Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
Bioresour Technol ; 407: 131075, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38996847

ABSTRACT

Phosphorus (P) plays a crucial role in plant growth, which can provide nutrients for plants. Nonetheless, excessive phosphate can cause eutrophication of water, deterioration of aquatic environment, and even harm for human health. Therefore, adopting feasible adsorption technology to remove phosphate from water is necessary. Biochar (BC) has received wide attention for its low cost and environment-friendly properties. However, undeveloped pore structure and limited surface groups of primary BC result in poor uptake performance. Consequently, this work introduced the synthesis of pristine BC, parameters influencing phosphate removal, and corresponding mechanisms. Moreover, multifarious metal-doped BCs were summarized with related design principles. Meanwhile, mechanisms of selective phosphate adsorption by metal-doped BC were investigated deeply, and the recovery of phosphate from water, and the utilization of phosphate-loaded adsorbents in soil were critically presented. Finally, challenges and prospects for widespread applications of selective phosphate adsorption were proposed in the future.

2.
Bioresour Technol ; 406: 131002, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38889869

ABSTRACT

A continuous chemical-free green approach was investigated for the comprehensive reutilization of all components in herbal extraction residues (HERs), taking Glycyrrhiza uralensis residue (GUR) as an example. The GUR structural changes induced by mechanical extrusion which improve the specific surface area and enzyme accessibility of GUR. With 3 % pretreated GUR loading of high-tolerance Penicillium oxalicum G2. The reducing sugar yield of 11.45 g/L was achieved, along with an 81.06 % in situ enzymatic hydrolysis. Finally, 8.23 g/L bioethanol (0.40 g/g total sugar) was produced from GUR hydrolysates after 24 h fermentation of Pichia stipitis G32. The amount of functional medicinal ingredients extracted from GUR after hydrolysis (39.63 mg/g) was 37.69 % greater than that of un-pretreated GUR. In total, 1.49 g flavonoids, 294.36 U cellulase, and 14.13 g ethanol could be produced from 100 g GUR using this process, illustrating that this green and efficient process has the potential for industrial production.


Subject(s)
Cellulase , Ethanol , Flavonoids , Glycyrrhiza uralensis , Cellulase/metabolism , Ethanol/metabolism , Glycyrrhiza uralensis/chemistry , Hydrolysis , Penicillium/metabolism , Fermentation , Pichia/metabolism , Biotechnology/methods
3.
Nanomaterials (Basel) ; 14(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38607159

ABSTRACT

The rapid development of the photovoltaic industry has also brought some economic losses and environmental problems due to the waste generated during silicon ingot cutting. This study introduces an effective and facile method to reutilize silicon-cutting waste by constructing a multilayer Si@SiO2@C composite for Li-ion batteries via two-step annealing. The double-layer structure of the resultant composite alleviates the severe volume changes of silicon effectively, and the surrounding slightly graphitic carbon, known for its high conductivity and mechanical strength, tightly envelops the silicon nanoflakes, facilitates ion and electron transport and maintains electrode structural integrity throughout repeated charge/discharge cycles. With an optimization of the carbon content, the initial coulombic efficiency (ICE) was improved from 53% to 84%. The refined Si@SiO2@C anode exhibits outstanding cycling stability (711.4 mAh g-1 after 500 cycles) and rate performance (973.5 mAh g-1 at 2 C). This research presents a direct and cost-efficient strategy for transforming photovoltaic silicon-cutting waste into high-energy-density lithium-ion battery (LIB) anode materials.

4.
Food Chem X ; 22: 101380, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38665633

ABSTRACT

In order to re-utilize the residual from the distillation of the Chinese wolfberry wine and reduce the environmental pollution, the residual is firstly filtered by the ceramic membrane of 50 nm, then the Cu (II) has transferred from the distillation is removed using the ion exchange resin, and the treated solution is recombined with the distilled liquor to make the Chinese wolfberry brandy and the comparison has conducted on the physicochemical properties, antioxidant activity and flavor compounds between the recombined brandy and the finished brandy. The results indicate that the Cu (II) was effectively removed by ceramic membrane combined with the D401 resin. Compared with finished brandy, the recombined brandy contains high contents of polysaccharides, phenols and flavonoids, thus contributing to the improvement of antioxidant capacity. The gas chromatography-ion mobility spectrometry (GC-IMS) reveals that 25 volatile compounds like esters and alcohols have identified in the brandy samples, and the differences are significant between the recombined and the finished brandy. In summary, the distilled residual from the Chinese wolfberry wine might be re-used after the appropriate treatment so as to reduce the discharge and environmental pollution.

5.
Chemosphere ; 354: 141737, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38499078

ABSTRACT

Extracting heavy metal ions from wastewater has significant implications for both environmental remediation and resource preservation. However, the conventional adsorbents still suffer from incomplete ion removal and low utilization efficiency of the recovered metals. Herein, we present an extraction and reutilization method assisted by porous boron nitride (p-BN) containing high-density N atoms for metal recovery with simultaneous catalyst formation. The p-BN exhibits stable and efficient metal adsorption performance, particularly for ultra-trace-level water purification. The distribution coefficients towards Pb2+, Cd2+, Co2+ and Fe3+ can exceed 106 mL g-1 and the residual concentrations that reduced from 1 mg L-1 to 0.8-1.3 µg L-1 are much lower than the acceptable limits in drinking water standards of World Health Organization. Meanwhile, the used p-BN after Co ion adsorption can be directly adopted as a high-efficiency catalyst for activating peroxymonosulfate (PMS) in organic pollutant degradation without additional post-treatment, avoiding the secondary metal pollution and the problems of neglected manpower and energy consumption. Moreover, a flow-through multistage utilization system assisted by p-BN/polyvinylidene fluoride (PVDF) membrane is constructed for achieving both metal ion separation and reutilization in the removal of organic pollutants, providing a new avenue for sustainable wastewater remediation.


Subject(s)
Boron Compounds , Environmental Pollutants , Metals, Heavy , Water Pollutants, Chemical , Wastewater , Porosity , Water Pollutants, Chemical/analysis , Metals, Heavy/analysis , Adsorption , Ions
6.
Waste Manag Res ; : 734242X241231394, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38390711

ABSTRACT

Cadmium (Cd)-enriched adsorbents wastes possess great environmental risk due to their large-scale accumulation and toxicity in the natural environment. Recycling spent Cd-enriched adsorbents into efficient catalysts for advanced applications could address the environmental issues and attain the carbon neutral goal. Herein, a facile strategy is developed for the first time to reutilize the alkali lignin (AL)-derived biochar (ALB) absorbed with Cd into cadmium sulphide (CdS)/C composite for the efficient methylene blue (MB) removal. The ALB is initially treated with Cd-containing solution, then the recycling ALB samples with adsorbed Cd are converted to the final CdS/C composite using NaS2 as the sulphurizing reagent for vulcanization reaction. The optimal ALB400 demonstrates a high adsorption capacity of 576.0 mg g-1 for Cd removal. Then the converted CdS/C composite shows an efficient MB removal efficiency of 94%. The photodegradation mechanism is mainly attributed to carbon components in the CdS/C composite as electron acceptor promoting the separation of photoelectrons/holes and slowing down the abrasion of CdS particles. The enhanced charge transfer and contact between the carrier and the active site thus improves the removal performance and reusability. This work not only develops a method for removing Cd from wastewater effectively and achieving the waste resource utilization but also further offers a significant guidance to use other kinds of spent heavy metal removal adsorbents for the construction of low-cost and high value-added functional materials.

7.
Polymers (Basel) ; 16(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38337286

ABSTRACT

Clean fracturing fluid has the characteristics of being environmentally friendly and causing little damage to reservoirs. Meanwhile, its backflow gel-breaking fluids (GBFs) can be reutilized as an oil displacement agent. This paper systematically evaluates the feasibility and EOR mechanism of a GBF based on a polymer surfactant as an oil displacement system for reutilization. A rotating interfacial tensiometer and contact angle measuring instrument were used to evaluate the performance of reducing the oil-water interfacial tension (IFT) and to change the rock wettability, respectively. Additionally, a homogeneous apparatus was used to prepare emulsions to evaluate GBF's emulsifying properties. Finally, core flooding experiments were used to evaluate the EOR effect of GBFs, and the influence rules and main controlling effects of various properties on the EOR were clarified. As the concentration of GBFs increases, the IFT first decreases to the lowest of 0.37 mN/m at 0.20 wt% and then increases and the contact angle of the rock wall decreases from 129° and stabilizes at 42°. Meanwhile, the emulsion droplet size gradually decreases and stabilizes with increases in GBF concentration, and the smallest particle size occurs when the concentration is 0.12-0.15 wt%. The limited adsorption area of the oil-water interface and the long molecular chain are the main reasons that limit the continued IFT reduction and emulsion stability. The oil displacement experiment shows that the concentration of GBF solution to obtain the best EOR effect is 0.15 wt%. At this concentration, the IFT reduction and the emulsification performance are not optimal. This shows that the IFT reduction performance, reservoir wettability change performance, and emulsification performance jointly determine the EOR effect of GBFs. In contrast, the emulsifying performance of GBFs is the main controlling factor for the EOR. Finally, the optimal application concentration of GBFs is 0.15-0.20 wt%, and the optimal injection volume is 0.5 PV.

8.
Gels ; 10(2)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38391472

ABSTRACT

The presence of organic dyes and heavy metal ions in water sources poses a significant threat to human health and the ecosystem. In this study, hydrogel adsorbents for water pollution remediation were synthesized using Guipi residue (GP), a cellulose material from Chinese herbal medicine, and chitosan (CTS) through radical polymerization with acrylamide (AM) and acrylic acid (AA). The characteristics of the hydrogels were analyzed from a physicochemical perspective, and their ability to adsorb was tested using model pollutants such as Pb2+, Cd2+, Rhodamine B (RhB), and methyl orange (MO). The outcomes revealed that GP/CTS/AA-co-AM, which has improved mechanical attributes, effectively eliminated these pollutants. At a pH of 4.0, a contact duration of 120 min, and an initial concentration of 600 mg/L for Pb2+ and 500 mg/L for Cd2+, the highest adsorption capabilities were 314.6 mg/g for Pb2+ and 289.1 mg/g for Cd2+. Regarding the dyes, the GP/CTS/AA-co-AM hydrogel displayed adsorption capacities of 106.4 mg/g for RhB and 94.8 mg/g for MO, maintaining a stable adsorption capacity at different pHs. Compared with other competitive pollutants, GP/CTS/AA-co-AM demonstrated a higher absorption capability, mainly targeted toward Pb2+. The adsorption processes for the pollutants conformed to pseudo-second-order kinetics models and adhered to the Langmuir models. Even after undergoing five consecutive adsorption and desorption cycles, the adsorption capacities for heavy metals and dyes remained above 70% and 80%. In summary, this study effectively suggested the potential of the innovative GP/CTS/AA-co-AM hydrogel as a practical and feasible approach for eliminating heavy metals and dyes from water solutions.

9.
ACS Appl Mater Interfaces ; 16(3): 3888-3900, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38196337

ABSTRACT

The severe shuttle effect and the depletion of active sulfur result in performance deterioration, presenting two formidable issues that must be overcome to achieve high-mass-loading lithium-sulfur batteries. Herein, we reported a composite separator by introducing carbon photonic crystals with a hierarchically ordered porous structure on a commercial separator. The ordered structure and interconnected hierarchical macro-meso-micropore network of the composite separator facilitate efficient trapping of polysulfides and rapid transport of lithium ions. The high ion diffusivity promotes the conversion of polysulfides enhancing sulfur utilization and mitigating the occurrence of "dead sulfur" on the surface of the separator. Impressively, under a high sulfur loading of 3 mg cm-2, the lithium-sulfur battery with the composite separator displayed a high reversible capacity of 1582 mA h g-1 at 0.1 C and an excellent long-term cycling performance with a decay rate of as low as 0.033% per cycle over 1500 cycles at 1 C. Surprisingly, the battery represented a high reversible capacity of 935 mA h g-1 at 0.2 C even at a sulfur loading of 6.71 mg cm-2. The design of the composite separator underscores the pivotal role of carbon architecture in improving battery performance and brings a bright prospect to enable the commercialization of high-mass-loading lithium-sulfur batteries.

10.
Plant Direct ; 8(1): e558, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38222932

ABSTRACT

Turions are vegetative, dormant, and storage overwintering organs formed in perennial aquatic plants in response to unfavorable ecological conditions and originate by extreme condensation of apical shoot segments. The contents of cytokinins, auxins, and abscisic acid were estimated in shoot apices of summer growing, rootless aquatic carnivorous plants, Aldrovanda vesiculosa and Utricularia australis, and in developing turions at three stages and full maturity to reveal hormonal patterns responsible for turion development. The hormones were analyzed in miniature turion samples using ultraperformance liquid chromatography coupled with triple quadrupole mass spectrometry. Photosynthetic measurements in young leaves also confirmed relatively high photosynthetic rates at later turion stages. The content of active cytokinin forms was almost stable in A. vesiculosa during turion development but markedly decreased in U. australis. In both species, auxin content culminated in the middle of turion development and then decreased again. The content of abscisic acid as the main inhibitory hormone was very low in growing plants in both species but rose greatly at first developmental stages and stayed very high in mature turions. The hormonal data indicate a great strength of developing turions within sink-source relationships and confirm the central role of abscisic acid in regulating the turion development.

11.
Environ Sci Pollut Res Int ; 31(3): 3320-3342, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38100022

ABSTRACT

Safe and sustainable treatment of municipal solid waste incineration fly ash (MSWI FA) is urgently needed worldwide because of its high heavy metals, dioxin, and chlorine (Cl) contents. Thermal treatment is widely considered as a promising method for treating MSWI FA owing to its high toxic content removal efficiency and resource recovery; however, residual Cl is a concurrent critical problem faced during reutilisation of thermal treatment products. This review summarises the innovative thermal treatment methods of MSWI FA, such as those employed in production of cement, lightweight aggregates, glass slag, and metal alloys. The characteristics of Cl in MSWI FA, removal rate, transformation of water-soluble Cl into water-insoluble Cl, and the effect of different influencing factors such as temperature, composition, superheated steam, and mechanical pressure were analysed. The volatilization and decomposition of NaCl, KCl and CaClOH dominates Cl removal; however, the degradation of organic Cl and heavy metal chlorination volatilization process that generate HCl and heavy metal chlorides, respectively, also contributed to Cl removal. To promote the reutilisation of MSWI FA-based products, the leaching behaviour of residual Cl in products obtained by different thermal treatments was investigated.


Subject(s)
Metals, Heavy , Refuse Disposal , Coal Ash , Solid Waste/analysis , Chlorine , Particulate Matter , Halogenation , Carbon , Incineration , Metals, Heavy/analysis , Chlorides , Water
12.
Molecules ; 28(17)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37687027

ABSTRACT

The reutilization non-metallic components from a waste-printed circuit board (WPCB) has become one of the most significant bottlenecks in the comprehensive reuse of electronic wastes due to its low value and complex compositions, and it has received great attention from scientific and industrial researchers. To effectively address the environmental pollution caused by inappropriate recycling methods, such as incineration and landfill, extensive efforts have been dedicated to achieving the high value-added reutilization of WPCB non-metals in sustainable polymer composites. In this review, recent progress in developing sustainable polymer composites based on WPCB non-metallic components was systematically summarized. It has been demonstrated that the WPCB non-metals can serve as a promising reinforcing and functional fillers to significantly ameliorate some of the physical and chemical properties of polymer composites, such as excellent mechanical properties, enhanced thermal stability, and flame retardancy. The recovery strategies and composition of WPCB non-metals were also briefly discussed. Finally, the future potentials and remaining challenges regarding the reutilization of WPCB non-metallic components are outlined. This work provides readers with a comprehensive understanding of the preparation, structure, and properties of the polymer composites based on WPCB non-metals, providing significant insights regarding the high value-added reutilization of WPCB non-metals of electronic wastes.

13.
Methods Protoc ; 6(5)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37736965

ABSTRACT

Used in solid-phase peptide synthesis (SPPS) for peptides with an acid termination, the 2-chlorotrityl chloride (2-CTC) resin is highly susceptible to moisture, leading to reduced resin loading and lower synthetic yields. It is therefore recommended that the resin be activated with thionyl chloride (SOCl2) before peptide assembly. Here we present an optimized procedure for resin activation that minimizes the use of SOCl2 as the activation reagent and reduces the activation time. Additionally, we demonstrate the feasibility of reusing the 2-CTC resin when following the activation protocol, achieving comparable results to the first usage of the resin. Moreover, we achieved different degrees of resin activation by varying the amount of SOCl2. For instance, the use of 2% SOCl2 in anhydrous dichloromethane (DCM) allowed up to 44% activation of the resin, thereby making it suitable for the synthesis of longer peptides. Alternatively, employing 25% SOCl2 in anhydrous DCM resulted in up to 80% activation with a reaction time of only 5 min in both cases.

14.
J Environ Manage ; 342: 118284, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37315458

ABSTRACT

In recent years, controlled low strength material (CLSM) has been utilized as an alternate backfill material for various infrastructure applications such as filling of voids, construction of pavement bases, trench backfilling, bed for pipelines, etc. Efforts have been made by researchers to utilize various waste materials/industrial by-products such as slag, fly ash, pond ash, cement kiln dust, red mud, sludge, construction and demolition waste and crumb rubber for development of sustainable CLSM. The present work discusses in details the evolution of CLSM, recent advances in the development of CLSM with different waste materials/industrial by-products, and the effect of these sustainable materials on flowability, strength, hardening time and other properties of CLSM. Further, the benefits/challenges and applications of different sustainable CLSM mixes have been compared. The inferences from pilot/field scale studies for CLSM and alkali activated CLSM have been discussed, and assessment of the sustainability coefficient of select CLSM combinations considered from the literature have been performed. The study quantifies the sustainability of different CLSM mixes, and presents the challenges that needs to be addressed in future to increase the utilization of sustainable CLSM for future infrastructure development.


Subject(s)
Coal Ash , Waste Products , Sewage , Dust , Rubber
15.
Indian J Ophthalmol ; 71(5): 1932-1936, 2023 05.
Article in English | MEDLINE | ID: mdl-37203059

ABSTRACT

Purpose: An advantage of rebound tonometry (RT) is its ease of use so that it can also be operated by health care technicians. However, the cost of the disposable measuring probes is high and their reuse carries the risk of infection. Therefore, this study aims to objectify the potential risk of bacterial transmission by RT. Methods: Our experimental setting consisted of two experiments. The first aimed to quantify the number of bacteria on a tonometer probe after immersion in a bacterial suspension in vitro. The experiment was carried out with two different bacteria and compared with results from a Goldmann tonometer probe. The second experiment tested whether bacteria could be transmitted by simulating reuse of a nondisinfected rebound tonometer probe. Results: First experiment: After immersion of the rebound tonometer probe, we measured a bacterial count of 2.43 × 106 Escherichia coli (EC) and 1.12 × 106 Pseudomonas fluorescens. In total, 1.09 × 107 bacteria for EC and 2.61 × 106 for Pseudomonas fluorescens (PF) were measured on the Goldmann tonometer probe. Second experiment: A bacterial transmission could be detected in 36% of cases in which reuse of nondisinfected tonometer probes was simulated. Conclusion: These results show that despite the small surface of the rebound tonometer probe, there is a clear risk of bacterial transmission. Thorough disinfection according to general standards should be mandatory if the tonometer probes are to be reused.


Subject(s)
Intraocular Pressure , Tonometry, Ocular , Humans , Tonometry, Ocular/methods , Reproducibility of Results , Bacteria , Disinfection
16.
ChemSusChem ; 16(18): e202300426, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37209007

ABSTRACT

Solar water evaporation is an efficient and sustainable technology. To reduce energy consumption and improve cost efficiency, the surface modification of wood sponge by polypyrrole-glutathione (PGWS) was achieved using an in-situ synthetic method. The PGWS exhibits excellent adsorption efficiency for Hg(II) ions with adsorption capacity of 330.8 mg g-1 at 25 °C. Following Hg(II) absorption, the PGWS could be upcycled for solar steam generation. A stackable device was constructed by placing two wood sponges under a Hg(II) saturated PGWS [PGWS-Hg(II)], this system exhibited the highest water evaporation rate of 2.14 kg m-2 h-1 under 1 kW m-2 . Moreover, collecting paper was inserted between the stacked PGWS-Hg(II) and wood sponge for the collection of salts. As such salt can be successfully collected from simulated fertilizer plant effluent and then used as a nutrient for growing plants using a hydroponic system. The facile design of stackable evaporation provides an opportunity for wastewater utilization by harvesting solar energy.

17.
ACS Appl Mater Interfaces ; 15(18): 22075-22084, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37116203

ABSTRACT

Fenton iron mud (IM) is a hazardous solid waste produced by Fenton oxidation technology after treating industrial wastewater. Thus, it is necessary and challenging to develop a recycling technology to back-convert dangerous materials into useful products. Herein, we develop a sustainable approach to prepare highly active metal oxides via a solid-state grinding method. IM, as an amorphous material, can disperse and interact well with these supported metal oxides, boosting toluene degradation significantly. Among these IM-based catalysts, the catalyst 8% MnOx/IM-0.2VC exhibits the best performance (T100 = 290 °C), originating from the oxide-support interaction and optimal balance between low-temperature reducibility and oxygen vacancy concentration. In addition, in situ diffuse reflectance infrared Fourier transform spectrometry (DRIFTS) results expound that ring breakage is prone to occur on MnOx, and oxygen vacancies are beneficial to adsorb oxygen and activate oxygen species to boost toluene oxidation following the Mars-van Krevelen mechanism. This work advances a complete industrial hazardous waste recycling route to develop extremely active catalysts.

18.
Biotechnol Genet Eng Rev ; : 1-28, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36861664

ABSTRACT

In the present study, arsenic sludge and iron sludge extracted from a laboratory scale water treatment plant were aimed to reutilize for the development of concrete blocks. Three different grades (M15, M20 and M25) of concrete blocks were made by blending of arsenic sludge and improved iron sludge (50% sand and 40% iron sludge) in the range of density of 425 to 535 kg/m3 at an optimum ratio of 10:90 (arsenic: iron sludge) followed by mixing of designed quantity cement, coarse aggregates, water and additives. Concrete blocks developed based on this such combination exhibited 26 MPa, 32 MPa and 41 MPa compressive strengths, and 4.68 MPa, 5.92 MPa and 7.78 MPa tensile strengths for M15, M20 and M25, respectively. In comparison with the developed concrete blocks and the blocks made with 10% arsenic sludge and 90% fresh sand, the developed ones (employing 50% sand, 40% iron sludge and 10% arsenic sludge) showed more than 200% higher strength perseverance on average. Successful Toxicity Characteristic Leaching Procedure (TCLP) and compressive strength of the sludge-fixed concrete cubes classified it as a non-hazardous and completely safe to use value-added material. This process involves stabilization of arsenic-rich sludge generated from high-volume long-run laboratory-based arsenic-iron abatement set-up from contaminated water with successful fixation in solid matrix of concrete through complete substitution of natural fine aggregates (river sand) in cement mixture. Techno-economic assessment reveals such concrete block preparation at $0.09 each which is lesser than 1/2 of the present market price of same quality concrete block in India.


Development of concrete blocks by fixation of large-volume arsenic- and iron-rich sludge.10% arsenic sludge with 40% iron sludge showed the highest strength resistance.50% replacement of fresh river-sand without deterioration in strength of concrete blocks.TCLP test confirmed no chances of recontamination through leachate formation. Safe disposal and re-utilization of contaminating wastes for value-added purposes.Developed concrete blocks are lesser than 1/2 cost of the commercially available ones.

19.
Clin Pediatr (Phila) ; 62(12): 1537-1542, 2023 12.
Article in English | MEDLINE | ID: mdl-36995024

ABSTRACT

Telemedicine has expanded due to the COVID-19 pandemic. However, the health care usage after telemedicine visits compared with similar in-person visits is not known. This study compared the 72-hour health care reutilization after telemedicine visits and in-person acute encounters in a pediatric primary care office. A retrospective cohort analysis was performed in a single quaternary pediatric health care system between March 1, 2020, and November 30, 2020. Reutilization information was collected for 72 hours following the index visit and included subsequent encounters within the health care system. The 72-hour reutilization rate for telemedicine encounters was 4.1% compared with 3.9% for in-person acute visits. Of revisits, patients who had a telemedicine visit most often sought additional care at the medical home, and patients with an in-person visit most often sought additional care to the emergency department or urgent care. Telemedicine does not result in higher total health care reutilization.


Subject(s)
COVID-19 , Telemedicine , Humans , Child , Pandemics , Retrospective Studies , COVID-19/epidemiology , Patient-Centered Care
20.
Foods ; 12(3)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36766089

ABSTRACT

Food losses and waste reduction are a worldwide challenge involving governments, researchers, and food industries. Therefore, by-product revalorization and the use of key extracted biocompounds to fortify innovative foods seems an interesting challenge to afford. The aim of this review is to evaluate and elucidate the scientific evidence on the use of green technologies to extract bioactive compounds from Brassica by-products with potential application in developing new foods. Scopus was used to search for indexed studies in JCR-ISI journals, while books, reviews, and non-indexed JCR journals were excluded. Broccoli, kale, cauliflower, cabbage, mustard, and radish, among others, have been deeply reviewed. Ultrasound and microwave-assisted extraction have been mostly used, but there are relevant studies using enzymes, supercritical fluids, ultrafiltration, or pressurized liquids that report a great extraction effectiveness and efficiency. However, predictive models must be developed to optimize the extraction procedures. Extracted biocompounds can be used, free or encapsulated, to develop, reformulate, and/or fortify new foods as a good tool to enhance healthiness while preserving their quality (nutritional, functional, and sensory) and safety. In the age of recycling and energy saving, more studies must evaluate the efficiency of the processes, the cost, and the environmental impact leading to the production of new foods and the sustainable extraction of phytochemicals.

SELECTION OF CITATIONS
SEARCH DETAIL