Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.711
Filter
1.
Tissue Cell ; 89: 102461, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38991272

ABSTRACT

The current study was constructed to fabricate polyamide based nanofibrous scaffolds (NS) and to define the most promising one for the generation of cardiomyocytes from adipose tissue derived mesenchymal stem cells (ADMSCs). This purpose was extended to assess the potentiality of the generated cardiomyocytes in relieving myocardial infarction (MI) in rats. Production and characterization of NSs were carried out. ADMSCs were cultured on NS and induced to differentiate into cardiomyocytes by specific growth factors. Molecular analysis for myocyte-specific enhancer factor 2 C (MEF2C) and alpha sarcomeric actin (α-SCA) expression was done to confirm the differentiation of ADMSCs into cardiomyocytes for further transplantation into MI induced rats. Implantation of cells in MI afflicted rats boosted heart rate, ST height and PR interval and lessened P duration, RR, QTc and QRS intervals. Also, this type of medication minified serum lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) enzymes activity as well as serum and cardiac troponin T (Tn-T) levels and upraised serum and cardiac α-SCA and cardiac connexin 43 (CX 43) levels. Microscopic feature of cardiac tissue sections of rats in the treated groups revealed great renovation in the cardiac microarchitecture. Conclusively, this attempt gains insight into a realistic strategy for recovery of MI through systemic employment of in vitro generated cardiomyocytes.

2.
Biomater Adv ; 163: 213952, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38991495

ABSTRACT

Despite of being in different microenvironment, breast cancer cells influence the bone cells and persuade cancer metastasis from breast to bone. Multiple co-culture approaches have been explored to study paracrine signaling between these cells and to study the progression of cancer. However, lack of native tissue microenvironment remains a major bottleneck in existing co-culture technologies. Therefore, in the present study, a tumorigenic and an osteogenic microenvironment have been sutured together to create a multi-cellular environment and has been appraised to study cancer progression in bone tissue. The PCL-polystyrene and PCL-collagen fibrous scaffolds were characterized for tumorigenic and osteogenic potential induction on MDA-MB-231 and MC3T3-E1 cells respectively. Diffusion ability of crystal violet, glucose, and bovine serum albumin across the membrane were used to access the potential paracrine interaction facilitated by device. While in co-cultured condition, MDA-MB-231 cells showed EMT phenotype along with secretion of TNFα and PTHrP which lower down the expression of osteogenic markers including alkaline phosphatase, RUNX2, Osteocalcin and Osteoprotegerin. The cancer progression in bone microenvironment demonstrated the role and necessity of creating multiple tissue microenvironment and its contribution in studying multicellular disease progression and therapeutics.

3.
J Biomed Mater Res A ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949056

ABSTRACT

Over the past few decades, significant research has been conducted on tissue-engineered constructs for cartilage repair. However, there is a growing interest in addressing subchondral bone repair along with cartilage regeneration. This study focuses on a bilayer tissue engineering scaffold loaded with icariin (ICA) and quercetin (QU) for simultaneous treatment of knee joint cartilage and subchondral bone defects. The cytotoxicity of dual-layer scaffolds loaded with ICA and QU was assessed through live/dead cell staining. Subsequently, these dual-layer scaffolds loaded with ICA and QU were implanted into cartilage and subchondral bone defects in Sprague-Dawley (SD) rats. The repair effects were evaluated through macroscopic observation, computed tomography, and immunohistochemistry. After 12 weeks of implantation of dual-layer scaffolds loaded with ICA and QU into the cartilage and bone defects of SD rats, better repair effects were observed in both cartilage and bone defects compared to the blank control group. We found that the dual-layer tissue-engineered scaffold loaded with ICA and QU had excellent biocompatibility and could effectively repair articular cartilage and subchondral bone injuries, showing promising prospects for clinical applications.

4.
Biomater Adv ; 163: 213950, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38972278

ABSTRACT

Traditional tendon engineering using cell-loaded scaffold has limited application potential due to the need of autologous cells. We hypothesize that potent mechanical loading can efficiently induce in situ Achilles tendon regeneration in a rabbit model by using a cell-free porous composite scaffold. In this study, melt-spinning was used to fabricate PGA (polyglycolic acid) and PLA (polylactic acid) filament fibers as well as non-woven PGA fibers. The PLA/PGA (4:2) filament fibers were further braided into a hybrid yarn,which was knitted into a PLA/PGA tubular mesh with potent mechanical property for sustaining natural tendon strain. The results showed that a complete cross-section of Achilles tendon created a model of full mechanical loading on the bridging scaffold, which could efficiently induce in situ tendon regeneration by promoting host cell infiltration, matrix production and tissue remodeling. Histologically, mechanical loading assisted in forming parallel aligned collagen fibers and tenocytes in a fashion similar to those of native tendon. Transmission electron microscope further demonstrated that mechanical strain induced collagen fibril development by increasing fibril diameter and forming bipolar structure, which resulted in enhanced mechanical properties. Interestingly, the synergistic effect between mechanical loading and hyaluronic acid modification was also observed on the induced tenogenic differentiation of infiltrated host fibroblasts. In conclusion, potent mechanical loading is the key inductive microenvironment for in situ tendon regeneration for this polymer-based composite scaffold with proper matrix modification, which may serve as a universal scaffold product for tendon regeneration.

5.
Article in English | MEDLINE | ID: mdl-38968558

ABSTRACT

Developing a neurovascular bone repair scaffold with an appropriate mechanical strength remains a challenge. Calcium phosphate (CaP) is similar to human bone, but its scaffolds are inherently brittle and inactive, which require recombination with active ions and polymers for bioactivity and suitable strength. This work discussed the synthesis of amorphous magnesium-calcium pyrophosphate (AMCP) and the subsequent development of a humidity-responsive AMCP/cassava starch (CS) scaffold. The scaffold demonstrated enhanced mechanical properties by strengthening the intermolecular hydrogen bonds and ionic bonds between AMCP and CS during the gelatinization and freeze-thawing processes. The release of active ions was rapid initially and stabilized into a long-term stable release after 3 days, which is well-matched with new bone growth. The release of pyrophosphate ions endowed the scaffold with antibacterial properties. At the cellular level, the released active ions simultaneously promoted the proliferation and mineralization of osteoblasts, the proliferation and migration of endothelial cells, and the proliferation of Schwann cells. At the animal level, the scaffold was demonstrated to promote vascular growth and peripheral nerve regeneration in a rat skull defect experiment, ultimately resulting in the significant and rapid repair of bone defects. The construction of the AMCP/CS scaffold offers practical suggestions and references for neurovascular bone repair.

6.
Indian J Orthop ; 58(7): 932-943, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38948364

ABSTRACT

Background: In bone tissue engineering segment, numerous approaches have been investigated to address critically sized bone defects via 3D scaffolds, as the amount of autologous bone grafts are limited, accompanied with complications on harvesting. Moreover, the use of bone-marrow-derived stem cells is also a limiting factor owing to the invasive procedures involved and the low yield of stem cells. Hence, research is ongoing on the search for an ideal bone graft system promoting bone growth and regeneration. Purpose of the Study: This study aims to develop a unique platform for tissue development via stem cell differentiation towards an osteogenic phenotype providing optimum biological cues for cell adhesion, differentiation and proliferation using biomimetic gelatin-based scaffolds. The use of adipose-derived mesenchymal stem cells in this study also offers an ideal approach for the development of an autologous bone graft. Methods: A gelatin-vinyl acetate-based 3D scaffold system incorporating Bioglass was developed and the osteogenic differentiation of adipose-derived mesenchymal stem cells (ADMSCs) on the highly porous freeze-dried gelatin-vinyl acetate/ Bioglass scaffold (GB) system was analyzed. The physicochemical properties, cell proliferation and viability were investigated by seeding rat adipose tissue-derived mesenchymal stem cells (ADSCs) onto the scaffolds. The osteogenic differentiation potential of the ADMSC seeded GeVAc/bioglass system was assessed using calcium deposition assay and bone-related protein and genes and comparing with the 3D Gelatin vinyl acetate coppolymer (GeVAc) constructs. Results and Conclusion: According to the findings, the 3D porous GeVAc/bioglass scaffold can be considered as a promising matrix for bone tissue regeneration and the 3D architecture supports the differentiation of the ADMSCs into osteoblast cells and enhances the production of mineralized bone matrix.

7.
ACS Appl Bio Mater ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950103

ABSTRACT

Bone, a fundamental constituent of the human body, is a vital scaffold for support, protection, and locomotion, underscoring its pivotal role in maintaining skeletal integrity and overall functionality. However, factors such as trauma, disease, or aging can compromise bone structure, necessitating effective strategies for regeneration. Traditional approaches often lack biomimetic environments conducive to efficient tissue repair. Nanofibrous microspheres (NFMS) present a promising biomimetic platform for bone regeneration by mimicking the native extracellular matrix architecture. Through optimized fabrication techniques and the incorporation of active biomolecular components, NFMS can precisely replicate the nanostructure and biochemical cues essential for osteogenesis promotion. Furthermore, NFMS exhibit versatile properties, including tunable morphology, mechanical strength, and controlled release kinetics, augmenting their suitability for tailored bone tissue engineering applications. NFMS enhance cell recruitment, attachment, and proliferation, while promoting osteogenic differentiation and mineralization, thereby accelerating bone healing. This review highlights the pivotal role of NFMS in bone tissue engineering, elucidating their design principles and key attributes. By examining recent preclinical applications, we assess their current clinical status and discuss critical considerations for potential clinical translation. This review offers crucial insights for researchers at the intersection of biomaterials and tissue engineering, highlighting developments in this expanding field.

8.
J Cheminform ; 16(1): 77, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965600

ABSTRACT

SMILES-based generative models are amongst the most robust and successful recent methods used to augment drug design. They are typically used for complete de novo generation, however, scaffold decoration and fragment linking applications are sometimes desirable which requires a different grammar, architecture, training dataset and therefore, re-training of a new model. In this work, we describe a simple procedure to conduct constrained molecule generation with a SMILES-based generative model to extend applicability to scaffold decoration and fragment linking by providing SMILES prompts, without the need for re-training. In combination with reinforcement learning, we show that pre-trained, decoder-only models adapt to these applications quickly and can further optimize molecule generation towards a specified objective. We compare the performance of this approach to a variety of orthogonal approaches and show that performance is comparable or better. For convenience, we provide an easy-to-use python package to facilitate model sampling which can be found on GitHub and the Python Package Index.Scientific contributionThis novel method extends an autoregressive chemical language model to scaffold decoration and fragment linking scenarios. This doesn't require re-training, the use of a bespoke grammar, or curation of a custom dataset, as commonly required by other approaches.

9.
Regen Ther ; 26: 251-259, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38974324

ABSTRACT

Diabetes Mellitus (DM) disrupts the body's capability to control blood glucose statuses. Type 1 diabetes mellitus (T1DM) arises from inadequate insulin production and is treated with insulin replacement therapy. Stem cell therapy is a hopeful treatment for T1DM that involves using adult stem cells to generate insulin-producing cells (IPCs). Mesenchymal stem cells (MSCs) are particularly advantageous for generating IPCs. The islet cells require interactions with the extracellular matrix for survival, which is lacking in conventional 2D culture systems. Natural or synthetic polymers create a supportive 3D microenvironment in tissue engineering. We aim to construct superior differentiation conditions employing polyethersulfone (PES)/Fish gelatin scaffolds to differentiate Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) to IPCs. In this study, the PES/fish gelatin scaffold (3D) was manufactured by electrospinning, and then its biocompatibility and non-toxicity were investigated by MTT assay. After that, scaffold-supportive effects on WJ-MSCs differentiation to IPCs were studied at the gene and protein levels. After exposure to the differentiation media, 2D and 3D (PES/Fish gelatin) cultured cells were slowly aggregated and developed spherical-shaped clusters. The viability of cells was found to be comparable in both 2D and 3D cultures. The gene expression analysis showed that efficiency of differentiation was more elevated in 3D culture. Additionally, ELISA results indicated that C-peptide and insulin release were more significant in 3D than in 2D culture. In conclusion, the PES/fish gelatin scaffold is highly promising for pancreatic tissue engineering because it supports the viability, growth, and differentiation of WJ-MSCs into IPCs.

10.
Ann Surg Treat Res ; 107(1): 50-57, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38978685

ABSTRACT

Purpose: Stem cell-based therapies are considered an alternative approach for critical limb ischemia (CLI) patients with limited or exhausted options, yet their clinical use is limited by the lack of sustainability and unclear mechanism of action. In this study, a substance P-conjugated scaffold was injected with mesenchymal stem cells (MSCs) into an animal model of CLI to verify whether angiogenesis could be enhanced. Methods: A self-assembling peptide (SAP) was conjugated with substance P, known to have the ability to recruit host stem cells into the site of action. This SAP was injected with MSCs into ischemic hindlimbs of rats, and the presence of MSCs was verified by immunohistochemical (IHC) staining of MSC-specific markers at days 7, 14, and 28. The degree of angiogenesis, cell apoptosis, and fibrosis was also quantified. Results: Substance P-conjugated SAP was able to recruit intrinsic MSCs into the ischemic site of action. When injected in combination with MSCs, the presence of both injected and recruited MSCs was found in the ischemic tissues by double IHC staining. This in turn led to a higher degree of angiogenesis, less cell apoptosis, and less tissue fibrosis compared to the other groups at all time points. Conclusion: The combination of substance P-conjugated SAP and MSCs was able to enhance angiogenesis and tissue repair, which was achieved by the additive effect from exogenously administered and intrinsically recruited MSCs. This scaffold-based intrinsic recruitment approach could be a viable option to enhance the therapeutic effects in patients with CLI.

11.
Bioact Mater ; 40: 306-317, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38978806

ABSTRACT

Osteochondral tissue is a highly specialized and complex tissue composed of articular cartilage and subchondral bone that are separated by a calcified cartilage interface. Multilayered or gradient scaffolds, often in conjunction with stem cells and growth factors, have been developed to mimic the respective layers for osteochondral defect repair. In this study, we designed a hyaline cartilage-hypertrophic cartilage bilayer graft (RGD/RGDW) with chondrocytes. Previously, we demonstrated that RGD peptide-modified chondroitin sulfate cryogel (RGD group) is chondro-conductive and capable of hyaline cartilage formation. Here, we incorporated whitlockite (WH), a Mg2+-containing calcium phosphate, into RGD cryogel (RGDW group) to induce chondrocyte hypertrophy and form collagen X-rich hypertrophic cartilage. This is the first study to use WH to produce hypertrophic cartilage. Chondrocytes-laden RGDW cryogel exhibited significantly upregulated expression of hypertrophy markers in vitro and formed ectopic hypertrophic cartilage in vivo, which mineralized into calcified cartilage in bone microenvironment. Subsequently, RGD cryogel and RGDW cryogel were combined into bilayer (RGD/RGDW group) and implanted into rabbit osteochondral defect, where RGD layer supports hyaline cartilage regeneration and bioceramic-containing RGDW layer promotes calcified cartilage formation. While the RGD group (monolayer) formed hyaline-like neotissue that extends into the subchondral bone, the RGD/RGDW group (bilayer) regenerated hyaline cartilage tissue confined to its respective layer and promoted osseointegration for integrative defect repair.

12.
Beilstein J Nanotechnol ; 15: 781-796, 2024.
Article in English | MEDLINE | ID: mdl-38979523

ABSTRACT

In this research, we applied electrospinning to create a two-component biodegradable polymeric scaffold containing polysuccinimide (PSI) and antibacterial salts. Antibacterial agents for therapeutical purposes mostly contain silver ions which are associated with high environmental impact and, in some cases, may cause undesired immune reactions. In our work, we prepared nanofibrous systems containing antibacterial and tissue-regenerating salts of zinc acetate or strontium nitrate in different concentrations, whose structures may be suitable for developing biomedical wound dressing systems in the future. Several experiments have been conducted to optimize the physicochemical, mechanical, and biological properties of the scaffolds developed for application as wound dressings. The scaffold systems obtained by PSI synthesis, salt addition, and fiber formation were first investigated by scanning electron microscopy. In almost all cases, different salts caused a decrease in the fiber diameter of PSI polymer-based systems (<500 nm). Fourier-transform infrared spectroscopy was applied to verify the presence of salts in the scaffolds and to determine the interaction between the salt and the polymer. Another analysis, energy-dispersive X-ray spectroscopy, was carried out to determine strontium and zinc atoms in the scaffolds. Our result showed that the salts influence the mechanical properties of the polymer scaffold, both in terms of specific load capacity and relative elongation values. According to the dissolution experiments, the whole amount of strontium nitrate was dissolved from the scaffold in 8 h; however, only 50% of the zinc acetate was dissolved. In addition, antibacterial activity tests were performed with four different bacterial strains relevant to skin surface injuries, leading to the appearance of inhibition zones around the scaffold discs in most cases. We also investigated the potential cytotoxicity of the scaffolds on human tumorous and healthy cells. Except for the ones containing zinc acetate salt, the scaffolds are not cytotoxic to either tumor or healthy cells.

13.
Biomaterials ; 311: 122699, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38981153

ABSTRACT

The treatment of osteoporotic bone defects poses a challenge due to the degradation of the skeletal vascular system and the disruption of local bone metabolism within the osteoporotic microenvironment. However, it is feasible to modulate the disrupted local bone metabolism imbalance through enhanced vascularization, a theory termed "vascularization-bone metabolic balance". This study developed a 3D-printed polycaprolactone (PCL) scaffold modified with EPLQLKM and SVVYGLR peptides (PCL-SE). The EPLQLKM peptide attracts bone marrow-derived mesenchymal stem cells (BMSCs), while the SVVYGLR peptide enhances endothelial progenitor cells (EPCs) vascular differentiation, thus regulating bone metabolism and fostering bone regeneration through the paracrine effects of EPCs. Further mechanistic research demonstrated that PCL-SE promoted the vascularization of EPCs, activating the Notch signaling pathway in BMSCs, leading to the upregulation of osteogenesis-related genes and the downregulation of osteoclast-related genes, thereby restoring bone metabolic balance. Furthermore, PCL-SE facilitated the differentiation of EPCs into "H"-type vessels and the recruitment of BMSCs to synergistically enhance osteogenesis, resulting in the regeneration of normal microvessels and bone tissues in cases of femoral condylar bone defects in osteoporotic SD rats. This study suggests that PCL-SE supports in-situ vascularization, remodels bone metabolic translational balance, and offers a promising therapeutic regimen for osteoporotic bone defects.

14.
J Mech Behav Biomed Mater ; 157: 106646, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38981181

ABSTRACT

Graphene oxide (GO) exhibits excellent mechanical strength and modulus. However, its effectiveness in mechanically reinforcing polymer materials is limited due to issues with interfacial bonding and dispersion arising from differences in the physicochemical properties between GO and polymers. Surface modification using coupling agents is an effective method to improve the bonding problem between polymer and GO, but there may be biocompatibility issues when used in the biomedical field. In this study, the biomolecule L-lysine, was applied to improve the interfacial bonding and dispersion of GO in polylactic acid (PLA) without compromising biocompatibility. The PLA/L-lysine-modified GO (PLA/L-GO) bone scaffold with triply periodic minimal surface (TPMS) structure was prepared using fused deposition modeling (FDM). The FTIR results revealed successful grafting of L-lysine onto GO through the reaction between their -COOH and -NH2 groups. The macroscopic and microscopic morphology characterization indicated that the PLA/L-GO scaffolds exhibited an characteristics of dynamic diameter changes, with good interlayer bonding. It was noteworthy that the L-lysine modification promoted the dispersion of GO and the interfacial bonding with the PLA matrix, as characterized by SEM. As a result, the PLA/0.1L-GO scaffold exhibited higher compressive strength (13.2 MPa) and elastic modulus (226.8 MPa) than PLA/0.1GO. Moreover, PLA/L-GO composite scaffold exhibited superior biomineralization capacity and cell response compared to PLA/GO. In summary, L-lysine not only improved the dispersion and interfacial bonding of GO with PLA, enhancing the mechanical properties, but also improved the biological properties. This study suggests that biomolecules like L-lysine may replace traditional modifiers as an innovative bio-modifier to improve the performance of polymer/inorganic composite biomaterials.

15.
Trends Biotechnol ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38955569

ABSTRACT

3D printing has revolutionized bone tissue engineering (BTE) by enabling the fabrication of patient- or defect-specific scaffolds to enhance bone regeneration. The superior biocompatibility, customizable bioactivity, and biodegradability have enabled calcium phosphate (CaP) to gain significance as a bone graft material. 3D-printed (3DP) CaP scaffolds allow precise drug delivery due to their porous structure, adaptable structure-property relationship, dynamic chemistry, and controlled dissolution. The effectiveness of conventional scaffold-based drug delivery is hampered by initial burst release and drug loss. This review summarizes different multifunctional drug delivery approaches explored in controlling drug release, including polymer coatings, formulation integration, microporous scaffold design, chemical crosslinking, and direct extrusion printing for BTE applications. The review also outlines perspectives and future challenges in drug delivery research, paving the way for next-generation bone repair methodologies.

16.
Mater Today Bio ; 27: 101120, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38975240

ABSTRACT

Reactive oxygen species play a vital role in tissue repair, and nonequilibrium of redox homeostasis around bone defect can compromise osteogenesis. However, insufficient antioxidant capacity and weak osteogenic performance remain major obstacles for bone scaffold materials. Herein, integrating the mussel-inspired polydopamine (PDA) coating and 3D printing technologies, we utilized the merits of both osteogenic bredigite and antioxidative fullerol to construct 3D-printed porous, biodegradable acid-buffering, reactive oxygen species (ROS) -scavenging and robust osteogenic bio-scaffold (denoted "FPBS") for in situ bone defect restoration under oxidative stress microenvironment. Initially, fullerol nanoparticles were attached to the surface of the bredigite scaffold via covalently inter-crosslinking with PDA. Upon injury, extracellular ROS capturing triggered the oxidative degradation of PDA, releasing fullerol nanoparticles to enter into cells for further intracellular ROS scavenging. In vitro, FPBS had good biocompatibility and excellent antioxidative capability. Furthermore, FPBS promoted the osteogenesis of stem cells with significant elevation of osteogenic markers. Finally, in vivo implantation of FPBS remarkably enhanced new bone formation in a rat critical calvarial defect model. Overall, with amelioration of the ROS microenvironment of injured tissue and enhancement of osteogenic differentiation of stem cells simultaneously, FPBS may hold great potential towards bone defect repair.

17.
Cureus ; 16(6): e61741, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38975499

ABSTRACT

Aim The aim of this study was to assess the physicochemical characterization and mineralization of nanofibrous scaffold incorporated with nanohydroxyapatite (nHA) and aspartic acid (Asp) for dental mineralization.  Methodology Three nanofibrous scaffolds were prepared, namely polycaprolactone (PCL), PCL with nHA, and PCL with nHA and Asp. Each scaffold was prepared separately by electrospinning. The physicochemical characterization of the surface of the nanofibrous scaffold was imaged using a scanning electron microscope (SEM), energy dispersive X-ray Analysis (EDX), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). In vitro mineralization studies were performed by immersing the sample in simulated body fluid (SBF) for 7, 14, and 21 days. The surface of the samples was observed under SEM with EDX. Results SEM analysis of PCL/nHA/Asp revealed that the nanofibers were bead-free, smooth, randomly oriented, and loaded with Asp. The EDX spectra of PCL/nHA/Asp composite nanofibrous scaffold revealed broad peaks and corresponded to the amorphous form, while the sharp peaks corresponded to the specific crystalline structure of nHA. FTIR analysis showed specific functional groups corresponding to PCL, nHA, and Asp. The scaffolds incorporated with Asp exhibited higher mineralization potential with an apatite-like crystal formation, which increased with an increase in the duration of immersion in SBF. Conclusion Physiochemical characterization demonstrated the incorporation of PCL/nHA/Asp in the electrospun nanofibrous scaffold. The mineralization analysis revealed that the presence of Asp enhanced the mineralization when compared with the PCL and PCL/nHA. PCL/nHA/Asp incorporated in scaffold can be a promising material for dental mineralization.

18.
Article in English | MEDLINE | ID: mdl-38980153

ABSTRACT

The re-epithelialization process gets severely dysregulated in chronic nonhealing diabetic foot ulcers/wounds. Keratinocyte growth factor (KGF or FGF-7) is the major modulator of the re-epithelialization process, which regulates the physiological phenotypes of cutaneous keratinocytes. The existing therapeutic strategies of growth factor administration have several limitations. To overcome these, we have designed a KGF-mimetic peptide (KGFp, 13mer) based on the receptor interaction sites in murine KGF. KGFp enhanced migration and transdifferentiation of mouse bone marrow-derived MSCs toward keratinocyte-like cells (KLCs). A significant increase in the expression of skin-specific markers Bnc1 (28.5-fold), Ck5 (14.6-fold), Ck14 (26.1-fold), Ck10 (187.7-fold), and epithelial markers EpCam (23.3-fold) and Cdh1 (64.2-fold) was associated with the activation of ERK1/2 and STAT3 molecular signaling in the KLCs. Further, to enhance the stability of KGFp in the wound microenvironment, it was conjugated to biocompatible 3D porous polymer scaffolds without compromising its active binding sites followed by chemical characterization using Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, dynamic mechanical analysis, and thermogravimetry. In vitro evaluation of the KGFp-conjugated 3D polymer scaffolds revealed its potential for transdifferentiation of MSCs into KLCs. Transplantation of allogeneic MSCGFP using KGFp-conjugated 3D polymer scaffolds in chronic nonhealing type 2 diabetic wounds (db/db transgenic, 50-52 weeks old male mice) significantly enhanced re-epithelialization-mediated wound closure rate (79.3%) as compared to the control groups (Untransplanted -22.4%, MSCGFP-3D polymer scaffold -38.5%). Thus, KGFp-conjugated 3D porous polymer scaffolds drive the fate of the MSCs toward keratinocytes that may serve as potential stem cell delivery platform technology for tissue engineering and transplantation.

19.
Article in English | MEDLINE | ID: mdl-38980692

ABSTRACT

Tissue engineering is theoretically considered a promising approach for repairing osteochondral defects. Nevertheless, the insufficient osseous support and integration of the cartilage layer and the subchondral bone frequently lead to the failure of osteochondral repair. Drawing from this, it was proposed that incorporating glycine-modified attapulgite (GATP) into poly(1,8-octanediol-co-citrate) (POC) scaffolds via the one-step chemical cross-linking is proposed to enhance cartilage and subchondral bone defect repair simultaneously. The effects of the GATP incorporation ratio on the physicochemical properties, chondrocyte and MC3T3-E1 behavior, and osteochondral defect repair of the POC scaffold were also evaluated. In vitro studies indicated that the POC/10% GATP scaffold improved cell proliferation and adhesion, maintained cell phenotype, and upregulated chondrogenesis and osteogenesis gene expression. Animal studies suggested that the POC/10% GATP scaffold has significant repair effects on both cartilage and subchondral bone defects. Therefore, the GATP-incorporated scaffold system with dual-lineage bioactivity showed potential application in osteochondral regeneration.

20.
J Orthop Translat ; 47: 1-14, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38957270

ABSTRACT

Background: The deployment of bone grafts (BGs) is critical to the success of scaffold-guided bone regeneration (SGBR) of large bone defects. It is thus critical to provide harvesting devices that maximize osteogenic capacity of the autograft while also minimizing graft damage during collection. As an alternative to the Reamer-Irrigator-Aspirator 2 (RIA 2) system - the gold standard for large-volume graft harvesting used in orthopaedic clinics today - a novel intramedullary BG harvesting concept has been preclinically introduced and referred to as the ARA (aspirator + reaming-aspiration) concept. The ARA concept uses aspiration of the intramedullary content, followed by medullary reaming-aspiration of the endosteal bone. This concept allows greater customization of BG harvesting conditions vis-à-vis the RIA 2 system. Following its successful in vitro validation, we hypothesized that an ARA concept-collected BG would have comparable in vivo osteogenic capacity compared to the RIA 2 system-collected BG. Methods: We used 3D-printed, medical-grade polycaprolactone-hydroxyapatite (mPCL-HA, wt 96 %:4 %) scaffolds with a Voronoi design, loaded with or without different sheep-harvested BGs and tested them in an ectopic bone formation rat model for up to 8 weeks. Results: Active bone regeneration was observed throughout the scaffold-BG constructs, particularly on the surface of the bone chips with endochondral bone formation, and highly vascularized tissue formed within the fully interconnected pore architecture. There were no differences between the BGs derived from the RIA 2 system and the ARA concept in new bone volume formation and in compression tests (Young's modulus, p = 0.74; yield strength, p = 0.50). These results highlight that the osteogenic capacities of the mPCL-HA Voronoi scaffold loaded with BGs from the ARA concept and the RIA 2 system are equivalent. Conclusion: In conclusion, the ARA concept offers a promising alternative to the RIA 2 system for harvesting BGs to be clinically integrated into SGBR strategies. The translational potential of this article: Our results show that biodegradable composite scaffolds loaded with BGs from the novel intramedullary harvesting concept and the RIA 2 system have equivalent osteogenic capacity. Thus, the innovative, highly intuitive intramedullary harvesting concept offers a promising alternative to the RIA 2 system for harvesting bone grafts, which are an important component for the routine translation of SGBR concepts into clinical practice.

SELECTION OF CITATIONS
SEARCH DETAIL
...