Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 435
Filter
1.
Bio Protoc ; 14(13): e5029, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39007160

ABSTRACT

CRISPR-Cas9 technology has become an essential tool for plant genome editing. Recent advancements have significantly improved the ability to target multiple genes simultaneously within the same genetic background through various strategies. Additionally, there has been significant progress in developing methods for inducible or tissue-specific editing. These advancements offer numerous possibilities for tailored genome modifications. Building upon existing research, we have developed an optimized and modular strategy allowing the targeting of several genes simultaneously in combination with the synchronized expression of the Cas9 endonuclease in the egg cell. This system allows significant editing efficiency while avoiding mosaicism. In addition, the versatile system we propose allows adaptation to inducible and/or tissue-specific edition according to the promoter chosen to drive the expression of the Cas9 gene. Here, we describe a step-by-step protocol for generating the binary vector necessary for establishing Arabidopsis edited lines using a versatile cloning strategy that combines Gateway® and Golden Gate technologies. We describe a versatile system that allows the cloning of as many guides as needed to target DNA, which can be multiplexed into a polycistronic gene and combined in the same construct with sequences for the expression of the Cas9 endonuclease. The expression of Cas9 is controlled by selecting from among a collection of promoters, including constitutive, inducible, ubiquitous, or tissue-specific promoters. Only one vector containing the polycistronic gene (tRNA-sgRNA) needs to be constructed. For that, sgRNA (composed of protospacers chosen to target the gene of interest and sgRNA scaffold) is cloned in tandem with the pre-tRNA sequence. Then, a single recombination reaction is required to assemble the promoter, the zCas9 coding sequence, and the tRNA-gRNA polycistronic gene. Each element is cloned in an entry vector and finally assembled according to the Multisite Gateway® Technology. Here, we detail the process to express zCas9 under the control of egg cell promoter fused to enhancer sequence (EC1.2en-EC1.1p) and to simultaneously target two multiple C2 domains and transmembrane region protein genes (MCTP3 and MCTP4, respectively at3g57880 and at1g51570), using one or two sgRNA per gene. Key features • A simple method for Arabidopsis edited lines establishment using CRISPR-Cas9 technology • Versatile cloning strategy combining various technologies for convenient cloning (Gateway®, Golden Gate) • Multigene targeting with high efficiency.

2.
Methods Mol Biol ; 2842: 179-192, 2024.
Article in English | MEDLINE | ID: mdl-39012596

ABSTRACT

The discovery and adaptation of CRISPR/Cas systema for epigenome editing has allowed for a straightforward design of targeting modules that can direct epigenome editors to virtually any genomic site. This advancement in DNA-targeting technology brings allele-specific epigenome editing into reach, a "super-specific" variation of epigenome editing whose goal is an alteration of chromatin marks at only one selected allele of the genomic target locus. This technology could be useful for the treatment of diseases caused by a mutant allele with a dominant effect, because allele-specific epigenome editing allows the specific silencing of the mutated allele leaving the healthy counterpart expressed. Moreover, it may allow the direct correction of aberrant imprints in imprinting disorders where editing of DNA methylation is required exclusively in a single allele. Here, we describe a basic protocol for the design and application of allele-specific epigenome editing systems using allele-specific DNA methylation at the NARF gene in HEK293 cells as an example. An sgRNA/dCas9 unit is used for allele-specific binding to the target locus containing a SNP in the seed region of the sgRNA or the PAM region. The dCas9 protein is connected to a SunTag allowing to recruit up to 10 DNMT3A/3L units fused to a single-chain Fv fragment, which specifically binds to the SunTag peptide sequence. The plasmids expressing dCas9-10x SunTag, scFv-DNMT3A/3L, and sgRNA, each of them co-expressing a fluorophore, are introduced into cells by co-transfection. Cells containing all three plasmids are enriched by FACS, cultivated, and later the genomic DNA and RNA can be retrieved for DNA methylation and gene expression analysis.


Subject(s)
Alleles , CRISPR-Cas Systems , DNA Methylation , Epigenome , Gene Editing , Humans , Gene Editing/methods , HEK293 Cells , RNA, Guide, CRISPR-Cas Systems/genetics , Epigenomics/methods , Epigenesis, Genetic
3.
Methods Mol Biol ; 2842: 289-307, 2024.
Article in English | MEDLINE | ID: mdl-39012602

ABSTRACT

Epigenetic modifications play a crucial role in regulating gene expression patterns. Through epigenetic editing approaches, the chromatin structure is modified and the activity of the targeted gene can be reprogrammed without altering the DNA sequence. By using the CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic repeats) platform with nuclease-deactivated dCas9 proteins to direct epigenetic effector domains (EDs) to genomic regulatory regions, the expression of the targeted gene can be modulated. However, the long-term stability of these effects, although demonstrated, remains unpredictable. The versatility and flexibility of (co-)targeting different genes with multiple epigenetic effectors has made the CRISPR/dCas9 platform the most widely used gene modulating technology currently available. Efficient delivery of large dCas9-ED fusion constructs into target cells, however, is challenging. An approach to overcome this limitation is to generate cells that stably express sgRNA(s) or dCas9-ED constructs. The sgRNA(s) or dCas9-ED stable cell lines can be used to study the mechanisms underlying sustained gene expression reprogramming by transiently expressing the other of the two constructs. Here, we describe a detailed protocol for the engineering of cells that stably express CRISPR/dCas9 or sgRNA. Creating a system where one component of the CRISPR/dCas9 is stably expressed while the other is transiently expressed offers a versatile platform for investigating the dynamics of epigenetic reprogramming.


Subject(s)
CRISPR-Cas Systems , Epigenesis, Genetic , Gene Editing , RNA, Guide, CRISPR-Cas Systems , Gene Editing/methods , Humans , RNA, Guide, CRISPR-Cas Systems/genetics , Cell Line , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Protein 9/genetics , HEK293 Cells
4.
Adv Sci (Weinh) ; : e2309314, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38923275

ABSTRACT

Hypervascularized glioblastoma is naturally sensitive to anti-angiogenesis but suffers from low efficacy of transient vasculature normalization. In this study, a lipid-polymer nanoparticle is synthesized to execute compartmentalized Cas9 and sgRNA delivery for a permanent vasculature editing strategy by knocking out the signal transducer and activator of transcription 3 (STAT3). The phenylboronic acid branched cationic polymer is designed to condense sgRNA electrostatically (inner compartment) and patch Cas9 coordinatively (outer compartment), followed by liposomal hybridization with angiopep-2 decoration for blood-brain barrier (BBB) penetration. The lipid-polymer nanoparticles can reach glioblastoma within 2 h post intravenous administration, and hypoxia in tumor cells triggers charge-elimination and degradation of the cationic polymer for burst release of Cas9 and sgRNA, accompanied by instant Cas9 RNP assembly, yielding ≈50% STAT3 knockout. The downregulation of downstream vascular endothelial growth factor (VEGF) reprograms vasculature normalization to improve immune infiltration, collaborating with interleukin-6 (IL-6) and interleukin-10 (IL-10) reduction to develop anti-glioblastoma responses. Collectively, the combinational assembly for compartmentalized Cas9/sgRNA delivery provides a potential solution in glioblastoma therapy.

5.
Antiviral Res ; 228: 105946, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38925369

ABSTRACT

SARS-CoV-2 is a betacoronavirus that causes COVID-19, a global pandemic that has resulted in many infections, deaths, and socio-economic challenges. The virus has a large positive-sense, single-stranded RNA genome of ∼30 kb, which produces subgenomic RNAs (sgRNAs) through discontinuous transcription. The most abundant sgRNA is sgRNA N, which encodes the nucleocapsid (N) protein. In this study, we probed the secondary structure of sgRNA N and a shorter model without a 3' UTR in vitro, using the SHAPE (selective 2'-hydroxyl acylation analyzed by a primer extension) method and chemical mapping with dimethyl sulfate and 1-cyclohexyl-(2-morpholinoethyl) carbodiimide metho-p-toluene sulfonate. We revealed the secondary structure of sgRNA N and its shorter variant for the first time and compared them with the genomic RNA N structure. Based on the structural information, we designed gapmers, siRNAs and antisense oligonucleotides (ASOs) to target the N protein coding region of sgRNA N. We also generated eukaryotic expression vectors containing the complete sequence of sgRNA N and used them to screen for new SARS-CoV-2 gene N expression inhibitors. Our study provides novel insights into the structure and function of sgRNA N and potential therapeutic tools against SARS-CoV-2.


Subject(s)
Nucleic Acid Conformation , RNA, Viral , SARS-CoV-2 , Virus Replication , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Virus Replication/drug effects , RNA, Viral/genetics , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/antagonists & inhibitors , Coronavirus Nucleocapsid Proteins/metabolism , Coronavirus Nucleocapsid Proteins/chemistry , Sulfuric Acid Esters/pharmacology , Sulfuric Acid Esters/chemistry , COVID-19/virology , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , RNA, Small Interfering/chemistry , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/chemistry , Genome, Viral , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phosphoproteins/chemistry
6.
Cell Rep ; 43(6): 114290, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38823012

ABSTRACT

Coexpressing multiple identical single guide RNAs (sgRNAs) in CRISPR-dependent engineering triggers genetic instability and phenotype loss. To provide sgRNA derivatives for efficient DNA digestion, we design a high-throughput digestion-activity-dependent positive screening strategy and astonishingly obtain functional nonrepetitive sgRNA mutants with up to 48 out of the 61 nucleotides mutated, and these nonrepetitive mutants completely lose canonical secondary sgRNA structure in simulation. Cas9-sgRNA complexes containing these noncanonical sgRNAs maintain wild-type level of digestion activities in vivo, indicating that the Cas9 protein is compatible with or is able to adjust the secondary structure of sgRNAs. Using these noncanonical sgRNAs, we achieve multiplex genetic engineering for gene knockout and base editing in microbial cell factories. Libraries of strains with rewired metabolism are constructed, and overproducers of isobutanol or 1,3-propanediol are identified by biosensor-based fluorescence-activated cell sorting (FACS). This work sheds light on the remarkable flexibility of the secondary structure of functional sgRNA.


Subject(s)
Flow Cytometry , RNA, Guide, CRISPR-Cas Systems , RNA, Guide, CRISPR-Cas Systems/metabolism , RNA, Guide, CRISPR-Cas Systems/genetics , Flow Cytometry/methods , CRISPR-Cas Systems/genetics , Mutation/genetics , Nucleic Acid Conformation , High-Throughput Screening Assays/methods , Butanols/metabolism , Gene Editing/methods , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Protein 9/genetics
7.
Int J Nanomedicine ; 19: 5335-5363, 2024.
Article in English | MEDLINE | ID: mdl-38859956

ABSTRACT

The genome editing approach by clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) is a revolutionary advancement in genetic engineering. Owing to its simple design and powerful genome-editing capability, it offers a promising strategy for the treatment of different infectious, metabolic, and genetic diseases. The crystal structure of Streptococcus pyogenes Cas9 (SpCas9) in complex with sgRNA and its target DNA at 2.5 Å resolution reveals a groove accommodating sgRNA:DNA heteroduplex within a bilobate architecture with target recognition (REC) and nuclease (NUC) domains. The presence of a PAM is significantly required for target recognition, R-loop formation, and strand scission. Recently, the spatiotemporal control of CRISPR/Cas9 genome editing has been considerably improved by genetic, chemical, and physical regulatory strategies. The use of genetic modifiers anti-CRISPR proteins, cell-specific promoters, and histone acetyl transferases has uplifted the application of CRISPR/Cas9 as a future-generation genome editing tool. In addition, interventions by chemical control, small-molecule activators, oligonucleotide conjugates and bioresponsive delivery carriers have improved its application in other areas of biological fields. Furthermore, the intermediation of physical control by using heat-, light-, magnetism-, and ultrasound-responsive elements attached to this molecular tool has revolutionized genome editing further. These strategies significantly reduce CRISPR/Cas9's undesirable off-target effects. However, other undesirable effects still offer some challenges for comprehensive clinical translation using this genome-editing approach. In this review, we summarize recent advances in CRISPR/Cas9 structure, mechanistic action, and the role of small-molecule activators, inhibitors, promoters, and physical approaches. Finally, off-target measurement approaches, challenges, future prospects, and clinical applications are discussed.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Gene Editing/methods , Humans , Animals , Streptococcus pyogenes/genetics , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/chemistry
8.
Insects ; 15(5)2024 May 08.
Article in English | MEDLINE | ID: mdl-38786895

ABSTRACT

The CRISPR/Cas9 gene-editing system is a standard technique in functional genomics, with widespread applications. However, the establishment of a CRISPR/Cas9 system is challenging. Previous studies have presented numerous methodologies for establishing a CRISPR/Cas9 system, yet detailed descriptions are limited. Additionally, the difficulties in obtaining the necessary plasmids have hindered the replication of CRISPR/Cas9 techniques in other laboratories. In this study, we share a detailed and simple CRISPR/Cas9 knockout system with optimized steps. The results of gene knockout experiments in vitro and in vivo show that this system successfully knocked out the target gene. By sharing detailed information on plasmid sequences, reagent codes, and methods, this study can assist researchers in establishing gene knockout systems.

9.
Int J Biol Macromol ; 271(Pt 1): 132546, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38782330

ABSTRACT

This study investigated the function of AMP deaminase 1 (AMPD1) in Jingyuan chicken and the biological activity of its expression vector. AMPD1 was cloned and sequenced from chicken breast muscle tissue by RT-PCR and further analyzed using Cluster, DNASTAR, and online bioinformatics software, as well as vector construction, qPCR, Western blotting, enzymatic digestion, and sequencing. The coding sequence was 2162 bp, encoding 683 amino acids and producing a protein of approximately 78.95 kDa. After verification, the overexpression plasmids pEGFP-AMPD1, Cas9/sgRNA2, and Cas9/sgRNA3 were found to have biological activity in chicken muscle cells and individual chickens, and two sgRNAs (sgRNA2, sgRNA3) were identified that could edit AMPD1. The qPCR and Western blotting result showed that the pEGFP-AMPD1 plasmid significantly increased both mRNA and protein expression of AMPD1. T7EI digestion showed editing efficiencies of approximately 35 %, 37 %, and 33 % for sgRNA2, sgRNA3, and sgRNA2 + sgRNA3 of AMPD1 in chicken muscle cells. In comparison, TA cloning sequencing showed editing efficiencies of approximately 36.7 %, 86.7 %, and 26.7 % and editing efficiencies in chicken individuals of approximately 71 %, 45 %, and 76.7 %, respectively. These results provide a theoretical basis and support for further investigation into the function of the AMPD1 gene.


Subject(s)
AMP Deaminase , Chickens , Cloning, Molecular , Genetic Vectors , Animals , Chickens/genetics , AMP Deaminase/genetics , AMP Deaminase/metabolism , Amino Acid Sequence , Gene Expression , Gene Editing/methods , Plasmids/genetics , RNA, Guide, CRISPR-Cas Systems/genetics
10.
Genesis ; 62(3): e23598, 2024 06.
Article in English | MEDLINE | ID: mdl-38727638

ABSTRACT

Nowadays, a significant part of the investigations carried out in the medical field belong to cancer treatment. Generally, conventional cancer treatments, including chemotherapy, radiotherapy, and surgery, which have been used for a long time, are not sufficient, especially in malignant cancers. Because genetic mutations cause cancers, researchers are trying to treat these diseases using genetic engineering tools. One of them is clustered regularly interspaced short palindromic repeats (CRISPR), a powerful tool in genetic engineering in the last decade. CRISPR, which forms the CRISPR-Cas structure with its endonuclease protein, Cas, is known as a part of the immune system (adaptive immunity) in bacteria and archaea. Among the types of Cas proteins, Cas9 endonuclease has been used in many scientific studies due to its high accuracy and efficiency. This review reviews the CRISPR system, focusing on the history, classification, delivery methods, applications, new generations, and challenges of CRISPR-Cas9 technology.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Humans , Gene Editing/methods , Neoplasms/genetics , Neoplasms/therapy , Animals , Genetic Therapy/methods , Gene Transfer Techniques
11.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38674012

ABSTRACT

CRISPR/Cas9 is a powerful genome-editing tool in biology, but its wide applications are challenged by a lack of knowledge governing single-guide RNA (sgRNA) activity. Several deep-learning-based methods have been developed for the prediction of on-target activity. However, there is still room for improvement. Here, we proposed a hybrid neural network named CrnnCrispr, which integrates a convolutional neural network and a recurrent neural network for on-target activity prediction. We performed unbiased experiments with four mainstream methods on nine public datasets with varying sample sizes. Additionally, we incorporated a transfer learning strategy to boost the prediction power on small-scale datasets. Our results showed that CrnnCrispr outperformed existing methods in terms of accuracy and generalizability. Finally, we applied a visualization approach to investigate the generalizable nucleotide-position-dependent patterns of sgRNAs for on-target activity, which shows potential in terms of model interpretability and further helps in understanding the principles of sgRNA design.


Subject(s)
CRISPR-Cas Systems , Deep Learning , Gene Editing , Neural Networks, Computer , RNA, Guide, CRISPR-Cas Systems , RNA, Guide, CRISPR-Cas Systems/genetics , Gene Editing/methods , Humans
12.
Methods Mol Biol ; 2760: 267-280, 2024.
Article in English | MEDLINE | ID: mdl-38468094

ABSTRACT

In recent years, the clustered regularly interspaced palindromic repeats-Cas (CRISPR-Cas) technology has become the method of choice for precision genome editing in many organisms due to its simplicity and efficacy. Multiplex genome editing, point mutations, and large genomic modifications are attractive features of the CRISPR-Cas9 system. These applications facilitate both the ease and velocity of genetic manipulations and the discovery of novel functions. In this protocol chapter, we describe the use of a CRISPR-Cas9 system for multiplex integration and deletion modifications, and deletions of large genomic regions by the use of a single guide RNA (sgRNA), and, finally, targeted point mutation modifications in Paenibacillus polymyxa.


Subject(s)
Gene Editing , Paenibacillus polymyxa , Gene Editing/methods , CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems , Paenibacillus polymyxa/genetics , Genome
13.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38426328

ABSTRACT

CRISPR/Cas9 is a promising RNA-guided genome editing technology, which consists of a Cas9 nuclease and a single-guide RNA (sgRNA). So far, a number of sgRNA prediction softwares have been developed. However, they were usually designed for protein-coding genes without considering that long non-coding RNA (lncRNA) genes may have different characteristics. In this study, we first evaluated the performances of a series of known sgRNA-designing tools in the context of both coding and non-coding datasets. Meanwhile, we analyzed the underpinnings of their varied performances on the sgRNA's specificity for lncRNA including nucleic acid sequence, genome location and editing mechanism preference. Furthermore, we introduce a support vector machine-based machine learning algorithm named CRISPRlnc, which aims to model both CRISPR knock-out (CRISPRko) and CRISPR inhibition (CRISPRi) mechanisms to predict the on-target activity of targets. CRISPRlnc combined the paired-sgRNA design and off-target analysis to achieve one-stop design of CRISPR/Cas9 sgRNAs for non-coding genes. Performance comparison on multiple datasets showed that CRISPRlnc was far superior to existing methods for both CRISPRko and CRISPRi mechanisms during the lncRNA-specific sgRNA design. To maximize the availability of CRISPRlnc, we developed a web server (http://predict.crisprlnc.cc) and made it available for download on GitHub.


Subject(s)
RNA, Guide, CRISPR-Cas Systems , RNA, Long Noncoding , CRISPR-Cas Systems , RNA, Long Noncoding/genetics , Gene Editing , Machine Learning
14.
Anim Cells Syst (Seoul) ; 28(1): 75-83, 2024.
Article in English | MEDLINE | ID: mdl-38440123

ABSTRACT

The CRISPR-Cas system stands out as a promising genome editing tool due to its cost-effectiveness and time efficiency compared to other methods. This system has tremendous potential for treating various diseases, including genetic disorders and cancer, and promotes therapeutic research for a wide range of genetic diseases. Additionally, the CRISPR-Cas system simplifies the generation of animal models, offering a more accessible alternative to traditional methods. The CRISPR-Cas9 system can be used to cleave target DNA strands that need to be corrected, causing double-strand breaks (DSBs). DNA with DSBs can then be recovered by the DNA repair pathway that the CRISPR-Cas9 system uses to edit target gene sequences. High cleavage efficiency of the CRISPR-Cas9 system is thus imperative for effective gene editing. Herein, we explore several factors affecting the cleavage efficiency of the CRISPR-Cas9 system. These factors include the GC content of the protospacer-adjacent motif (PAM) proximal and distal regions, single-guide RNA (sgRNA) properties, and chromatin state. These considerations contribute to the efficiency of genome editing.

15.
J Agric Food Chem ; 72(8): 4301-4316, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38344988

ABSTRACT

This study optimized the menaquinone-7 (MK-7) synthetic pathways in Bacillus subtilis (B. subtilis) natto NB205, a strain that originated from natto, to enhance its MK-7 production. Utilizing mutation breeding, we developed NBMK308, a mutant strain that demonstrated a significant 117.23% increase in MK-7 production. A comprehensive transcriptome analysis identified two key genes, ispA and ispE, as being critical in MK-7 synthesis. The dual-sgRNA CRISPRa system was utilized to achieve precise regulation of ispA and ispE in the newly engineered strain, A3E3. This strategic modulation resulted in a significant enhancement of MK-7 production, achieving increases of 20.02% and 201.41% compared to traditional overexpression systems and the original strain NB205, respectively. Furthermore, the fermentation supernatant from A3E3 notably inhibited Salmonella invasion in Caco-2 cells, showcasing its potential for combating such infections. The safety of the dual-sgRNA CRISPRa system was confirmed through cell assays. The utilization of the dual-sgRNA CRISPRa system in this study was crucial for the precise regulation of key genes in MK-7 synthesis, leading to a remarkable increase in production and demonstrating additional therapeutic potential in inhibiting pathogenic infections. This approach effectively combined the advantages of microbial fermentation and biotechnology, addressing health and nutritional challenges.


Subject(s)
Salmonella Infections , Soy Foods , Humans , Bacillus subtilis/metabolism , RNA, Guide, CRISPR-Cas Systems , Caco-2 Cells , Fermentation , Salmonella Infections/prevention & control
16.
Biotechnol Biofuels Bioprod ; 17(1): 22, 2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38342915

ABSTRACT

BACKGROUND: The CRISPR/Cas9 technology is being employed as a convenient tool for genetic engineering of the industrially important filamentous fungus Trichoderma reesei. However, multiplex gene editing is still constrained by the sgRNA processing capability, hindering strain improvement of T. reesei for the production of lignocellulose-degrading enzymes and recombinant proteins. RESULTS: Here, a CRISPR/Cas9 system based on a multiple sgRNA processing platform was established for genome editing in T. reesei. The platform contains the arrayed tRNA-sgRNA architecture directed by a 5S rRNA promoter to generate multiple sgRNAs from a single transcript by the endogenous tRNA processing system. With this system, two sgRNAs targeting cre1 (encoding the carbon catabolite repressor 1) were designed and the precise deletion of cre1 was obtained, demonstrating the efficiency of sgRNAs processing in the tRNA-sgRNA architecture. Moreover, overexpression of xyr1-A824V (encoding a key activator for cellulase/xylanase expression) at the ace1 (encoding a repressor for cellulase/xylanase expression) locus was achieved by designing two sgRNAs targeting ace1 in the system, resulting in the significantly enhanced production of cellulase (up to 1- and 18-fold on the Avicel and glucose, respectively) and xylanase (up to 11- and 41-fold on the Avicel and glucose, respectively). Furthermore, heterologous expression of the glucose oxidase gene from Aspergillus niger ATCC 9029 at the cbh1 locus with the simultaneous deletion of cbh1 and cbh2 (two cellobiohydrolase coding genes) by designing four sgRNAs targeting cbh1 and cbh2 in the system was acquired, and the glucose oxidase produced by T. reesei reached 43.77 U/mL. Besides, it was found the ER-associated protein degradation (ERAD) level was decreased in the glucose oxidase-producing strain, which was likely due to the reduction of secretion pressure by deletion of the major endogenous cellulase-encoding genes. CONCLUSIONS: The tRNA-gRNA array-based CRISPR-Cas9 editing system was successfully developed in T. reesei. This system would accelerate engineering of T. reesei for high-level production of enzymes including lignocellulose-degrading enzymes and other recombinant enzymes. Furthermore, it would expand the CRISPR toolbox for fungal genome editing and synthetic biology.

17.
Acta Biochim Biophys Sin (Shanghai) ; 56(4): 525-537, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38414349

ABSTRACT

The BCR-ABL fusion gene, formed by the fusion of the breakpoint cluster region protein ( BCR) and the Abl Oncogene 1, Receptor Tyrosine Kinase ( ABL) genes, encodes the BCR-ABL oncoprotein, which plays a crucial role in leukemogenesis. Current therapies have limited efficacy in patients with chronic myeloid leukemia (CML) because of drug resistance or disease relapse. Identification of novel strategies to treat CML is essential. This study aims to explore the efficiency of novel CRISPR-associated protein 9 (Cas9)/dual-single guide RNA (sgRNA)-mediated disruption of the BCR-ABL fusion gene by targeting BCR and cABL introns. A co-expression vector for Cas9 green fluorescent protein (GFP)/dual-BA-sgRNA targeting BCR and cABL introns is constructed to produce lentivirus to affect BCR-ABL expression in CML cells. The effects of dual-sgRNA virus-mediated disruption of BCR-ABL are analyzed via the use of a genomic sequence and at the protein expression level. Cell proliferation, cell clonogenic ability, and cell apoptosis are assessed after dual sgRNA virus infection, and phosphorylated BCR-ABL and its downstream signaling molecules are detected. These effects are further confirmed in a CML mouse model via tail vein injection of Cas9-GFP/dual-BA-sgRNA virus-infected cells and in primary cells isolated from patients with CML. Cas9-GFP/dual-BA-sgRNA efficiently disrupts BCR-ABL at the genomic sequence and gene expression levels in leukemia cells, leading to blockade of the BCR-ABL tyrosine kinase signaling pathway and disruption of its downstream molecules, followed by cell proliferation inhibition and cell apoptosis induction. This method prolongs the lifespan of CML model mice. Furthermore, the effect is confirmed in primary cells derived from patients with CML.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , RNA, Guide, CRISPR-Cas Systems , Animals , Humans , Mice , Apoptosis/genetics , Cell Proliferation/genetics , CRISPR-Cas Systems , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Genes, abl , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy , Proto-Oncogene Proteins c-bcr/genetics , Proto-Oncogene Proteins c-bcr/metabolism
18.
Virol Sin ; 39(2): 218-227, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38316363

ABSTRACT

The SARS-CoV-2 Omicron variants are notorious for their transmissibility, but little is known about their subgenomic RNA (sgRNA) expression. This study applied RNA-seq to delineate the quantitative and qualitative profiles of canonical sgRNA of 118 respiratory samples collected from patients infected with Omicron BA.2 and compared with 338 patients infected with non-variant of concern (non-VOC)-D614G. A unique characteristic profile depicted by the relative abundance of 9 canonical sgRNAs was reproduced by both BA.2 and non-VOC-D614G regardless of host gender, age and presence of pneumonia. Remarkably, such profile was lost in samples with low viral load, suggesting a potential application of sgRNA pattern to indicate viral activity of individual patient at a specific time point. A characteristic qualitative profile of canonical sgRNAs was also reproduced by both BA.2 and non-VOC-D614G. The presence of a full set of canonical sgRNAs carried a coherent correlation with crude viral load (AUC â€‹= â€‹0.91, 95% CI 0.88-0.94), and sgRNA ORF7b was identified to be the best surrogate marker allowing feasible routine application in characterizing the infection status of individual patient. Further potentials in using sgRNA as a target for vaccine and antiviral development are worth pursuing.


Subject(s)
COVID-19 , RNA, Viral , SARS-CoV-2 , Viral Load , Humans , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , RNA, Viral/genetics , COVID-19/virology , COVID-19/diagnosis , Male , Female , Middle Aged , Adult , Aged , Genome, Viral/genetics , Young Adult , Subgenomic RNA
19.
Cell Mol Life Sci ; 81(1): 63, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38280977

ABSTRACT

SpCas9 and AsCas12a are widely utilized as genome editing tools in human cells, but their applications are largely limited by their bulky size. Recently, AsCas12f1 protein, with a small size (422 amino acids), has been demonstrated to be capable of cleaving double-stranded DNA protospacer adjacent motif (PAM). However, low editing efficiency and large differences in activity against different genomic loci have been a limitation in its application. Here, we show that engineered AsCas12f1 sgRNA has significantly improved the editing efficiency in human cells and mouse embryos. Moreover, we successfully generated three stable mouse mutant disease models using the engineered CRISPR-AsCas12f1 system in this study. Collectively, our work uncovers the engineered AsCas12f1 system expands mini CRISPR toolbox, providing a remarkable promise for therapeutic applications.


Subject(s)
CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Mice , Animals , Humans , CRISPR-Cas Systems/genetics , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , RNA, Guide, CRISPR-Cas Systems , Streptococcus pyogenes , Gene Editing , Mutagenesis
20.
Clin Lab Med ; 44(1): 85-93, 2024 03.
Article in English | MEDLINE | ID: mdl-38280800

ABSTRACT

Identifying and managing individuals with active or chronic disease, implementing appropriate infection control measures, and mitigating the spread of the COVID-19 pandemic highlighted the need for tests of infectiousness. The gold standard for assessing infectiousness has been the recovery of infectious virus in cell culture. Using cycle threshold values, antigen testing, and SARS-CoV-2, replication intermediate strands were used to assess infectiousness, with many limitations. Infectiousness can be influenced by host factors (eg, preexisting immune responses) and virus factors (eg, evolution).


Subject(s)
COVID-19 , Virus Diseases , Humans , SARS-CoV-2 , COVID-19/diagnosis , Pandemics , Infection Control
SELECTION OF CITATIONS
SEARCH DETAIL