Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 332
Filter
1.
Front Plant Sci ; 15: 1424766, 2024.
Article in English | MEDLINE | ID: mdl-39166252

ABSTRACT

Under the sufficient nitrogen supply, it is of great significance to investigate the law of biomass allocation, root morphological traits, and the salt absorption capacity of euhalophytes to evaluate their biological desalination in saline soil. Although the curvilinear responses of biomass accumulation and root morphology in response to soil salinity have been recognized, these perceptions are still confined to the descriptions of inter-treatment population changes and lack details on biomass allocation in organs at an individual level. In this study, Suaeda salsa was grown in root boxes across a range of soil salt levels. The study showed that their growth and development were significantly affected by soil soluble salts. The law of biomass allocation was described as follows: increased soil soluble salts significantly increased the leaf mass ratio and decreased the stem mass ratio, and slightly increased the root mass ratio among treatments. For individuals at each treatment, leaf mass ratio > stem mass ratio > root mass ratio, except in the control treatment at the flower bud and fruit stages. Biomass responses of the control treatment indicated that salt was not rigorously required for Suaeda salsa in the presence of an adequate nitrogen supply, as verified by the correlation between biomass, nitrogen, and soil soluble salt. Salt could significantly inhibit the growth of Suaeda salsa (P<0.01), whereas nitrogen could significantly promote its growth (P<0.01). Root morphology in response to soil soluble salts showed that salt acquisition by the root was highest at a salt level of 0.70%, which corresponds to light saline soil. Consequently, we conclude that phytodesalination by Suaeda salsa was optimal in the light saline soil, followed by moderate saline soil.

2.
AoB Plants ; 16(4): plae039, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39114598

ABSTRACT

Climate change models predict increasing precipitation variability in the mid-latitude regions of Earth, generating a need to reduce the negative impacts of these changes on crop production. Despite considerable research on how cover crops support agriculture in a changing climate, understanding is limited of how climate change influences the growth of cover crops. We investigated the early development of two common cover crop species-crimson clover (Trifolium incarnatum) and rye (Secale cereale)-and hypothesized that growing them in the mixture would ameliorate stress from drought or waterlogging. This hypothesis was tested in a 25-day greenhouse experiment, where the two factors (species number and water stress) were fully crossed in randomized blocks, and plant responses were quantified through survival, growth rate, biomass production and root morphology. Water stress negatively influenced the early growth of these two species in contrasting ways: crimson clover was susceptible to drought while rye performed poorly under waterlogging. Per-plant biomass in rye was always greater in mixture than in monoculture, while per-plant biomass of crimson clover was greater in mixture under drought. Both species grew longer roots in mixture than in monoculture under drought, and total biomass of mixtures did not differ significantly from the more-productive monoculture (rye) in any water condition. In the face of increasingly variable precipitation, growing crimson clover and rye together has potential to ameliorate water stress, a possibility that should be further investigated in field experiments.

3.
Front Plant Sci ; 15: 1391846, 2024.
Article in English | MEDLINE | ID: mdl-39015294

ABSTRACT

The present study evaluated the repercussions of magnetopriming on the root system architecture of soybean plants subjected to arsenic toxicity using synchrotron radiation source based micro-computed tomography (SR-µCT). This will be used evey where as abbreviation for the technique for three-dimensional imaging. Seeds of soybean were exposed to the static magnetic field (SMF) of strength (200 mT) for 1h prior to sowing. Magnetoprimed and non-primed seeds were grown for 1 month in a soil-sand mixture containing four different levels of sodium arsenate (0, 5, 10, and 50 mg As kg-1 soil). The results showed that arsenic adversely affects the root growth in non-primed plants by reducing their root length, root biomass, root hair, size and number of root nodules, where the damaging effect of As was observed maximum at higher concentrations (10 and 50 mg As kg-1 soil). However, a significant improvement in root morphology was detected in magnetoprimed plants where SMF pretreatment enhanced the root length, root biomass, pore diameter of cortical cells, root hair formation, lateral roots branching, and size of root nodules and girth of primary roots. Qualitative analysis of x-ray micro-CT images showed that arsenic toxicity damaged the epidermal and cortical layers of the root as well as reduced the pore diameter of the cortical cells. However, the diameter of cortical cells pores in magnetoprimed plants was observed higher as compared to plants emerged from non-primed seeds at all level of As toxicity. Thus, the study suggested that magnetopriming has the potential to attenuate the toxic effect of As and could be employed as a pre-sowing treatment to reduce the phytotoxic effects of metal ions in plants by improving root architecture and root tolerance index. This study is the very first exploration of the potential benefits of magnetopriming in mitigating the toxicity of metals (As) in plant roots utilizing the micro-CT technique.

4.
Physiol Plant ; 176(4): e14435, 2024.
Article in English | MEDLINE | ID: mdl-39036950

ABSTRACT

This study examined how the nutrient flow environment affects lettuce root morphology in hydroponics using multi-omics analysis. The results indicate that increasing the nutrient flow rate initially increased indicators such as fresh root weight, root length, surface area, volume, and average diameter before declining, which mirrors the trend observed for shoot fresh weight. Furthermore, a high-flow environment significantly increased root tissue density. Further analysis using Weighted Gene Co-expression Network Analysis (WGCNA) and Weighted Protein Co-expression Network Analysis (WPCNA) identified modules that were highly correlated with phenotypes and hormones. The analysis revealed a significant enrichment of hormone signal transduction pathways. Differences in the expression of genes and proteins related to hormone synthesis and transduction pathways were observed among the different flow conditions. These findings suggest that nutrient flow may regulate hormone levels and signal transmission by modulating the genes and proteins associated with hormone biosynthesis and signaling pathways, thereby influencing root morphology. These findings should support the development of effective methods for regulating the flow of nutrients in hydroponic contexts.


Subject(s)
Hydroponics , Lactuca , Plant Growth Regulators , Plant Roots , Signal Transduction , Plant Roots/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/physiology , Lactuca/genetics , Lactuca/metabolism , Lactuca/growth & development , Plant Growth Regulators/metabolism , Gene Expression Regulation, Plant , Nutrients/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Multiomics
5.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000100

ABSTRACT

Phosphorus (P) and iron (Fe) are two essential mineral nutrients in plant growth. It is widely observed that interactions of P and Fe could influence their availability in soils and affect their homeostasis in plants, which has received significant attention in recent years. This review presents a summary of latest advances in the activation of insoluble Fe-P complexes by soil properties, microorganisms, and plants. Furthermore, we elucidate the physiological and molecular mechanisms underlying how plants adapt to Fe-P interactions. This review also discusses the current limitations and presents potential avenues for promoting sustainable agriculture through the optimization of P and Fe utilization efficiency in crops.


Subject(s)
Iron , Phosphorus , Plants , Soil , Phosphorus/metabolism , Iron/metabolism , Soil/chemistry , Plants/metabolism , Nutrients/metabolism , Crops, Agricultural/metabolism , Crops, Agricultural/growth & development , Soil Microbiology
6.
Plants (Basel) ; 13(13)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38999576

ABSTRACT

Biochar is regarded as a soil improvement material possessing superior physical and chemical properties that can effectively enhance plant growth. However, there exists a paucity of research examining the efficacy of biochar in supplanting traditional materials and its subsequent impact on the growth of Ardisia crenata, which is currently domesticated as fruit ornamentals. In this study, the mechanism of biochar's effect on Ardisia crenata was analyzed by controlled experiments. For 180 days, their growth and development were meticulously assessed under different treatments through the measurement of various indices. Compared with the references, the addition of biochar led to an average increase in soil nutrient content, including a 14.1% rise in total nitrogen, a 564.1% increase in total phosphorus, and a 63.2% boost in total potassium. Furthermore, it improved the physical and chemical properties of the soil by reducing soil bulk density by 6.2%, increasing total porosity by 6.33%, and enhancing pore water by 7.35%, while decreasing aeration porosity by 1.11%. The growth and development of Ardisia crenata were better when the appending ratio of biochar was in the range of 30% to 50%, with the root parameters, such as root length, root surface area, and root volume, 48.90%, 62.00%, and 24.04% higher to reference. At the same time, the biomass accumulation of roots in the best group with adding biochar also increased significantly (55.80%). The addition of biochar resulted in a significant improvement in the content of chlorophyll a and chlorophyll b (1.947 mg g-1) and the net photosynthetic rate (5.6003 µmol m-2 s-1). This study's findings underpinned the addition of biochar in soil improvement and plant response. Therefore, biochar can favor the cultivation and industrial application of Ardisia crenata in the future, leading to an efficient and environmentally friendly industrial development.

7.
BMC Plant Biol ; 24(1): 562, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38877425

ABSTRACT

BACKGROUND: On tropical regions, phosphorus (P) fixation onto aluminum and iron oxides in soil clays restricts P diffusion from the soil to the root surface, limiting crop yields. While increased root surface area favors P uptake under low-P availability, the relationship between the three-dimensional arrangement of the root system and P efficiency remains elusive. Here, we simultaneously assessed allelic effects of loci associated with a variety of root and P efficiency traits, in addition to grain yield under low-P availability, using multi-trait genome-wide association. We also set out to establish the relationship between root architectural traits assessed in hydroponics and in a low-P soil. Our goal was to better understand the influence of root morphology and architecture in sorghum performance under low-P availability. RESULT: In general, the same alleles of associated SNPs increased root and P efficiency traits including grain yield in a low-P soil. We found that sorghum P efficiency relies on pleiotropic loci affecting root traits, which enhance grain yield under low-P availability. Root systems with enhanced surface area stemming from lateral root proliferation mostly up to 40 cm soil depth are important for sorghum adaptation to low-P soils, indicating that differences in root morphology leading to enhanced P uptake occur exactly in the soil layer where P is found at the highest concentration. CONCLUSION: Integrated QTLs detected in different mapping populations now provide a comprehensive molecular genetic framework for P efficiency studies in sorghum. This indicated extensive conservation of P efficiency QTL across populations and emphasized the terminal portion of chromosome 3 as an important region for P efficiency in sorghum. Increases in root surface area via enhancement of lateral root development is a relevant trait for sorghum low-P soil adaptation, impacting the overall architecture of the sorghum root system. In turn, particularly concerning the critical trait for water and nutrient uptake, root surface area, root system development in deeper soil layers does not occur at the expense of shallow rooting, which may be a key reason leading to the distinctive sorghum adaptation to tropical soils with multiple abiotic stresses including low P availability and drought.


Subject(s)
Genome-Wide Association Study , Phosphorus , Plant Roots , Quantitative Trait Loci , Sorghum , Sorghum/genetics , Sorghum/metabolism , Sorghum/growth & development , Phosphorus/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/genetics , Plant Roots/anatomy & histology , Chromosome Mapping , Polymorphism, Single Nucleotide , Soil/chemistry , Phenotype
8.
J Pharm Bioallied Sci ; 16(Suppl 2): S1619-S1622, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882762

ABSTRACT

Background and Objective: Clinicians must possess a comprehensive understanding of variations in canal morphology and configuration during endodontic procedures to enhance treatment success. This study aims to assess and analyze the canal configurations of maxillary first premolars using Cone-Beam Computed Tomography within the sub-population of Western Saudi Arabia. Materials and Methods: In this cross-sectional study, following the acquisition of ethical clearance from Batterjee Medical College in Jeddah, Saudi Arabia, a retrospective examination of Cone-Beam Computed Tomography (CBCT) scans of maxillary first premolars in adult patients was conducted. The study focused on quantifying the number of canals and characterizing their configurations, with classification based on Vertucci's categorization. Results: The study examined 399 CBCT images of maxillary first premolars, revealing that type IV canal configurations were the predominant morphology (56.9%), followed by type V (24.6%). Significant gender-related disparities were observed, with females displaying a higher incidence of types I and V canals. At the same time, males exhibited a greater prevalence of types IV and VI canals. Notably, no substantial associations were discerned between canal types and age groups. Conclusion: Within the context of maxillary first premolars, type IV canal configuration emerged as the most prevalent. Gender-based distinctions were evident, with females predominantly presenting types I and V canal configurations, whereas males displayed a higher occurrence of types IV and VI canal configurations.

9.
Front Plant Sci ; 15: 1367176, 2024.
Article in English | MEDLINE | ID: mdl-38855469

ABSTRACT

Background: Phosphorus in the soil is mostly too insoluble for plants to utilize, resulting in inhibited aboveground biomass, while Carex can maintain their aboveground biomass through the presence of dauciform roots. However, dauciform roots lead to both morphological and physiological changes in the root system, making their primary mechanism unclear. Methods: A greenhouse experiment was conducted on three Carex species, in which Al-P, Ca-P, Fe-P, and K-P were employed as sole phosphorus sources. The plants were harvested and assessed after 30, 60 and 90 days. Results: (1) The density of dauciform roots was positively correlated with root length and specific root length, positively influencing aboveground biomass at all three stages. (2) The aboveground phosphorus concentration showed a negative correlation with both dauciform root density and aboveground biomass in the first two stages, which became positive in the third stage. (3) Aboveground biomass correlated negatively with the aboveground Al concentration, and positively with Ca and Fe concentration (except Al-P). (4) Root morphological traits emerged as critical factors in dauciform roots' promotion of aboveground biomass accumulation. Conclusion: Despite the difference among insoluble phosphorus, dauciform roots have a contributing effect on aboveground growth status over time, mainly by regulating root morphological traits. This study contributes to our understanding of short-term variation in dauciform roots and their regulatory mechanisms that enhance Carex aboveground biomass under low available phosphorus conditions.

10.
Plant Physiol Biochem ; 212: 108787, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850731

ABSTRACT

Continuous cropping obstacles poses significant challenges for melon cultivation, with autotoxicity being a primary inducer. Suberization of cells or tissues is a vital mechanism for plant stress response. Our study aimed to elucidate the potential mechanism of root suberization in melon's response to autotoxicity. Cinnamic acid was used to simulate autotoxicity. Results showed that autotoxicity worsened the root morphology and activity of seedlings. Significant reductions were observed in root length, diameter, surface area, volume and fork number compared to the control in the later stage of treatment, with a decrease ranging from 20% to 50%. The decrease in root activity ranged from 16.74% to 29.31%. Root suberization intensified, and peripheral suberin deposition became more prominent. Autotoxicity inhibited phenylalanineammonia-lyase activity, the decrease was 50% at 16 h. The effect of autotoxicity on cinnamylalcohol dehydrogenase and cinnamate 4-hydroxylase activity showed an initial increase followed by inhibition, resulting in reductions of 34.23% and 44.84% at 24 h, respectively. The peroxidase activity only significantly increased at 24 h, with an increase of 372%. Sixty-three differentially expressed genes (DEGs) associated with root suberization were identified, with KCS, HCT, and CYP family showing the highest gene abundance. GO annotated DEGs into nine categories, mainly related to binding and catalytic activity. DEGs were enriched in 27 KEGG pathways, particularly those involved in keratin, corkene, and wax biosynthesis. Seven proteins, including C4H, were centrally positioned within the protein interaction network. These findings provide insights for improving stress resistance in melons and breeding stress-tolerant varieties.


Subject(s)
Cucurbitaceae , Plant Roots , Plant Roots/metabolism , Plant Roots/genetics , Cucurbitaceae/genetics , Cucurbitaceae/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Plant Proteins/genetics , Phenylalanine Ammonia-Lyase/metabolism , Phenylalanine Ammonia-Lyase/genetics , Cinnamates/pharmacology , Cinnamates/metabolism , Trans-Cinnamate 4-Monooxygenase/metabolism , Trans-Cinnamate 4-Monooxygenase/genetics , Seedlings/drug effects , Seedlings/genetics , Alcohol Oxidoreductases
11.
Front Plant Sci ; 15: 1410036, 2024.
Article in English | MEDLINE | ID: mdl-38911979

ABSTRACT

Human activities have increased nitrogen (N) and phosphorus (P) inputs to the Yellow River Delta and the supply level of N and P affects plant growth as well as ecosystem structure and function directly. However, the root growth, stoichiometry, and antioxidant system of plants in response to N and P additions, especially for herbaceous halophyte in the Yellow River Delta (YRD), remain unknown. A field experiment with N addition (0, 5, 15, and 45 g N m-2 yr-1, respectively) as the main plot, and P addition (0 and 1 g N m-2 yr-1, respectively) as the subplot, was carried out with a split-plot design to investigate the effects on the root morphology, stoichiometry, and antioxidant system of Suaeda salsa. The results showed that N addition significantly increased the above-ground and root biomass as well as shoot-root ratio of S. salsa, which had a significant interaction with P addition. The highest biomass was found in the treatment with 45 g N m-2 yr-1 combined with P addition. N addition significantly increased TN content and decreased C:N ratio of root, while P addition significantly increased TP content and decreased C:P ratio. The main root length (MRL), total root length (TRL), specific root length (SRL), and root tissue density (RTD) of S. salsa root were significantly affected by N addition and P addition, as well as their interaction. The treatments with or without P addition at the 45 g N m-2 yr-1 of N addition significantly increased the superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) activities and soluble protein content of roots, decreased malondialdehyde (MDA) content. And there was a significant interaction between the N and P addition on SOD activity. Therefore, N and P additions could improve the growth of S. salsa by altering the root morphology, increasing the root nutrient content, and stimulating antioxidant system.

12.
Plants (Basel) ; 13(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38891369

ABSTRACT

Sufficient soil moisture is required to ensure the successful transplantation of sweet potato seedlings. Thus, reasonable water management is essential for achieving high quality and yield in sweet potato production. We conducted field experiments in northern China, planted on 18 May and harvested on 18 October 2021, at the Nancun Experimental Base of Qingdao Agricultural University. Three water management treatments were tested for sweet potato seedlings after transplanting: hole irrigation (W1), optimized drip irrigation (W2), and traditional drip irrigation (W3). The variation characteristics of soil volumetric water content, soil temperature, and soil CO2 concentration in the root zone were monitored in situ for 0-50 days. The agronomy, root morphology, photosynthetic parameters, 13C accumulation, yield, and yield components of sweet potato were determined. The results showed that soil VWC was maintained at 22-25% and 27-32% in the hole irrigation and combined drip irrigation treatments, respectively, from 0 to 30 days after transplanting. However, there was no significant difference between the traditional (W3) and optimized (W2) drip irrigation systems. From 30 to 50 days after transplanting, the VWC decreased significantly in all treatments, with significant differences among all treatments. Soil CO2 concentrations were positively correlated with VWC from 0 to 30 days after transplanting but gradually increased from 30 to 50 days, with significant differences among treatments. Soil temperature varied with fluctuations in air temperature, with no significant differences among treatments. Sweet potato survival rates were significantly lower in the hole irrigation treatments than in the drip irrigation treatments, with no significant difference between W2 and W3. The aboveground biomass, photosynthetic parameters, and leaf area index were significantly higher under drip irrigation than under hole irrigation, and values were higher in W3 than in W2. However, the total root length, root volume, and 13C partitioning rate were higher in W2 than in W3. These findings suggest that excessive drip irrigation can lead to an imbalance in sweet potato reservoir sources. Compared with W1, the W2 and W3 treatments exhibited significant yield increases of 42.98% and 36.49%, respectively. The W2 treatment had the lowest sweet potato deformity rate.

13.
BMC Oral Health ; 24(1): 656, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835024

ABSTRACT

INTRODUCTION: The efficacy of root canal treatment is greatly impacted by a thorough understanding of root canal anatomy. This systematic review and meta-analysis aim to thoroughly investigate the root morphology and canal configuration (RMCC) of permanent premolars (PMs). METHODOLOGY: A comprehensive analysis was conducted following the PRISMA guidelines. Literature exploration was carried out across four electronic databases (PubMed, Embase, Cochrane, and Web of Science). The risk of bias assessment was conducted for the included studies utilizing the Anatomical Quality Assessment (AQUA) tool. Data analysis was performed utilizing SPSS and RevMAN5.3.3. The meta-analysis was applied with a 95% confidence interval to calculate odds ratios (OR). RESULTS: Among the 82 selected studies, 59 studies exhibited potential bias in domain one (objective(s) and subject characteristics), followed by domain three (methodology characterization). The majority of maxillary PM1s had either single root (46.7%) or double roots (51.9%), while three-rooted variants were uncommon (1.4%). Conversely, most other PMs exhibited a single root. In terms of canal configuration, maxillary PM1s predominantly featured double distinct canals (87.2%), with the majority of maxillary PM2s displaying either a single canal (51.4%) or double canals (48.3%). Mandibular PMs were primarily characterized by single canals, accounting for 78.3% of mandibular PM1s and 90.3% of mandibular PM2s. Subgroup analyses revealed higher incidences of single-rooted and single-canalled PMs among Asians compared to Caucasians. Additionally, women exhibited a higher incidence of single-rooted PMs, while men showed a greater frequency of double-rooted PMs. CONCLUSIONS: The comprehensive analysis indicated that maxillary PM1s predominantly possess double roots and double canals, whereas maxillary PM2s and mandibular PMs were primarily characterized by single-rooted with a single canal. Notably, single root and single canal were more prevalent among women and Asian samples.


Subject(s)
Bicuspid , Cone-Beam Computed Tomography , Dental Pulp Cavity , Tooth Root , Humans , Cone-Beam Computed Tomography/methods , Bicuspid/diagnostic imaging , Bicuspid/anatomy & histology , Tooth Root/diagnostic imaging , Tooth Root/anatomy & histology , Dental Pulp Cavity/diagnostic imaging , Dental Pulp Cavity/anatomy & histology
14.
Front Plant Sci ; 15: 1370297, 2024.
Article in English | MEDLINE | ID: mdl-38779071

ABSTRACT

Objectives: Water-saving and drought-resistance rice (WDR) plays a vital role in the sustainable development of agriculture. Nevertheless, the impacts and processes of water and nitrogen on grain yield in WDR remain unclear. Methods: In this study, Hanyou 73 (WDR) and Hyou 518 (rice) were used as materials. Three kinds of nitrogen fertilizer application rate (NFAR) were set in the pot experiment, including no NFAR (nitrogen as urea applied at 0 g/pot), medium NFAR (nitrogen as urea applied at 15.6 g/pot), and high NFAR (nitrogen as urea applied at 31.2 g/pot). Two irrigation regimes, continuous flooding cultivation and water stress, were set under each NFAR. The relationships between root and shoot morphophysiology and grain yield in WDR were explored. Results: The results demonstrated the following: 1) under the same irrigation regime, the grain yield of two varieties increased with the increase of NFAR. Under the same NFAR, the reduction of irrigation amount significantly reduced the grain yield in Hyou 518 (7.1%-15.1%) but had no substantial influence on the grain yield in Hanyou 73. 2) Under the same irrigation regime, increasing the NFAR could improve the root morphophysiology (root dry weight, root oxidation activity, root bleeding rate, root total absorbing surface area, root active absorbing surface area, and zeatin + zeatin riboside contents in roots) and aboveground physiological indexes (leaf photosynthetic rate, non-structural carbohydrate accumulation in stems, and nitrate reductase activity in leaves) in two varieties. Under the same NFAR, increasing the irrigation amount could significantly increase the above indexes in Hyou 518 (except root dry weight) but has little effect on Hanyou 73. 3) Analysis of correlations revealed that the grain yield of Hyou 518 and Hanyou 73 was basically positively correlated with aboveground physiology and root morphophysiology, respectively. Conclusion: The grain yield could be maintained by water stress under medium NFAR in WDR. The improvement of root morphophysiology is a major factor for high yield under the irrigation regime and NFAR treatments in WDR.

15.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731906

ABSTRACT

Roots are the hidden and most important part of plants. They serve as stabilizers and channels for uptaking water and nutrients and play a crucial role in the growth and development of plants. Here, two-dimensional image data were used to identify quantitative trait loci (QTL) controlling root traits in an interspecific mapping population derived from a cross between wild soybean 'PI366121' and cultivar 'Williams 82'. A total of 2830 single-nucleotide polymorphisms were used for genotyping, constructing genetic linkage maps, and analyzing QTLs. Forty-two QTLs were identified on twelve chromosomes, twelve of which were identified as major QTLs, with a phenotypic variation range of 36.12% to 39.11% and a logarithm of odds value range of 12.01 to 17.35. Two significant QTL regions for the average diameter, root volume, and link average diameter root traits were detected on chromosomes 3 and 13, and both wild and cultivated soybeans contributed positive alleles. Six candidate genes, Glyma.03G027500 (transketolase/glycoaldehyde transferase), Glyma.03G014500 (dehydrogenases), Glyma.13G341500 (leucine-rich repeat receptor-like protein kinase), Glyma.13G341400 (AGC kinase family protein), Glyma.13G331900 (60S ribosomal protein), and Glyma.13G333100 (aquaporin transporter) showed higher expression in root tissues based on publicly available transcriptome data. These results will help breeders improve soybean genetic components and enhance soybean root morphological traits using desirable alleles from wild soybeans.


Subject(s)
Chromosome Mapping , Glycine max , Plant Roots , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Glycine max/genetics , Glycine max/anatomy & histology , Glycine max/growth & development , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/anatomy & histology , Chromosome Mapping/methods , Phenotype , Chromosomes, Plant/genetics , Genetic Linkage , Genotype
16.
J Stomatol Oral Maxillofac Surg ; : 101920, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38795908

ABSTRACT

INTRODUCTION: This study aimed to use cone beam computed tomography (CBCT) to evaluate the dimensional and morphological characteristics of unilaterally impacted canines, their effects on adjacent teeth, and differences with contralaterally erupted canines. MATERIALS AND METHODS: A sample of 31 patients (22 males, mean age 22.22 ± 4.82 years; 9 females, mean age 23.91 ± 5.16 years) with unilaterally impacted maxillary palatal teeth were included in the study. CBCT images were obtained using a NewTom 5 G unit in standard mode. Three-dimensional multiplanar reconstructions emulating a panoramic view and curved planar reconstructions were evaluated. Individuals were divided into two groups (low- and high-complexity) according to Ericson and Kurol's impaction complexity classification. RESULTS: The crown lengths and mesiodistal crown widths of the impacted canines were similar to the symmetric canine on the opposite arch and significantly larger than adjacent lateral and premolar teeth (p<0.05). The alpha (31.33 ± 8.32) and beta angles (39.53 ± 10.31) and the 'h' height (10.11 ± 2.02) values in the low-complexity group were significantly lower than the high-complexity group (alpha angle=57.40 ± 12.15; beta angle=71.31 ± 13.94; 'h' height=14.35 ± 3.71, and alpha angle: p<0.001; beta angle: p<0.001; 'h' height: p=0.002) CONCLUSION: The root lengths of impacted maxillary canine teeth are significantly shorter than symmetrically erupted canine teeth regarding labiolingual crown width. As the alpha and beta angles and 'h' height increase, the complexity level of the impacted canine also increases.

17.
Plants (Basel) ; 13(7)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38611468

ABSTRACT

Citrus is the largest fruit crop around the world, while high nitrogen (N) application in citrus orchards is widespread in many countries, which results not only in yield, quality and environmental issues but also slows down the establishment of citrus canopies in newly cultivated orchards. Thus, the objective of this study was to investigate the physiological inhibitory mechanism of excessive N application on the growth of citrus seedlings. A pot experiment with the citrus variety Orah (Orah/Citrus junos) at four N fertilization rates (0, 50, 100, and 400 mg N/kg dry soil, denoted as N0, N50, N100, and N400, respectively) was performed to evaluate the changes of root morphology, biomass, N accumulation, enzyme activities, and so on. The results showed that the N400 application significantly reduced the total biomass (from 14.24 to 6.95 g/Plant), N accumulation (from 0.65 to 0.33 g/Plant) and N use efficiency (92.69%) in citrus seedlings when compared to the N100 treatment. The partial least squares pathway model further showed that the decline of biomass and N accumulation by high N application were largely attributed to the reduction of root growth through direct and indirect effects (the goodness of fit under the model was 0.733.) rather than just soil N transformation and activity of root N uptake. These results are useful to optimize N management through a synergistic N absorption and utilization by citrus seedlings.

18.
Plants (Basel) ; 13(6)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38592790

ABSTRACT

Soil compaction is one of the crucial factors that restrains the root respiration, energy metabolism and growth of peanut (Arachis hypogaea L.) due to hypoxia, which can be alleviated by ventilation. We therefore carried out a pot experiment with three treatments: no ventilation control (CK), (2) ventilation volumes at 1.2 (T1), and 1.5 (T2) times of the standard ventilation volume (2.02 L/pot). Compared to no-ventilation in compacted soil, ventilation T1 significantly increased total root length, root surface area, root volume and tips at the peanut anthesis stage (62 days after sowing), while T2 showed a negative impact on the above-mentioned root morphological characteristics. At the podding stage (S2, 95 days after sowing), both ventilation treatments improved root morphology, especially under T1. Compared to CK, both ventilation T1 and T2 decreased the activities of enzymes involving the anaerobic respiration, including root lactate dehydrogenase, pyruvate decarboxylase and alcohol dehydrogenase. The activities of antioxidant enzymes of root superoxide dismutase, peroxidase and catalase also decreased at S1, while superoxide dismutase and peroxidase significantly increased under T1 at S2. The ventilation of compacted soil changed soil nitrogen-fixing bacterial communities, with highest bacterial alpha diversity indices under T1. The Pearson correlation analyses indicated a positive relationship between the relative abundance of Bradyrhizobiaceae and root activity, and between unclassified_family of Rhizobiales and the root surface area, while Enterobacteriaceae had a negative impact on the root nodule number. The Pearson correlation test showed that the root surface, tips and activity positively correlated with root superoxide dismutase and peroxidase activities. These results demonstrate that soil ventilation could enhance plant root growth, the diversity and function of soil nitrogen-fixing bacterial communities. The generated results from this present study could serve as important evidence in alleviating soil hypoxia caused by compaction.

19.
Sci Total Environ ; 927: 172424, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38614348

ABSTRACT

Atmospheric nitrogen (N) deposition inevitably alters soil nutrient status, subsequently prompting plants to modify their root morphology (i.e., adopting a do-it-yourself strategy), mycorrhizal symbioses (i.e., outsourcing strategy), and root exudation (i.e., nutrient-mining strategy) linking with resource acquisition. However, how N deposition influences the integrated pattern of these resource-acquisition strategies remains unclear. Furthermore, most studies in forest ecosystems have focused on understory N and inorganic N deposition, neglecting canopy-associated processes (e.g., N interception and assimilation) and the impacts of organic N on root functional traits. In this study, we compared the effects of canopy vs understory, organic vs inorganic N deposition on eight root functional traits of Moso bamboo plants. Our results showed that N deposition significantly decreased arbuscular mycorrhizal fungi (AMF) colonization, altered root exudation rate and root foraging traits (branching intensity, specific root area, and length), but did not influence root tissue density and N concentration. Moreover, the impacts of N deposition on root functional traits varied significantly with deposition approach (canopy vs. understory), form (organic vs. inorganic), and their interaction, showing variations in both intensity and direction (positive/negative). Furthermore, specific root area and length were positively correlated with AMF colonization under canopy N deposition and root exudation rate in understory N deposition. Root trait variation under understory N deposition, but not under canopy N deposition, was classified into the collaboration gradient and the conservation gradient. These findings imply that coordination of nutrient-acquisition strategies dependent on N deposition approach. Overall, this study provides a holistic understanding of the impacts of N deposition on root resource-acquisition strategies. Our results indicate that the evaluation of N deposition on fine roots in forest ecosystems might be biased if N is added understory.


Subject(s)
Mycorrhizae , Nitrogen , Plant Roots , Plant Roots/metabolism , Nitrogen/metabolism , Mycorrhizae/physiology , Soil/chemistry , Forests , China , Symbiosis , Sasa
20.
Plants (Basel) ; 13(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38475488

ABSTRACT

In order to study the soil nitrogen (N) distribution pattern in the root zone of chili peppers under aerated drip irrigation (ADI) conditions and analyze the relationship between soil N distribution and crop growth, two irrigation methods (conventional drip irrigation and ADI) and three N levels (0, 140, and 210 kg hm-2) were set up in this experiment. Soil samples were collected by the soil auger method at the end of different reproductive periods, and the uniformity coefficient of soil N in the spatial distribution was calculated by the method of Christiansen's coefficient. The growth status and soil-related indices of pepper were determined at each sampling period, and the relationships between soil N distribution and chili pepper growth were obtained based on principal component analysis (PCA). The results showed that the spatial content of soil nitrate-N (NO3--N) fluctuated little during the whole reproductive period of chili peppers under ADI conditions, and the coefficient of uniformity of soil NO3--N content distribution increased by 5.29~37.63% compared with that of conventional drip irrigation. The aerated treatment increased the root length and surface area of chili peppers. In addition, the ADI treatments increased the plant height, stem diameter, root vigor, and leaf chlorophyll content to some extent compared with the nonaerated treatment. The results of PCA showed that the yield of chili peppers was positively correlated with the uniformity coefficient of soil NO3--N, root vigor, and root length. ADI can significantly improve the distribution uniformity of soil NO3--N and enhance the absorption and utilization of N by the root system, which in turn is conducive to the growth of the crop, the formation of yields, and the improvement of fruit quality.

SELECTION OF CITATIONS
SEARCH DETAIL