ABSTRACT
[Cu(NN1)2]ClO4 is a copper (I) complex, where NN1 is an imine ligand 6-((quinolin-2-ylmethylene) amino)-2H-chromen-2-one obtained by derivatization of natural compound coumarin, developed for the treatment of infectious diseases that affect salmonids. In previous research, we showed that the Cu(I) coordination complex possesses antibacterial activity against Flavobacterium psychrophilum, providing protection against this pathogen in rainbow trout during challenge assays (with an RPS of 50%). In the present study, the effects of administering [Cu(NN1)2]ClO4 to Oncorhynchus mykiss over a 60-days period were evaluated with regard to systemic immune response and its potential to alter intestinal microbiota composition. In O. mykiss, an immunostimulatory effect was evident at days 30 and 45 after administration, resulting in an increment of transcript levels of IFN-γ, IL-12, TNF-α, lysozyme and perforin. To determine whether these immunomodulatory effects correlated with changes in the intestinal microbiota, we analyzed the metagenome diversity by V4 16S rRNA sequencing. In O. mykiss, both [Cu(NN1)2]ClO4 and commercial antibiotic florfenicol had comparable effects at the phylum level, resulting in a predominance of proteobacteria and firmicutes. Nonetheless, at the genus level, florfenicol and [Cu(NN1)2]ClO4 complex exhibited distinct effects on the intestinal microbiota of O. mykiss. In conclusion, our findings demonstrate that [Cu(NN1)2]ClO4 is capable of stimulating the immune system at a systemic level, while inducing alterations in the composition of the intestinal microbiota in O. mykiss.
ABSTRACT
Between 1898 and 1940, eight human cases of diphyllobothriasis were reported in Argentina, always in recently arrived European immigrants. In 1982, the first autochthonous case was detected, and since then, 33 other autochthonous cases have been reported, totaling 42 cases of human diphyllobothriasis in Argentina before the present study. Our aim is to update the information on diphyllobothriasis in Argentina by identifying specimens from new cases using morphometrical and/or molecular methods. We also aim to assess the epidemiological relevance of this food-borne disease in the country. Anamnestic data were obtained from patients or professionals, along with 26 worms identified using morphometrical (21 samples) and molecular techniques (5 samples). All the patients acquired the infection by consuming freshwater salmonids caught in Andean lakes in Northern Patagonia. Morphometrics and DNA markers of worms were compatible with Dibothriocephalus latus. In total, 68 human cases have been detected in Argentina, 60 of which were autochthonous. The human population living North-western Patagonia, whose lakes are inhabited by salmonids, is increasing. Similarly, the number of other definitive hosts for Dibothriocephalus dendriticus (gulls) and for D. latus (dogs) is also increasing. In addition, salmonid fishing and the habit of consuming home-prepared raw fish dishes are becoming widespread. Therefore, it is to be expected that diphyllobothriasis in Argentina will increase further.
Subject(s)
Diphyllobothriasis , Diphyllobothrium , Argentina/epidemiology , Diphyllobothriasis/epidemiology , Diphyllobothriasis/parasitology , Humans , Animals , Male , Female , Diphyllobothrium/genetics , Diphyllobothrium/isolation & purification , Diphyllobothrium/classification , Adult , Middle Aged , Aged , Salmonidae/parasitology , Foodborne Diseases/parasitology , Foodborne Diseases/epidemiology , Young Adult , History, 20th Century , History, 19th CenturyABSTRACT
Toll-like receptor 5 (TLR5) responds to the monomeric form of flagellin and induces the MyD88-depending signaling pathway, activating proinflammatory transcription factors such as NF-κB and the consequent induction of cytokines. On the other hand, HMGB1 is a highly conserved non-histone chromosomal protein shown to interact with and activate TLR5. The present work aimed to design and characterize TLR5 agonist peptides derived from the acidic tail of Salmo salar HMGB1 based on the structural knowledge of the TLR5 surface using global molecular docking platforms. Peptide binding poses complexed on TLR5 ectodomain model from each algorithm were filtrated based on docking scoring functions and predicted theoretical binding affinity of the complex. Circular dichroism spectra were recorded for each peptide selected for synthesis. Only intrinsically disordered peptides (6W, 11W, and SsOri) were selected for experimental functional assay. The functional characterization of the peptides was performed by NF-κB activation assays, RT-qPCR gene expression assays, and Piscirickettsia salmonis challenge in SHK-1 cells. The 6W and 11W peptides increased the nuclear translation of p65 and phosphorylation. In addition, the peptides induced the expression of genes related to the TLR5 pathway activation, pro- and anti-inflammatory response, and differentiation and activation of T lymphocytes towards phenotypes such as TH1, TH17, and TH2. Finally, it was shown that the 11W peptide protects immune cells against infection with P. salmonis bacteria. Overall, the results indicate the usefulness of novel peptides as potential immunostimulants in salmonids.
Subject(s)
HMGB1 Protein , Salmo salar , Animals , Toll-Like Receptor 5/genetics , Toll-Like Receptor 5/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Salmo salar/genetics , Salmo salar/metabolism , Molecular Docking Simulation , Peptides/pharmacology , Flagellin/pharmacologyABSTRACT
Salmonids were first introduced into the Chilean fresh waters in the 1880s, and c. 140 years later, they are ubiquitous across Chilean rivers, especially in the southern pristine fresh waters. This study examined the brown trout (Salmo trutta) and native taxa ecology in two adjacent but contrasting rivers of Chilean Patagonia. During spring 2016 and spring-fall 2017 we examined the variation in benthic macroinvertebrate and fish community composition and characterized fish size structure, stomach contents, and stable isotopes (δ13 C and δ15 N) to understand population structure, fish diet, and trophic interactions between S. trutta and native taxa. The native Galaxias maculatus (puye) dominated the fish community (74% of abundance). S. trutta was less abundant (16% of survey catch) but dominated the fish community (over 53%) in terms of biomass. S. trutta showed distinct diets (stomach content analysis) in the two rivers, and individuals from the larger river were notably more piscivorous, consuming native fish with a relatively small body size (<100-mm total length). Native fishes were isotopically distinct from S. trutta, which showed a wider isotopic niche in the smaller river, indicating that their trophic role was more variable than in the larger river (piscivorous). This study provides data from the unstudied pristine coastal rivers in Patagonia and reveals that interactions between native and introduced species can vary at very local spatial scales.
Subject(s)
Osmeriformes , Salmonidae , Animals , Rivers/chemistry , Trout , Fresh WaterABSTRACT
Piscirickettsiosis, the main infectious disease affecting salmon farming in Chile, still has no efficient control measures. Piscirickettsia salmonis is a facultative intracellular bacterium that can survive and replicate within the host macrophages, evading the immune response. Triterpenic saponins obtained from the Quillaja saponaria tree have been widely studied, and have been shown to be immunomodulatory agents, suitable for feed and vaccine applications for veterinary and human uses. The impact of the oral administration of two extracts of Quillaja saponins on the infection of P. salmonis in Salmo salar and the corresponding gene expressions of immunomarkers were studied under three in vivo models. In the intraperitoneal challenge model, the group fed with Quillaja extracts showed lower mortality (29.1% treated vs. 37.5% control). Similar results were obtained in the cohabitation model trial (36.3% vs. 60.0%). In the commercial pilot trial, the results showed a significant reduction of 71.3% in mortality caused by P. salmonis (0.51% vs. 1.78%) and antibiotic use (reduction of 66.6% compared to untreated control). Also, Quillaja extracts significantly modulated the expression of IFN-II and CD8. These results represent evidence supporting the future use of purified Quillaja extracts as a natural non-pharmacological strategy for the prevention and control of P. salmonis infections in salmon.
ABSTRACT
Fish cell culture is a common in vitro tool for studies in different fields such as virology, toxicology, pathology and immunology of fish. Fish cell cultures are a promising help to study how to diagnose and control relevant viral and intracellular bacterial infections in aquaculture. They can also be used for developing vaccines and immunostimulants, especially with the ethical demand aiming to reduce and replace the number of fish used in research. This study aimed to isolate head kidney primary cell cultures from three Chilean salmonids: Salmo salar, Oncorhynchus kisutch, and Oncorhynchus mykiss, and characterize the response to bacterial and viral stimuli by evaluating various markers of the innate and adaptive immune response. Specifically, the primary cell cultures of the head kidney from the three salmonids studied were cultured and exposed to two substances that mimic molecular patterns of different pathogens, i.e., Lipopolysaccharide (LPS) (bacterial) and Polyinosinic: polycytidylic acid (POLY I:C). Subsequently, we determined the mRNA expression profiles of the TLR-1, TLR-8, IgM, TLR-5, and MHC II genes. Head kidney primary cell cultures from the three species grown in vitro responded differently to POLY I:C and LPS. This is the first study to demonstrate and characterize the expression of immune genes in head kidney primary cell culture isolated from three salmonid species. It also indicates their potential role in developing immune responses as defense response agents and targets of immunoregulatory factors.
ABSTRACT
Tenacibaculosis is an emerging disease that severely affects salmonid farming in Chile, producing high mortalities and causing great economic losses. This work describes a novel PCR assay for the specific detection of Tenacibaculum piscium, a species recently described and identified in tenacibaculosis outbreaks in Norway and Chile. The designed primers amplified a 678-bp fragment of the peptidase gene (peptidase M23 family) from T. piscium. This method is specific for T. piscium; no other chromosomal DNA amplification products were obtained for other Tenacibaculum species. In pure cultures, the PCR assay detected up to 500 pg of DNA, or the equivalent of 2.44 ± 0.06 × 104 CFU/ml. For seeded fish samples (i.e., gills, liver, kidney, and mucus), the sensitivity limit was 4.88 ± 0.11 × 106 CFU/g, sufficient to detect T. piscium in acute infections in fish. Notably, this sensitivity level was 100-fold lower for DNA extracted from mucus samples. As compared to other existing methodologies (e.g., gene sequencing), the PCR approach described in this work allowed for the easiest detection of T. piscium in mucus samples obtained from challenged fish, an important outcome considering that the identification of this bacterium is difficult. Our results indicate that the designed specific primers and PCR method provide a rapid and specific diagnosis of T. piscium.
Subject(s)
Fish Diseases , Salmonidae , Tenacibaculum , Animals , Tenacibaculum/genetics , Fish Diseases/microbiology , Polymerase Chain Reaction/methods , DNA Primers , DNAABSTRACT
Piscirickettsiosis is the most severe, persistent, and damaging disease that has affected the Chilean salmon industry since its origins in the 1980s. As a preventive strategy for this disease, different vaccines have been developed and used over the last 30 years. However, vaccinated salmon and trout frequently die in the sea cages and the use of antibiotics is still high demonstrating the low efficiency of the available vaccines. The reasons why the vaccines fail so often are still debated, but it could involve different extrinsic and intrinsic factors. Among the extrinsic factors, mainly associated with chronic stress, we can distinguish: 1) biotic including coinfection with sea lice, sealions attacks or harmful algal blooms; 2) abiotic including low oxygen or high temperature; and 3) farm-management factors including overcrowding or chemical delousing treatments. Among the intrinsic factors, we can distinguish: 1) fish-related factors including host's genetic variability (species, population and individual), sex or age; 2) pathogen-related factors including their variability and ability to evade host immune responses; and 3) vaccine-related factors including low immunogenicity and poor matches with the circulating pathogen strain. Based on the available evidence, in order to improve the development and the efficacy of vaccines against P. salmonis we recommend: a) Do not perform efficacy evaluations by intraperitoneal injection of pathogens because they generate an artificial protective immune response, instead cohabitation or immersion challenges must be used; b) Evaluate the diversity of pathogen strains in the field and ensure a good antigenic match with the vaccines; c) Investigate whether host genetic diversity could be improved, e.g. through selection, in favor of better and longer responses to vaccination; d) To reduce the stressful effects at the cage level, controlling the co-infection of pathogens and avoiding fish overcrowding. To date, we do not know the immunological mechanisms by which the vaccines against P. salmonis may or may not generate protection. More studies are required to identify what type of response, cellular or molecular, is required to develop effective vaccines.
Subject(s)
Coinfection , Piscirickettsiaceae Infections , Sea Lions , Vaccines , Animals , Salmon , Trout , Piscirickettsiaceae Infections/prevention & control , Piscirickettsiaceae Infections/veterinary , SeafoodABSTRACT
Piscirickettsiosis (SRS) has been the most important infectious disease in Chilean salmon farming since the 1980s. It was one of the first to be described, and to date, it continues to be the main infectious cause of mortality. How can we better understand the epidemiological situation of SRS? The catch-all answer is that the Chilean salmon farming industry must fight year after year against a multifactorial disease, and apparently only the environment in Chile seems to favor the presence and persistence of Piscirickettsia salmonis. This is a fastidious, facultative intracellular bacterium that replicates in the host's own immune cells and antigen-presenting cells and evades the adaptive cell-mediated immune response, which is why the existing vaccines are not effective in controlling it. Therefore, the Chilean salmon farming industry uses a lot of antibiotics-to control SRS-because otherwise, fish health and welfare would be significantly impaired, and a significantly higher volume of biomass would be lost per year. How can the ever-present risk of negative consequences of antibiotic use in salmon farming be balanced with the productive and economic viability of an animal production industry, as well as with the care of the aquatic environment and public health and with the sustainability of the industry? The answer that is easy, but no less true, is that we must know the enemy and how it interacts with its host. Much knowledge has been generated using this line of inquiry, however it remains insufficient. Considering the state-of-the-art summarized in this review, it can be stated that, from the point of view of fish immunology and vaccinology, we are quite far from reaching an effective and long-term solution for the control of SRS. For this reason, the aim of this critical review is to comprehensively discuss the current knowledge on the interaction between the bacteria and the host to promote the generation of more and better measures for the prevention and control of SRS.
Subject(s)
Fish Diseases , Piscirickettsia , Piscirickettsiaceae Infections , Animals , SalmonABSTRACT
BACKGROUND: Bacterial infections are responsible of high economic losses in aquaculture. Mexican golden trout (Oncorhynchus chrysogaster) is a threatened native trout species that has been introduced in aquaculture both for species conservation and breeding for production and for which no studies of bacterial infections have been reported. CASE PRESENTATION: Fish from juvenile stages of Mexican golden trout showed an infectious outbreak in a farm in co-culture with rainbow trout (Oncorhynchus mykiss), showing external puntiform red lesions around the mouth and caudal pedunculus resembling furuncles by Aeromonas spp. and causing an accumulated mortality of 91%. Isolation and molecular identification of bacteria from lesions and internal organs showed the presence of Aeromonas bestiarum, Aeromonas sobria, Plesiomonas shigelloides and Ichthyobodo necator isolated from a single individual. All bacterial isolates were resistant to amoxicillin-clavulanic acid and cefazoline. P. shigelloides was resistant to third generation ß-lactamics. CONCLUSIONS: This is the first report of coinfection by Aeromonas bestiarum, Aeromonas sobria, Plesiomonas shigelloides and Ichthyobodo necator in an individual of Mexican golden trout in co-culture with rainbow trout. Resistance to ß-lactams suggests the acquisition of genetic determinants from water contamination by human- or livestock-associated activities.
Subject(s)
Aeromonas , Coinfection , Fish Diseases , Gram-Negative Bacterial Infections , Oncorhynchus mykiss , Oncorhynchus , Parasites , Plesiomonas , Aeromonas/genetics , Animals , Coinfection/veterinary , Fish Diseases/microbiology , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/veterinary , Necator , Plesiomonas/geneticsABSTRACT
Parasite transmission is the ability of pathogens to move between hosts. As a key component of the interaction between hosts and parasites, it has crucial implications for the fitness of both. Here, we review the transmission dynamics of Gyrodactylus species, which are monogenean ectoparasites of teleost fishes and a prominent model for studies of parasite transmission. Particularly, we focus on the most studied hostparasite system within this genus: guppies, Poecilia reticulata, and G. turnbulli/G. bullatarudis. Through an integrative literature examination, we identify the main variables affecting Gyrodactylus spread between hosts, and the potential factors that enhance their transmission. Previous research indicates that Gyrodactylids spread when their current conditions are unsuitable. Transmission depends on abiotic factors like temperature, and biotic variables such as gyrodactylid biology, host heterogeneity, and their interaction. Variation in the degree of social contact between hosts and sexes might also result in distinct dynamics. Our review highlights a lack of mathematical models that could help predict the dynamics of gyrodactylids, and there is also a bias to study only a few species. Future research may usefully focus on how gyrodactylid reproductive traits and host heterogeneity promote transmission and should incorporate the feedbacks between host behaviour and parasite transmission.
ABSTRACT
The transmission of adult parasites from prey to predatory hosts has been demonstrated for some acanthocephalan and one cestode species. Derogenes lacustris (Digenea: Hemiuroidea: Derogenidae) is a generalist parasite that infects, as an adult, the stomach of native and introduced freshwater fishes in Andean Patagonia. In the present work, the post-cyclic transmission of D. lacustris from native Galaxias maculatus (Galaxiidae) to introduced Oncorhynchus mykiss (Salmonidae) was proved experimentally. The observed transmission rate for this experimental infection was 19%. The body length of D. lacustris on day 14 post-infection was significantly greater than before transmission. The number of eggs also increased significantly after transmission, showing that D. lacustris can survive, grow and continue with egg production for at least 2 weeks in predatory salmonids. This study provides the first experimental evidence of post-cyclic transmission of trematodes and the results suggest that post-cyclic parasitism enables this species to broaden its range of hosts and distribution ranges in Argentinean Patagonia.
Subject(s)
Fish Diseases , Oncorhynchus mykiss , Osmeriformes , Trematoda , Animals , Argentina/epidemiology , Fish Diseases/parasitology , Fishes/parasitology , Fresh Water , Osmeriformes/parasitologyABSTRACT
The membrane-anchored and soluble Toll-like Receptor 5 -TLR5M and TLR5S, respectively-from teleost recognize bacterial flagellin and induce the pro-inflammatory cytokines expression in a MyD88-dependent manner such as the TLR5 mammalian orthologous receptor. However, it has not been demonstrated whether the induced signaling pathway by these receptors activate innate effector mechanisms MyD88-dependent in salmonids. Therefore, in this work we study the MyD88 dependence on the induction of TLR5M/TLR5S signaling pathway mediated by flagellin as ligand on the activation of some innate effector mechanisms. The intracellular and extracellular Reactive Oxygen Species (ROS) production and conditioned supernatants production were evaluated in RTS11 cells, while the challenge with Piscirickettsia salmonis was evaluated in SHK-1 cells. Our results demonstrate that flagellin directly stimulates ROS production and indirectly stimulates it through the production of conditioned supernatants, both in a MyD88-dependent manner. Additionally, flagellin stimulation prevents the cytotoxicity induced by infection with P. salmonis in a MyD88-dependent manner. In conclusion we demonstrate that MyD88 is an essential adapter protein in the activation of the TLR5M/TLR5S signaling pathway mediated by flagellin in salmonids, which leads downstream to the induction of innate effector mechanisms, promoting immuno-protection against a bacterial challenge with P. salmonis.
Subject(s)
Fish Proteins , Myeloid Differentiation Factor 88 , Piscirickettsiaceae Infections/veterinary , Salmonidae , Toll-Like Receptor 5 , Animals , Fish Proteins/genetics , Fish Proteins/metabolism , Flagellin , Gene Expression Regulation , Immunity, Innate , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Piscirickettsia/pathogenicity , Piscirickettsiaceae Infections/immunology , Reactive Oxygen Species , Salmonidae/genetics , Salmonidae/immunology , Salmonidae/microbiology , Signal Transduction , Toll-Like Receptor 5/genetics , Toll-Like Receptor 5/metabolismABSTRACT
Abstract The Toltén river is located in the 137 years old Araucania region, Chile (38° S), and is characterized by low alterations through human interference due agriculture and towns in its surrounding basin, the presence of native fishes and salmonids, and by its lake effluent regime originated from Villarrica lake. The aim of the present study was to make a review of ecological role of the benthic inland water macroinvertebrates as preys for native fishes of the River Toltén, in order to understand their importance in the ecosystem of the river. The literature revealed that the main prey for native fishes are Chironomidae larvae, nevertheless there are not specific reports for Tolten river. The exposed results are similar with similar native species for Patagonia, and these native species would have prey for introduced salmonids, or these species would have prey competition with introduced salmonids in according to the literature descriptions for Argentinean and Chilean Patagonia.
Resumo O rio Toltén está localizado na região da Araucanía, com 137 anos de idade, Chile (38° S), e é caracterizado por baixas alterações por interferência humana devido à agricultura e cidades da bacia circundante, pela presença de salmonídeos e pelo regime de efluentes dos lagos. do lago Villarrica. O objetivo do presente estudo foi fazer uma revisão do papel ecológico dos macroinvertebrados bentônicos de águas interiores do rio Toltén, a fim de entender sua importância no ecossistema do rio. A literatura revelou que as principais presas de peixes nativos são as larvas de Chironomidae, no entanto, não há relatos específicos para o rio Tolten. Os resultados expostos são semelhantes com espécies nativas semelhantes para a Patagônia, e essas espécies nativas teriam presa por salmonídeos introduzidos, ou essas espécies teriam competição de presas com salmonídeos introduzidos de acordo com as descrições da literatura para a Patagônia Argentina e Chilena.
Subject(s)
Humans , Animals , Aged, 80 and over , Ecosystem , Rivers , Lakes , Chile , FishesABSTRACT
The Toltén river is located in the 137 years old Araucania region, Chile (38° S), and is characterized by low alterations through human interference due agriculture and towns in its surrounding basin, the presence of native fishes and salmonids, and by its lake effluent regime originated from Villarrica lake. The aim of the present study was to make a review of ecological role of the benthic inland water macroinvertebrates as preys for native fishes of the River Toltén, in order to understand their importance in the ecosystem of the river. The literature revealed that the main prey for native fishes are Chironomidae larvae, nevertheless there are not specific reports for Tolten river. The exposed results are similar with similar native species for Patagonia, and these native species would have prey for introduced salmonids, or these species would have prey competition with introduced salmonids in according to the literature descriptions for Argentinean and Chilean Patagonia.(AU)
O rio Toltén está localizado na região da Araucanía, com 137 anos de idade, Chile (38° S), e é caracterizado por baixas alterações por interferência humana devido à agricultura e cidades da bacia circundante, pela presença de salmonídeos e pelo regime de efluentes dos lagos. do lago Villarrica. O objetivo do presente estudo foi fazer uma revisão do papel ecológico dos macroinvertebrados bentônicos de águas interiores do rio Toltén, a fim de entender sua importância no ecossistema do rio. A literatura revelou que as principais presas de peixes nativos são as larvas de Chironomidae, no entanto, não há relatos específicos para o rio Tolten. Os resultados expostos são semelhantes com espécies nativas semelhantes para a Patagônia, e essas espécies nativas teriam presa por salmonídeos introduzidos, ou essas espécies teriam competição de presas com salmonídeos introduzidos de acordo com as descrições da literatura para a Patagônia Argentina e Chilena.(AU)
Subject(s)
Fishes , Invertebrates , Hunting , ChileABSTRACT
Lactic acid bacteria are a powerful vehicle for releasing of cytokines and immunostimulant peptides at the gastrointestinal level after oral administration. However, its therapeutic application against pathogens that affect rainbow trout and Atlantic salmon has been little explored. Type II interferon in Atlantic salmon activates the antiviral response, protecting against viral infection, but its role against bacterial infection has not been tested in vivo. In this work, through the design of a recombinant lactic acid bacterium capable of producing Interferon gamma from Atlantic salmon, we explore its role against bacterial infection and the ability to stimulate systemic immune response after oral administration of the recombinant probiotic. Recombinant interferon was active in vitro, mainly stimulating IL-6 expression in SHK-1 cells. In vivo, oral administration of the recombinant probiotic produced an increase in IL-6, IFNγ and IL-12 in the spleen and kidney, in addition to stimulating the activity of lysozyme in serum. The challenge trials indicated that the administration of the IFNγ-producing probiotic doubled the survival in fish infected with F. psychrophilum. In conclusion, our results showed that the oral administration of lactic acid bacteria producing IFNγ managed to stimulate the immune response at a systemic level, conferring protection against pathogens, showing a biotechnological potential for its application in aquaculture.
Subject(s)
Fish Proteins/metabolism , Flavobacteriaceae Infections/prevention & control , Flavobacterium/pathogenicity , Interferon-gamma/metabolism , Lactococcus lactis/metabolism , Oncorhynchus mykiss/microbiology , Probiotics/administration & dosage , Administration, Oral , Animals , Cell Line , Fish Proteins/genetics , Fish Proteins/immunology , Flavobacteriaceae Infections/immunology , Flavobacteriaceae Infections/metabolism , Flavobacteriaceae Infections/microbiology , Flavobacterium/immunology , Host-Pathogen Interactions , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-12/metabolism , Interleukin-6/metabolism , Lactococcus lactis/genetics , Lactococcus lactis/immunology , Oncorhynchus mykiss/genetics , Oncorhynchus mykiss/immunology , Oncorhynchus mykiss/metabolism , PhylogenyABSTRACT
P. salmonis infections are the cause of major bacterial disease in salmonids in Chile, and the reason for using more antibiotics compared to other salmon-producing countries. Vaccination and antibiotics have not been efficient and new approaches are needed. The safety of Quillaja saponaria extracts was measured by cytotoxicity using flow cytometry of cytopathic and death of fish cell cultures and efficacy was assessed using in vitro infection models with pathogenic P. salmonis. Cytotoxicity was low and control of in vitro infections was achieved with all products, with protection of over 90%. Minimum inhibitory concentrations were much higher than those in the infection using cell cultures. These results suggest a dual mechanism of action where less purified extracts with a combination of saponin and non-saponin components simultaneously decrease P. salmonis infection while protecting cell lines, rather than exerting a direct antimicrobial effect. Quillaja saponins controlled in vitro infections with P. salmonis and could be considered good candidates for a new, safe and sustainable method of controlling fish bacterial infectious diseases.
ABSTRACT
Species diagnosis is essential to assess the level of mislabeling or misnamed seafood products such as sushi. In Chile, sushi typically includes salmon as the main ingredient, but species used are rarely declared on the menu. In order to identify which species are included in the Chilean sushi market, we analyzed 84 individual sushi rolls sold as "salmon" from sushi outlets in ten cities across Chile. Using a polymerase chain reaction-restriction fragment length polymorphism protocol (PCR-RFLP), we identified mislabeled and misnamed products. Atlantic salmon was the most common salmonid fish used in sushi, followed by coho salmon, rainbow trout, and Chinook salmon. We found a total of 23% and 18% of the products were mislabeled and misnamed, respectively. In 64% of cases, the salesperson selling the product could not identify the species. We also identified the use of wild-captured Chinook salmon samples from a naturalized population. Our results provide a first indication regarding species composition in Chilean sushi, a quantification of mislabeling and the level of misinformation declared by sales people to consumers. Finally, considering that Chinook salmon likely originates from a non-licensed origin and that sushi is an uncooked product, proper identification in the food production chain may have important consequences for the health of consumers.
ABSTRACT
This study describes the bacterial community composition within the intestinal ecosystem of rainbow trout (Oncorhynchus mykiss) using high-throughput 16S rRNA gene sequence analysis. Sequences from intestinal samples from Chinook salmon (Oncorhynchus tshawytscha) farmed in New Zealand and rainbow trout farmed in Turkey were also included for comparative purposes. The results revealed that the most abundant operational taxonomic units (OTUs) were affiliated to the genus Mycoplasma, but were not specifically associated with any known species. Comparative analysis of 16S rRNA gene sequences indicated that these OTUs represent potentially novel species within the genus Mycoplasma.
Subject(s)
Gastrointestinal Microbiome , Mycoplasma , Oncorhynchus mykiss , Animals , Ecosystem , Mycoplasma/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , TurkeyABSTRACT
The Cape Horn Biosphere Reserve, one of the last wild areas of the planet, is not exempt from the pressures of global change, such as non-native species introductions. During 2018 and 2019 we studied the Róbalo river basin in order to update the diversity and distribution of fishes. Here, we report for the first time the native and endangered "Peladillas" Aplochiton taeniatus and the non-native coho salmon Oncorhynchus kisutch. The coexistence of native and non-native fishes poses a challenge for the management and conservation of aquatic biota from the Cape Horn Biosphere Reserve.