 9,337 CNVs, with an average length of 15,950 bp and a total length of 142.02 MB, accounting for approximately 12.91% of the reference genome. The CNV distribution on the chromosomes was relatively uniform, and the number of CNVs on each chromosome positively correlated with the length of the chromosome. In the pure black plumage group, 2,101 CNVs were only identified, and 1,714 were specifically identified in the pure white plumage group. Ten CNVs were randomly selected for validation using quantitative real-time PCR, and 9 CNVs had the same CNV types as predicted, with an accuracy of 90%. Based on GWAS, we identified 2 CNVs potentially associated with plumage color variations, with the associated CNV regions covering 9 genes. Enrichment analysis of these 9 candidate genes showed significant enrichment of 3 pathways (ribosome biogenesis in eukaryotes, RNA transport, and protein export) and 17 gene ontology terms. Among these, VWA5A can downregulate MITF by binding to the regulatory factors SOX10. The occurrence of CNV may indirectly contribute to duck plumage color variation by affecting the regulatory factors of the switch gene MITF in the melanogenesis pathway. These findings have improved the understanding of the genetic basis of duck plumage color variation and have been beneficial for developing and using plumage color traits in subsequent poultry breeding.


Subject(s)
DNA Copy Number Variations , Ducks , Feathers , Genome-Wide Association Study , Pigmentation , Animals , Genome-Wide Association Study/veterinary , Pigmentation/genetics , Ducks/genetics , Ducks/physiology , Male , Female , Color
16.
J Biotechnol ; 394: 112-124, 2024 Nov 10.
Article in English | MEDLINE | ID: mdl-39197754

ABSTRACT

Vanillin is an inhibitor of lignocellulose hydrolysate, which can reduce the ability of Saccharomyces cerevisiae to utilize lignocellulose, which is an important factor limiting the development of the ethanol fermentation industry. In this study, mutants of vanillin-tolerant yeast named H6, H7, X3, and X8 were bred by heavy ion irradiation (HIR) combined with adaptive laboratory evolution (ALE). Phenotypic tests revealed that the mutants outperformed the original strain WT in tolerance, growth rate, genetic stability and fermentation ability. At 1.6 g/L vanillin concentration, the average OD600 value obtained for mutant strains was 0.95 and thus about 3.4-fold higher than for the wild-type. When the concentration of vanillin was 2.0 g/L, the glucose utilization rate of the mutant was 86.3 % within 96 h, while that of the original strain was only 70.0 %. At this concentration of vanillin, the mitochondrial membrane potential of the mutant strain recovered faster than that of the original strain, and the ROS scavenging ability was stronger. We analyzed the whole transcriptome sequencing map and the whole genome resequencing of the mutant, and found that DEGs such as FLO9, GRC3, PSP2 and SWF1, which have large differential expression multiples and obvious mutation characteristics, play an important role in cell flocculation, rDNA transcription, inhibition of DNA polymerase mutation and protein palmitoylation. These functions can help cells resist vanillin stress. The results show that combining HIR with ALE is an effective mutagenesis strategy. This approach can efficiently obtain Saccharomyces cerevisiae mutants with improved vanillin tolerance, and provide reference for obtaining robust yeast strains with lignocellulose inhibitor tolerance.


Subject(s)
Benzaldehydes , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Benzaldehydes/pharmacology , Benzaldehydes/metabolism , Fermentation , Heavy Ions , Directed Molecular Evolution/methods , Mutation , Lignin/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Ethanol/metabolism , Ethanol/pharmacology
17.
Front Genet ; 15: 1457634, 2024.
Article in English | MEDLINE | ID: mdl-39211736

ABSTRACT

Xinjiang is a major province of sheep breeding in China, which plays an important role in meeting people's needs for meat products, increasing farmers' income and sustainable development of animal husbandry. However, the genetic differentiation relationship between breeds was not clear, and most sheep had low fecundity, which seriously restricted the efficient development of sheep industry. Therefore, this study used the whole genome resequencing to detect the genetic variation of Dexin mutton and fine-wool sheep, explored the selected regions and important genes of the litter size traits, analyzed the genetic mechanism of reproductive traits, and provided new insights for the high fecundity breeding of sheep. A total of 5,236.338 G genome data and 35,884,037 SNPs were obtained. Furthermore, we identified 39 selection signals spanning candidate genes, 99 genes were significantly associated related to growth, reproduction and immunity, among which, BRIP1, BMPR1B, BMP4, NGF, etc. genes, and MAKP signaling pathway, Fanconi anemia pathway and Thyroid hormone signaling pathway and other signaling pathways were significantly correlated with litter size trait. Among them, we identified NGF, TrKA and BRIP1 genes was the important genes for sheep litter size traits and the mutation frequencies of 9 SNPs in BRIP1 gene were significantly different in domestic sheep in the world. The research provided new insights for the breeding of self-cultivated meat fine-wool sheep.

18.
Int J Mol Sci ; 25(16)2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39201698

ABSTRACT

Polyploid rice and its reverted diploid show rich phenotypic variation and strong heterosis, showing great breeding value. However, the genomic differences among tetraploids, counterpart common diploids, tetraploid-revertant diploids, and hybrid descendants are unclear. In this work, we bred a new excellent two-line hybrid rice variety, Y Liang You Duo Hui 14 (HTRM12), using Haitian tetraploid self-reverted diploid (HTRM2). Furthermore, we comparatively analyzed the important agronomic traits and genome-wide variations of those closest relatives, Haitian diploid (HT2), Haitian tetraploid (HT4), HTRM2, and HTRM12 in detail, based on multiple phenotypic investigations, genome resequencing, and bioinformatics analysis. The results of agronomic traits analysis and genome-wide variation analysis of single nucleotide polymorphism (SNP), insertion-deletion (InDel), and copy number variation (CNV) show that HT4 and HTRM2 had abundant phenotypic and genomic variations compared to HT2. HTRM2 can inherit important traits and variations from HT4. This implies that tetraploid self-reverted diploid has high potential in creating excellent breeding materials and in breeding breakthrough hybrid rice varieties. Our study verifies the feasibility that polyploid rice could be used as a mutation carrier for creating variations and provides genomic information, new breeding materials, and a new way of application for tetraploid rice breeding.


Subject(s)
Genome, Plant , Oryza , Plant Breeding , Polymorphism, Single Nucleotide , Tetraploidy , Oryza/genetics , Plant Breeding/methods , Phenotype , DNA Copy Number Variations/genetics , Genetic Variation
19.
Genes (Basel) ; 15(8)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39202337

ABSTRACT

Sorghum is an important C4 crop with various food and nonfood uses. Although improvements through hybridization and selection have been exploited, the introduction of genetic variation and the development of new genotypes in sorghum are still limited. Fast-neutron (FN) mutagenesis is a very effective method for gene functional studies and to create genetic variability. However, the full spectrum of FN-induced mutations in sorghum is poorly understood. To address this, we generated an FN-induced mutant population from the inbred line 'BTx623' and sequenced 40 M1 seedlings to evaluate the mutagenic effects of FNs on sorghum. The results show that each line had an average of 43.7 single-base substitutions (SBSs), 3.7 InDels and 35.15 structural variations (SVs). SBSs accounted for approximately 90.0% of the total number of small mutations. Among the eight treatment groups, FN irradiation at a dose of 19 Gy generated the highest number of mutations. The ratio of transition/transversion ranged from 1.77 to 2.21, and the G/C to A/T transition was the most common substitution in all mutant lines. The distributions of the identified SBSs and InDels were similar and uneven across the genome. An average of 3.63 genes were mutated in each mutant line, indicating that FN irradiation resulted in a suitable density of mutated genes, which can be advantageous for improving elite material for one specific or a few traits. These results provide a basis for the selection of the suitable dose of mutagen and new genetic resources for sorghum breeding.


Subject(s)
Mutation , Sorghum , Sorghum/genetics , Sorghum/radiation effects , Mutagenesis/radiation effects , Plant Breeding/methods , Genome, Plant , INDEL Mutation
20.
Parasitol Res ; 123(8): 289, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096422

ABSTRACT

Chicken coccidiosis causes retarded growth and low production performance in poultry, resulting in huge economic losses to the poultry industry. In order to prevent and control chicken coccidiosis, great efforts have been made to develop new drugs and vaccines, which require pure isolates of Eimeria spp. In this study, we obtained the Eimeira tenella Xiantao isolate by single oocyst isolation technology and compared its genome with the reference genome GCF_000499545.2_ETH001 of the Houghton strain. The results of the comparative genomic analysis indicated that the genome of this isolate contained 46,888 single nucleotide polymorphisms (SNPs). There were 15,107 small insertion and deletion variations (indels), 1693 structural variations (SV), and 3578 copy number variations (CNV). In addition, 64 broilers were used to determine the resistance profile of Xiantao strain. Drug susceptibility testing revealed that this isolate was completely resistant to monensin, diclazuril, halofuginone, sulfachlorpyrazine sodium, and toltrazuril, but sensitive to decoquinate. These data improve our understanding of drug resistance in avian coccidia.


Subject(s)
Chickens , Coccidiosis , Drug Resistance , Eimeria tenella , Poultry Diseases , Eimeria tenella/genetics , Eimeria tenella/drug effects , Eimeria tenella/isolation & purification , Animals , China , Chickens/parasitology , Poultry Diseases/parasitology , Coccidiosis/veterinary , Coccidiosis/parasitology , Drug Resistance/genetics , Coccidiostats/pharmacology , Polymorphism, Single Nucleotide , Genome, Protozoan
SELECTION OF CITATIONS
SEARCH DETAIL