Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 810
Filter
1.
Environ Int ; 190: 108905, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39089095

ABSTRACT

The emergence and dissemination of antibiotic resistance genes (ARGs) in the ecosystem are global public health concerns. One Health emphasizes the interconnectivity between different habitats and seeks to optimize animal, human, and environmental health. However, information on the dissemination of antibiotic resistance genes (ARGs) within complex microbiomes in natural habitats is scarce. We investigated the prevalence of antibiotic resistant bacteria (ARB) and the spread of ARGs in intensive bullfrog (Rana catesbeiana) farms in the Shantou area of China. Antibiotic susceptibilities of 361 strains, combined with microbiome analyses, revealed Escherichia coli, Edwardsiella tarda, Citrobacter and Klebsiella sp. as prevalent multidrug resistant bacteria on these farms. Whole genome sequencing of 95 ARB identified 250 large plasmids that harbored a wide range of ARGs. Plasmid sequences and sediment metagenomes revealed an abundance of tetA, sul1, and aph(3″)-Ib ARGs. Notably, antibiotic resistance (against 15 antibiotics) highly correlated with plasmid-borne rather than chromosome-borne ARGs. Based on sequence similarities, most plasmids (62%) fell into 32 distinct groups, indicating a potential for horizontal plasmid transfer (HPT) within the frog farm microbiome. HPT was confirmed in inter- and intra-species conjugation experiments. Furthermore, identical mobile ARGs, flanked by mobile genetic elements (MGEs), were found in different locations on the same plasmid, or on different plasmids residing in the same or different hosts. Our results suggest a synergy between MGEs and HPT to facilitate ARGs dissemination in frog farms. Mining public databases retrieved similar plasmids from different bacterial species found in other environmental niches globally. Our findings underscore the importance of HPT in mediating the spread of ARGs in frog farms and other microbiomes of the ecosystem.

2.
Front Microbiol ; 15: 1406190, 2024.
Article in English | MEDLINE | ID: mdl-39101559

ABSTRACT

Challenges from infections caused by biofilms and antimicrobial resistance highlight the need for novel antimicrobials that work in conjunction with antibiotics and minimize resistance risk. In this study we investigated the composite effect of HAMLET (human alpha-lactalbumin made lethal to tumor cells), a human milk protein-lipid complex and amoxicillin on microbial ecology using an ex vivo oral biofilm model with pooled saliva samples. HAMLET was chosen due to its multi-targeted antimicrobial mechanism, together with its synergistic effect with antibiotics on single species pathogens, and low risk of resistance development. The combination of HAMLET and low concentrations of amoxicillin significantly reduced biofilm viability, while each of them alone had little or no impact. Using a whole metagenomics approach, we found that the combination promoted a remarkable shift in overall microbial composition compared to the untreated samples. A large proportion of the bacterial species in the combined treatment were Lactobacillus crispatus, a species with probiotic effects, whereas it was only detected in a minor fraction in untreated samples. Although resistome analysis indicated no major shifts in alpha-diversity, the results showed the presence of TEM beta-lactamase genes in low proportions in all treated samples but absence in untreated samples. Our study illustrates HAMLET's capability to alter the effects of amoxicillin on the oral microbiome and potentially favor the growth of selected probiotic bacteria when in combination. The findings extend previous knowledge on the combined effects of HAMLET and antibiotics against target pathogens to include potential modulatory effects on polymicrobial biofilms of human origin.

3.
Gut Microbes ; 16(1): 2383746, 2024.
Article in English | MEDLINE | ID: mdl-39092808

ABSTRACT

Antibiotic resistance genes (ARGs) are prevalent in the infant gut microbiota and make up the intestinal resistome, representing a community ARG reservoir. This study focuses on the dynamics and persistence of ARGs in the early gut microbiota, and the effect of early exposures therein. We leveraged 2,328 stool metagenomes from 475 children in the HELMi cohort and the available parental samples to study the diversity, dynamics, and intra-familial sharing of the resistome during the first two years of life. We found higher within-family similarity of the gut resistome composition and ARG load in infant-mother pairs, and between spouses, but not in father-infant pairs. Early gut microbiota composition and development correlated with the ARG load; Bacteroides correlated positively and Bifidobacterium negatively with the load, reflecting the typical resistance levels in these taxa. Caesarean delivered infants harbored lower ARG loads, partly reflecting the scarcity of Bacteroides compared to vaginally delivered. Exposure to intrapartum or post-natal antibiotics showed only modest associations with the ARG load and composition, mainly before 12 months. Our results indicate that the resistome is strongly driven by the normal development of the microbiota in early life, and suggest importance of longer evolution of ARGs over effects of recent antibiotic exposure.


Subject(s)
Anti-Bacterial Agents , Bacteria , Feces , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/genetics , Infant , Female , Feces/microbiology , Male , Cohort Studies , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Bacteria/classification , Bacteria/drug effects , Bacteria/isolation & purification , Infant, Newborn , Bacteroides/genetics , Bacteroides/drug effects , Bacteroides/growth & development , Child, Preschool , Metagenome , Drug Resistance, Bacterial/genetics
4.
mSystems ; : e0073524, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39150245

ABSTRACT

Targeted high-throughput sequencing (HTS) has revolutionized the way we look at bacterial communities. It can be used for the species-specific detection of bacteria as well as for the determination of the microbiome and resistome and can be applied to samples from almost any environment. However, the results of targeted HTS can be influenced by many factors, which poses a major challenge for its use in clinical diagnostics. In this study, we investigated the impact of the DNA extraction method on the determination of the bacterial microbiome and resistome by targeted HTS using principles from metrology and diagnostics such as repeatability and analytical sensitivity. Sputum samples spiked with Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa at three different concentrations (103-106 cells/mL) were used. DNA was extracted from each sample on 2 separate days in three replicates each using three different extraction methods based on cetrimonium bromide, magnetic beads, and silica membranes. All three spiked bacteria were detected in sputum, and the DNA extraction method had no significant effect on detection. However, the DNA extraction method had significant effects on the composition of the microbiome and the resistome. The sequencing results were repeatable in the majority of cases. The silica membrane-based DNA extraction kit provided the most repeatable results and the highest diversity of the microbiome and resistome. Targeted HTS has been shown to be a reliable tool for determining the microbiome and resistome; however, the method of DNA extraction should be carefully selected to minimize its impact on the results. IMPORTANCE: High-throughput sequencing (HTS) is one of the crucial new technologies that gives us insights into previously hidden parts of microbial communities. The DNA extraction method is an important step that can have a major impact on the results, and understanding this impact is of paramount importance for their reliable interpretation. Our results are of great value for the interpretation of sputum microbiome and resistome results obtained by targeted HTS. Our findings allow for a more rational design of future microbiome studies, which would lead to higher repeatability of results and easier comparison between different laboratories. This could also facilitate the introduction of targeted HTS in clinical microbiology for reliable identification of pathogenic bacteria and testing for antimicrobial resistance (AMR). As AMR is a major threat to public health, the improved methods for determining AMR would bring great benefits to both the healthcare system and society as a whole.

5.
Water Res ; 264: 122204, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39116608

ABSTRACT

Antimicrobial resistance (AMR) is a global health hazard. Although clinical and agricultural environments are well-established contributors to the evolution and dissemination of AMR, research on wastewater treatment works (WwTWs) has highlighted their potential role as disseminators of AMR in freshwater environments. Using metagenomic sequencing and analysis, we investigated the changes in resistomes and associated mobile genetic elements within untreated wastewater influents and treated effluents of five WwTWs, and sediments collected from corresponding river environments in Oxfordshire, UK, across three seasonal periods within a year. Our analysis demonstrated a high diversity and abundance of antimicrobial resistance genes (ARGs) in untreated wastewater influents, reflecting the varied anthropogenic and environmental origins of wastewater. WwTWs effectively reduced AMR in the final effluent, with an average 87 % reduction in normalised ARG abundance and an average 63 % reduction in richness. However, wastewater effluents significantly impacted the antimicrobial resistome of the receiving rivers, with an average 543 % increase in ARG abundance and a 164 % increase in richness from upstream sediments to downstream sediments. The normalised abundance of the human gut-associated bacteriophage crAssphage was highly associated with both ARG abundance and richness. We observed seasonal variation in the resistome of raw influent which was not found in the effluent-receiving sediments. We illustrate the potential of WwTWs as focal points for disseminating ARGs and resistance-selecting chemicals, contributing to the elevation of environmental AMR. Our study emphasises the need for a comprehensive understanding of the anthropogenic impacts on AMR evolution and dissemination in wastewater and river environments, informing efforts to mitigate this growing public health crisis.

6.
Water Res ; 264: 122208, 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39116611

ABSTRACT

Surface water ecosystems are intimately intertwined with anthropogenic activities and have significant public health implications as primary sources of irrigation water in agricultural production. Our extensive metagenomic analysis examined 404 surface water samples from four different geological regions in Chile and Brazil, spanning irrigation canals (n = 135), rivers (n = 121), creeks (n = 74), reservoirs (n = 66), and ponds (n = 8). Overall, 50.25 % of the surface water samples contained at least one of the pathogenic or contaminant bacterial genera (Salmonella: 29.21 %; Listeria: 6.19 %; Escherichia: 35.64 %). Furthermore, a total of 1,582 antimicrobial resistance (AMR) gene clusters encoding resistance to 25 antimicrobial classes were identified, with samples from Brazil exhibiting an elevated AMR burden. Samples from stagnant water sources were characterized by dominant Cyanobacteriota populations, resulting in significantly reduced biodiversity and more uniform community compositions. A significant association between taxonomic composition and the resistome was supported by a Procrustes analysis (p < 0.001). Notably, regional signatures were observed regarding the taxonomic and resistome profiles, as samples from the same region clustered together on both ordinates. Additionally, network analysis illuminated the intricate links between taxonomy and AMR at the contig level. Our deep sequencing efforts not only mapped the microbial landscape but also expanded the genomic catalog with newly characterized metagenome-assembled genomes (MAGs), boosting the classification of reads by 12.85 %. In conclusion, this study underscores the value of metagenomic approaches in surveillance of surface waters, enhancing our understanding of microbial and AMR dynamics with far-reaching public health and ecological ramifications.

7.
J Med Microbiol ; 73(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-39133536

ABSTRACT

Studying individual ecological niches within the oral cavity is a logical first step to understanding the distribution of antimicrobial resistance genes (ARGs); however, it is not representative of the whole oral resistome. The aim of our systematic review was to provide a map of the oral resistome by reviewing the composition of individual niches. A total of 580 papers were retrieved from a search of all English language publications investigating the presence of oral ARGs in five electronic databases between January 2015 and August 2023. Fifteen studies [10 PCR and 5 next-generation sequencing (NGS)] were included in this review. The heterogeneity of methods precluded meta-analysis. ARGs are present throughout the oral cavity with 158 unique ARGs identified across 6 locations - supra and sub-gingival biofilm, mucosa, oropharynx, root canal system (RCS) and saliva. The supragingival biofilm had the highest resistome richness, while the RCS had the least. Tetracycline was the dominant antimicrobial resistance (AMR) class found. Three core genes were identified - tet(M), tet(O) and ermB.This review highlights the necessity of NGS studies to comprehensively characterize the oral resistome in its entirety. This is the logical foundation for future 'omics studies to truly understand the scope of the resistome and its contribution to AMR.


Subject(s)
Biofilms , Drug Resistance, Bacterial , Mouth , Humans , Mouth/microbiology , Drug Resistance, Bacterial/genetics , Biofilms/drug effects , Biofilms/growth & development , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/genetics , Bacteria/classification , High-Throughput Nucleotide Sequencing , Genes, Bacterial , Saliva/microbiology
8.
J Infect ; : 106243, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39142392

ABSTRACT

OBJECTIVES: High rates of antibiotic prescription in residential aged care are likely to promote enteric carriage of antibiotic resistant pathogens and increase the risk of antibiotic treatment failure. Despite their importance, relationships between antibiotic exposures and patterns of enteric resistance carriage in this population remain poorly understood. METHODS: We conducted a cross-sectional metagenomic cohort analysis of stool samples from residents of five long-term aged care facilities in South Australia. Taxonomic composition was determined, and enteric carriage of antibiotic resistance genes (ARGs) were identified and quantified against the Comprehensive Antibiotic Resistance Database. Both the detection and abundance of stool taxa and ARGs were related to antibiotic exposures up to 12 months prior. Factors associated with the abundance of ARGs of high clinical concern were identified. RESULTS: Stool samples were provided by 164 participants (median age: 88 years, IQR 81-93; 72% female). Sixty-one percent (n=100) of participants were prescribed antibiotics at least once in the prior 12 months (median prescriptions: 4, range: 1-52), most commonly a penicillin (n=55, 33.5%), cephalosporin (n=53, 32.3%), diaminopyrimidine (trimethoprim) (n=36, 22%), or tetracycline (doxycycline) (n=21, 12.8%). More than 1100 unique ARGs, conferring resistance to 38 antibiotic classes, were identified, including 20 ARGs of high clinical concern. Multivariate logistic regression showed doxycycline exposure to be the greatest risk factor for high ARG abundance (adjusted odds ratio [aOR]=14.8, q<0.001) and a significant contributor to inter-class selection, particularly for ARGs relating to penicillins (aOR=3.1, q=0.0004) and cephalosporins (aOR=3.4, q=0.003). High enteric ARG abundance was associated with the number of separate antibiotic exposures (aOR: 6.4, q<0.001), exposures within the prior 30 days (aOR: 4.6, q=0.008) and prior 30-100 days (aOR: 2.6, q=0.008), high duration of antibiotic exposure (aOR: 7.9, q<0.001), and exposure to 3 or more antibiotic classes (aOR: 7.4, q<0.001). Carriage of one or more ARGs of high clinical concern was identified in 99% of participants (n=162, median: 3, IQR: 2-4), involving 11 ARGs conferring resistance to aminoglycosides, four to beta-lactams, one to glycopeptides, three to fluoroquinolones, and one to oxazolidinones. Carriage of ARGs of high clinical concern was positively associated with exposure to doxycycline (aminoglycoside, fluroquinolone, and oxazolidinone ARGs) and trimethoprim (fluoroquinolone and beta-lactam ARGs). Analysis of doxycycline impact on microbiota composition suggested that observed resistome changes arose principally through direct ARG selection, rather than through the antibiotic depletion of sensitive bacterial populations. CONCLUSIONS: The gut microbiome of aged care residents is a major reservoir of antibiotic resistance. As a critical antibiotic in medical practice, a comprehensive understanding of the impact of doxycycline exposure on the gut resistome is paramount for informed antibiotic use, particularly in an evolving landscape of prophylactic applications. Near-universal asymptomatic carriage of clinically critical resistance determinants is highly concerning and reinforces the urgent need for improved management of antibiotic use in long-term aged care. FUNDING: Medical Research Future Fund, Australia.

9.
J Hazard Mater ; 478: 135434, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39146585

ABSTRACT

Antibiotic resistome has emerged as a global threat to public health. However, gestational antibiotic resistome and potential link with adverse pregnancy outcomes remains poorly understood. Our study reports for the first time an association between gut antibiotic resistome during early pregnancy and the risk of gestational diabetes mellitus (GDM) based on a prospective nested case-control cohort including 120 cases and 120 matched controls. A total of 214 antibiotic resistance gene (ARG) subtypes belonging to 17 ARG types were identified in > 10 % fecal samples collected during each trimester. The data revealed dynamic profiles of gut antibiotic resistome through pregnancy, and significant positive associations between selected features (i.e., ARG abundances and a GDM-ARG score which is a new feature characterizing the association between ARGs and GDM) of gut antibiotic resistome during early pregnancy and GDM risk as well as selected endogenous metabolites. The findings demonstrate ubiquitous presence of ARGs in pregnant women and suggest it could constitute an important risk factor for the development of GDM.

10.
Cell Host Microbe ; 32(8): 1444-1454.e6, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39146801

ABSTRACT

Pregnant women undergoing a cesarean section (CS) typically receive antibiotics prior to skin incision to prevent infections. To investigate if the timing of antibiotics influences the infant gut microbiome, we conducted a randomized controlled trial (NCT06030713) in women delivering via a scheduled CS who received antibiotics either before skin incision or after umbilical cord clamping. We performed a longitudinal analysis on 172 samples from 28 infants at 8 post-birth time points and a cross-sectional analysis at 1 month in 79 infants from 3 cohorts. Although no significant associations with bacterial composition, metabolic pathways, short-chain fatty acids, and bile acids were found, we observed subtle differences between the groups at the bacterial strain level and in the load of antibiotic resistance genes. Rather, feeding mode was a predominant and defining factor impacting infant microbial composition. In conclusion, antibiotic administration during CS has only limited effects on the early-life gut microbiome.


Subject(s)
Anti-Bacterial Agents , Antibiotic Prophylaxis , Cesarean Section , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/drug effects , Female , Antibiotic Prophylaxis/methods , Pregnancy , Anti-Bacterial Agents/administration & dosage , Infant , Infant, Newborn , Adult , Cross-Sectional Studies , Bacteria/genetics , Bacteria/drug effects , Bacteria/classification , Longitudinal Studies , Bile Acids and Salts/metabolism , Feces/microbiology
11.
Poult Sci ; 103(10): 104138, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39146922

ABSTRACT

Intestinal microbial metabolism has an important impact on the health of laying hens, and microbes are also important hosts for ARGs. However, the relationship between intestinal microbes and antibiotic resistance in laying hens is unclear. In this study, a slaughtering experiment, an in vitro fermentation experiment and a single-bacteria culture experiment were carried out, and metagenomic and metabolomic analyses were used to investigate the relationships between microbial metabolism and the antibiotic resistome in the cecum of laying hens. The results showed that there were different types of ARGs in the intestines of laying hens, and the risk scores of the ARGs tended to decrease with growth stage. A total of 1142 metagenome-assembled genomes (MAGs) were obtained, and Escherichia coli was found to be the dominant ARG host, carrying 62 ARGs. Metabolomics revealed that indole and its derivatives, such as indole-3-lactic acid, were negatively correlated with a variety of ARGs. Moreover, in vitro fermentation experiment and single-bacteria culture experiment demonstrated that indole-3-lactic acid reduced the abundance and risk of multiple ARGs in the intestine and inhibited the growth of the ARG host Escherichia coli. In the context of high concern about intestinal microbial metabolism and antibiotic resistance, this is the first study to focus on the relationship between intestinal microbial metabolism and antibiotic resistance in laying hens. These findings have important implications for healthy farming and antibiotic resistance control.

12.
BMC Microbiol ; 24(1): 256, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987681

ABSTRACT

BACKGROUND: The emergence of multi-drug-resistant Klebsiella pneumoniae (MDR-KP) represents a serious clinical health concern. Antibiotic resistance and virulence interactions play a significant role in the pathogenesis of K. pneumoniae infections. Therefore, tracking the clinical resistome and virulome through monitoring antibiotic resistance genes (ARG) and virulence factors in the bacterial genome using computational analysis tools is critical for predicting the next epidemic. METHODS: In the current study, one hundred extended spectrum ß-lactamase (ESBL)-producing clinical isolates were collected from Mansoura University Hospital, Egypt, in a six-month period from January to June 2022. One isolate was selected due to the high resistance phenotype, and the genetic features of MDR-KP recovered from hospitalized patient were investigated. Otherwise, the susceptibility to 25 antimicrobials was determined using the DL Antimicrobial Susceptibility Testing (AST) system. Whole genome sequencing (WGS) using Illumina NovaSeq 6000 was employed to provide genomic insights into K. pneumoniae WSF99 clinical isolate. RESULTS: The isolate K. pneumoniae WSF99 was phenotypically resistant to the antibiotics under investigation via antibiotic susceptibility testing. WGS analysis revealed that WSF99 total genome length was 5.7 Mb with an estimated 5,718 protein-coding genes and a G + C content of 56.98 mol%. Additionally, the allelic profile of the WSF99 isolate was allocated to the high-risk clone ST147. Furthermore, diverse antibiotic resistance genes were determined in the genome that explain the high-level resistance phenotypes. Several ß-lactamase genes, including blaCTX-M-15, blaTEM-1, blaTEM-12, blaSHV-11, blaSHV-67, and blaOXA-9, were detected in the WSF99 isolate. Moreover, a single carbapenemase gene, blaNDM-5, was predicted in the genome, positioned within a mobile cassette. In addition, other resistance genes were predicted in the genome including, aac(6')-Ib, aph(3')-VI, sul1, sul2, fosA, aadA, arr-2, qnrS1, tetA and tetC. Four plasmid replicons CoIRNAI, IncFIB(K), IncFIB(pQil), and IncR were predicted in the genome. The draft genome analysis revealed the occurrence of genetic mobile elements positioned around the ARGs, suggesting the ease of dissemination via horizontal gene transfer. CONCLUSIONS: This study reports a comprehensive pathogenomic analysis of MDR-KP isolated from a hospitalized patient. These findings could be relevant for future studies investigating the diversity of antimicrobial resistance and virulence in Egypt.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Genome, Bacterial , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Virulence Factors , Whole Genome Sequencing , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/classification , Humans , Egypt , Drug Resistance, Multiple, Bacterial/genetics , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Virulence Factors/genetics , Genome, Bacterial/genetics , beta-Lactamases/genetics , Bacterial Proteins/genetics , Plasmids/genetics
13.
Heliyon ; 10(13): e33372, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39035534

ABSTRACT

Acinetobacter baumannii, a notorious opportunistic pathogen, presents a formidable challenge in both clinical and environmental fields due to its resilience and ability to acquire resistance. This study undertook a comprehensive analysis of 183 A. baumannii isolates collected between 2019 and 2022 from intra-hospital infections (IHI), hospital sewages (Hs), wastewater treatment plants (WWTP), and adjacent river waters from two Southern cities, focusing on their resistome, virulome, and mobilome through isolation on chromogenic media, identification by MALDI-TOF-MS and antibiotic susceptibility testing by disk diffusion) followed by genotypic characterization [Whole Genome Sequencing (WGS), 3rd generation sequencing through the MinION (ONT) platform, pangenome description, and respectively horizontal gene transfer through conjugation assays]. Our findings reveal significant genomic plasticity and the prevalence of high-risk international clones, underlining the potential of these isolates to act as reservoirs for antibiotic resistance genes (ARGs) that could be dynamically exchanged between clinical and environmental settings through mobile genetic elements (MGEs) such as the pMAL1 plasmids and the critical role of WWTPs in the persistence and spread of A. baumannii. Moreover, our study presents the first report of the co-occurrence of bla OXA-23 and bla OXA-72 in A. baumannii ST2 clone. Thus, our research underscores the necessity for integrated surveillance and targeted interventions across healthcare and environmental sectors to mitigate the risk posed by this adaptable pathogen.

14.
Water Res ; 262: 122106, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39038423

ABSTRACT

The global surge in antibiotic resistance genes (ARGs) presents a serious public health challenge. While methods like metagenomic analysis and qPCR arrays have been instrumental in investigating ARG distributions and dynamics, the vast diversity of ARGs often complicates effective monitoring and risk assessment. Here, we developed a High-Risk ARGs (HRA) chip based on high-capacity quantitative PCR array targeting previously identified high-risk ARGs. These ARGs are known to be prevalent in human-related environments, exhibit gene mobility, and are present in ESKAPE pathogens. The HRA chip include 101 primer sets and the 16S rRNA gene as a reference. These primer sets consist of 34 obtained from previous studies, and 67 newly designed primer sets which were validated in silico and experimentally. Absolute quantification of targeted ARGs is accomplished by generating standard curves for all ARGs with serially ten-fold diluted mixed plasmids containing targeted ARG sequences. The amplification efficiencies of all ARGs exceed 99% via plasmid template dilution tests, suggesting high reliability in quantification. The performance of HRA chip is further evaluated by practical applications in environmental samples from wastewater treatment plants (WWTPs) and soils with various land use types and fertilization regimes. The results indicate the dynamics of high-risk ARGs during wastewater treatment process, and reveal the profiles of soil high-risk ARGs which is distinct from those derived via metagenomic approaches. These findings highlight the potentials of HRA Chip in the evaluation of anthropogenic impacts on the environmental resistome with a more focused spectrum of high-risk ARGs. Overall, the HRA Chip emerges as a powerful and efficient high-throughput tool for rapid detection and quantification of high-risk ARGs, facilitating comprehensive profiling of high-risk resistomes in environmental samples which is essential for human health risk assessment of ARGs.

15.
Front Cell Infect Microbiol ; 14: 1410997, 2024.
Article in English | MEDLINE | ID: mdl-39027135

ABSTRACT

Background: Acinetobacter baumannii (AB) has emerged as one of the most challenging pathogens worldwide, causing invasive infections in the critically ill patients due to their ability to rapidly acquire resistance to antibiotics. This study aimed to analyze antibiotic resistance genes harbored in AB and non-baumannii Acinetobacter calcoaceticus-baumannii (NB-ACB) complex causing invasive diseases in Korean children. Methods: ACB complexes isolated from sterile body fluid of children in three referral hospitals were prospectively collected. Colistin susceptibility was additionally tested via broth microdilution. Whole genome sequencing was performed and antibiotic resistance genes were analyzed. Results: During January 2015 to December 2020, a total of 67 ACB complexes were isolated from sterile body fluid of children in three referral hospitals. The median age of the patients was 0.6 (interquartile range, 0.1-7.2) years old. Among all the isolates, 73.1% (n=49) were confirmed as AB and others as NB-ACB complex by whole genome sequencing. Among the AB isolates, only 22.4% susceptible to carbapenem. In particular, all clonal complex (CC) 92 AB (n=33) showed multi-drug resistance, whereas 31.3% in non-CC92 AB (n=16) (P<0.001). NB-ACB showed 100% susceptibility to all classes of antibiotics except 3rd generation cephalosporin (72.2%). The main mechanism of carbapenem resistance in AB was the bla oxa23 gene with ISAba1 insertion sequence upstream. Presence of pmr gene and/or mutation of lpxA/C gene were not correlated with the phenotype of colistin resistance of ACB. All AB and NB-ACB isolates carried the abe and ade multidrug efflux pumps. Conclusions: In conclusion, monitoring and research for resistome in ACB complex is needed to identify and manage drug-resistant AB, particularly CC92 AB carrying the bla oxa23 gene.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Microbial Sensitivity Tests , Whole Genome Sequencing , Humans , Child , Child, Preschool , Infant , Republic of Korea/epidemiology , Acinetobacter Infections/microbiology , Acinetobacter Infections/epidemiology , Acinetobacter baumannii/genetics , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/isolation & purification , Anti-Bacterial Agents/pharmacology , Female , Male , COVID-19/epidemiology , Colistin/pharmacology , Acinetobacter calcoaceticus/genetics , Acinetobacter calcoaceticus/drug effects , Acinetobacter calcoaceticus/isolation & purification , Drug Resistance, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics , SARS-CoV-2/genetics , SARS-CoV-2/drug effects , Prospective Studies , beta-Lactamases/genetics , beta-Lactamases/metabolism
16.
Access Microbiol ; 6(6)2024.
Article in English | MEDLINE | ID: mdl-39045243

ABSTRACT

Infectious endophthalmitis is a severe ophthalmic emergency. This infection can be caused by bacteria and fungi. For efficient treatment, the administration of antimicrobial drugs to which the microbes are susceptible is essential. The aim of this study was to identify micro-organisms in biopsies of Mexican endophthalmitis patients using metagenomic next-generation sequencing and determine which antibiotic resistance genes were present in the biopsy samples. In this prospective case study, 19 endophthalmitis patients were recruited. Samples of vitreous or aqueous humour were extracted for DNA extraction for metagenomic next-generation sequencing. Analysis of the sequencing results revealed the presence of a wide variety of bacteria in the biopsies. Resistome analysis showed that homologues of antibiotic resistance genes were present in several biopsy samples. Genes possibly conferring resistance to ceftazidime and vancomycin were detected in addition to various genes encoding efflux pumps. Our findings contrast with the widespread opinion that only one or a few bacterial strains are present in the infected tissues of endophthalmitis patients. These diverse communities might host many of the resistance genes that were detected, which can further complicate the infections.

17.
Environ Int ; 190: 108896, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39068748

ABSTRACT

The presence of soil-borne disease obstacles and antibiotic resistance genes (ARGs) in soil leads to serious economic losses and health risks to humans. One area in need of attention is the evolution of ARGs as pathogenic soil gradually develops, which introduces uncertainty to the dynamic ability of conventional farming models to predict ARGs. Here, we investigated variations in tomato bacterial wilt disease accompanied by the resistome by metagenomic analysis in soils over 13 seasons of monoculture. The results showed that the abundance and diversity of ARGs and mobile genetic elements (MGEs) exhibited a significant and positive correlation with R. solanacearum. Furthermore, the binning approach indicated that fluoroquinolone (qepA), tetracycline (tetA), multidrug resistance genes (MDR, mdtA, acrB, mexB, mexE), and ß-lactamases (ampC, blaGOB) carried by the pathogen itself were responsible for the increase in overall soil ARGs. The relationships between pathogens and related ARGs that might underlie the breakdown of soil ARGs were further studied in R. solanacearum invasion pot experiments. This study revealed the dynamics of soil ARGs as soil-borne diseases develop, indicating that these ecological trends can be anticipated. Overall, this study enhances our understanding of the factors driving ARGs in disease-causing soils.

18.
Environ Res ; 259: 119554, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964571

ABSTRACT

Hospital wastewaters (HWWs) serve as critical reservoirs for disseminating antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB). However, the dynamics and noteworthy shifts of ARGs and their associated pathogenicity, mobility, and resistome risks during HWWs treatment processes remain poorly understood. Utilizing metagenomic sequencing and assembly, we identified 817 ARG subtypes conferring resistance to 20 classes of antibiotics across 18 HWW samples from influent to effluent. Genes encoding resistance to multidrug, aminoglycoside and beta_lactam were the most prevalent ARG types, reflecting patterns observed in clinical settings. On-site treatment efforts decreased the relative abundance of ARGs by 77.4% from influent to secondary sedimentation, whereas chlorine disinfection significantly increased their abundance in the final effluent. Deterministic processes primarily drove the taxonomic assembly, with Proteobacteria being the most abundant phylum and serving as the primary host for 15 ARG types. Contig-based analysis further revealed 114 pathogenic ARB, with Escherichia coli, Pseudomonas alcaligenes, and Pseudomonas aeruginosa exhibiting multidrug-resistant. The contributions of host bacteria and pathogenic ARB varied throughout wastewater treatment. In addition, 7.10%-31.0 % ARGs were flanked by mobile genetic elements (MGEs), predominantly mediated by transposase (74.1%). Notably, tnpA exhibited the highest potential for ARG dissemination, frequently co-occurring with beta-lactam resistance genes (35.2%). Considering ARG profiles, pathogenic hosts, and transferability, raw influent exhibited the highest antibiotic resistome risk index (ARRI), followed by the final effluent. Chlorine disinfection exacerbated resistome risks by inducing potential pathogenic ARB and mobile ARGs, posing threats to the receiving environment. This study delineates ARG occurrence patterns, highlights mechanisms of ARG carriage and horizontal gene transfer, and provides insights for assessing resistance risks and prioritizing interventions in clinical settings.

19.
Anim Microbiome ; 6(1): 39, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030654

ABSTRACT

Zinc is an essential trace element required in the diet of all species. While the effects of zinc have been studied in growing calves, little is known about the effect of zinc on the microbiota of the gestating cow or her neonatal calf. Understanding factors that shape the gut health of neonatal animals and evaluating the effect of dietary supplements in adult gestating animals is important in promoting animal health and informing feeding practices. The aims of this study were to determine the effect of dietary zinc on the microbiota and resistome of the gestating cow and calf. Gestating cows received standard (40 ppm) or high (205 ppm) dietary zinc levels from dry off to calving. Fecal samples were collected from cows upon enrollment and at calving and from neonatal calves. Fecal samples underwent 16S rRNA sequencing and a subset also underwent shotgun metagenomic sequencing. The effect of zinc supplementation on the diversity and composition of the cow and calf microbiome and resistome was assessed. Alpha and beta diversity and composition of the microbiota were significantly altered over time but not by treatment in the cows, with alpha diversity decreasing and 14 genera found at significantly higher relative abundances at calving compared to enrollment. Levels of 27 antimicrobial resistance genes significantly increased over time. Only a small number of taxa were differentially expressed at calving in treatment and control groups, including Faecalibacterium, Bacteroides, Turicibacter, and Bifidobacterium pseudolongum. No effect of the dam's treatment group was observed on the diversity or composition of the neonatal calf microbiota. The calf resistome, which was relatively rich and diverse compared to the cow, was also unaffected by the dam's treatment group. The impact of high levels of dietary zinc thus appeared to be minimal, with no observed changes in alpha or beta diversity, and few changes in the relative abundance of a small number of taxa and antimicrobial resistance genes.

20.
mSystems ; : e0072624, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980054

ABSTRACT

Hospitals are subject to strict microbial control. Stringent cleaning and confinement measures in hospitals lead to a decrease in microbial diversity, but an increase in resistance genes. Given the rise of antimicrobial resistances and healthcare-associated infections, understanding the hospital microbiome and its resistome is crucial. This study compared the microbiome and resistome at different levels of confinement (CL) within a single hospital. Using amplicon sequencing, shotgun metagenomics, and genome/plasmid reconstruction, we demonstrate that microbial composition differs in a stable way between the CLs and that the most restrictive confinement level CL1 had the lowest microbial but the highest functional diversity. This CL also exhibited a greater abundance of functions related to virulence, disease, defense, and stress response. Comparison of antibiotic resistance also showed differences among CLs in terms of the selection process and specific mechanisms for antimicrobial/antibiotic resistance. The resistances found in the samples of CL1 were mostly mediated via antibiotic efflux pumps and were mainly located on chromosomes, whereas in the other, less restrictive CL antibiotic resistances were more present on plasmids. This could be of particular importance for patient-related areas (CL2), as the potential spread of antibiotic resistances could be a major concern in this area. Our results show that there are differences in the microbiome and resistome even within a single hospital, reflecting room utilization and confinement. Since restrictive confinement selects for resistant microorganisms, strategies are required to deepen our understanding of dynamic processes of microbiome and resistome within hospital environments. IMPORTANCE: Effective measures to combat antibiotic resistances and healthcare-associated infections are urgently needed, including optimization of microbial control. However, previous studies have indicated that stringent control can lead to an increase in the resistance capacities of microbiomes on surfaces. This study adds to previous knowledge by focusing on the conditions in a single hospital, resolving the microbiomes and their resistomes in three different confinement levels (CL): operating room, patient-related areas, and non-patient-related areas. We were able to identify stable key taxa; profiled the capacities of taxa, functions, and antimicrobial resistances (AMR); and reconstruct genomes and plasmids in each CL. Our results show that the most restrictive CL indeed had the highest functional diversity, but that resistances were mostly encoded on chromosomes, indicating a lower possibility of resistance spread. However, clever strategies are still required to strike a balance between microbial control and selective pressures in environments where patients need protection.

SELECTION OF CITATIONS
SEARCH DETAIL