Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 400
Filter
1.
Mycopathologia ; 189(5): 72, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096450

ABSTRACT

Fungal infections pose an increasing threat to public health. New pathogens and changing epidemiology are a pronounced risk for nosocomial outbreaks. To investigate clonal transmission between patients and trace the source, genotyping is required. In the last decades, various typing assays have been developed and applied to different medically important fungal species. While these different typing methods will be briefly discussed, this review will focus on the development and application of short tandem repeat (STR) genotyping. This method relies on the amplification and comparison of highly variable STR markers between isolates. For most common fungal pathogens, STR schemes were developed and compared to other methods, like multilocus sequence typing (MLST), amplified fragment length polymorphism (AFLP) and whole genome sequencing (WGS) single nucleotide polymorphism (SNP) analysis. The pros and cons of STR typing as compared to the other methods are discussed, as well as the requirements for the development of a solid STR typing assay. The resolution of STR typing, in general, is higher than MLST and AFLP, with WGS SNP analysis being the gold standard when it comes to resolution. Although most modern laboratories are capable to perform STR typing, little progress has been made to standardize typing schemes. Allelic ladders, as developed for Aspergillus fumigatus, facilitate the comparison of STR results between laboratories and develop global typing databases. Overall, STR genotyping is an extremely powerful tool, often complimentary to whole genome sequencing. Crucial details for STR assay development, its applications and merit are discussed in this review.


Subject(s)
Fungi , Genotyping Techniques , Microsatellite Repeats , Microsatellite Repeats/genetics , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , Genotyping Techniques/methods , Humans , Mycological Typing Techniques/methods , Genotype , Mycoses/microbiology , Polymorphism, Single Nucleotide
2.
Forensic Sci Int Genet ; 73: 103112, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39096603

ABSTRACT

Forensic Biology is contingent upon matching DNA profiles between a crime sample and a reference sample. There are several capillary electrophoresis kits available to generate a short tandem repeat (STR) profile from DNA samples, while newer methods using massively parallel sequencing are slowly being implemented in forensic laboratories worldwide. During evaluation of a newer capillary electrophoresis kit, Applied Biosystems™ VeriFiler™ Plus, a discordance was observed in the Penta D locus. The previous kit, Promega PowerPlex 21® System produced a 13.4,14 genotype, whilst VeriFiler™ Plus produced a 14,14 genotype. An expanded investigation into Penta D microvariant alleles revealed that multiple discordances were observed for DNA profiles containing larger x.4 variants. There was full concordance between PowerPlex® 21 and QIAGEN Investigator® 26plex, however discordances were observed between VeriFiler™ Plus and the other three kits tested, including the massively parallel sequencing kit, Verogen ForenSeq® MainstAY. Notably, four of these discordances resulted in null alleles with the VeriFiler™ Plus kit. A review of the Penta D DNA sequences in MainstAY revealed fully concordant microvariant alleles involved deletions within the repeat region, whilst variability in the discordances observed were dependent on the location of the variation outside the repeat region and the analysis method used. Variations observed within the 5' flanking region produced the same allele designation across all capillary electrophoresis kits. However, deletions within the 3' region either produced a null allele for VeriFiler™ Plus where the deletion is thought to overlap the primer binding site, or microvariant alleles for the PowerPlex® 21 and Investigator 26plex kits, which produced longer Penta D amplicons. The discovery of these variations in the Penta D flanking sequences is informative as it increases the awareness of Penta D discordances between different kit chemistries in nominated reference DNA profile comparisons and DNA database searching and matching alike, and provides support for this phenomenon when providing evidence as to the admissibility of such results in trial proceedings.

3.
J Fungi (Basel) ; 10(7)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39057366

ABSTRACT

Candidemia is a major cause of morbidity and mortality in health care settings, and its epidemiology is changing. In the last two decades, the proportion of non-albicans Candida (NAC) yeasts in candidemia has increased. These yeasts more often display resistance to common antifungals. In many western countries, candidemia is mainly caused by susceptible C. albicans, while in resource-limited countries, including Iran, the candidemia species distribution is studied less often. Here, we investigated the species distribution, resistance levels, and characteristics of patients with candidemia in five hospitals in Mashhad (northeast Iran) for two years (2019-2021). Yeast isolates from blood were identified with MALDI-TOF MS and subjected to antifungal susceptibility testing (AFST) using the broth microdilution method, while molecular genotyping was applied to Candida parapsilosis isolates. In total, 160 yeast isolates were recovered from 160 patients, of which the majority were adults (60%). Candidemia was almost equally detected in men (48%) and women (52%). Almost half of patients (n = 67, 49%) were from intensive care units (ICUs). C. parapsilosis (n = 58, 36%) was the most common causative agent, surpassing C. albicans (n = 52, 33%). The all-cause mortality rate was 53%, with C. albicans candidemia displaying the lowest mortality with 39%, in contrast to a mortality rate of 59% for NAC candidemia. With microbroth AFST, nearly all tested isolates were found to be susceptible, except for one C. albicans isolate that was resistant to anidulafungin. By applying short tandem repeat (STR) genotyping to C. parapsilosis, multiple clusters were found. To summarize, candidemia in Mashhad, Iran, from 2019 to 2021, is characterized by common yeast species, in particular C. parapsilosis, for which STR typing indicates potential nosocomial transmission. The overall mortality is high, while resistance rates were found to be low, suggesting that the high mortality is linked to limited diagnostic options and insufficient medical care, including the restricted use of echinocandins as the first treatment option.

4.
Leg Med (Tokyo) ; 70: 102472, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38908212

ABSTRACT

Similar to that in Europe and the United States, the need for forensic DNA identification in dogs is increasing in Japan. As few studies have used commercial genotyping kits, the effectiveness of the Canine GenotypesTM Panel 2.1 Kit for individual DNA identification in dogs bred in Japan was examined. We genotyped 150 unrelated dogs (50 Golden Retrievers, 50 Miniature Dachshunds, and 50 Shiba Inu) at 18 canine short tandem repeat loci by the Kit. The allele frequency, expected heterozygosity, observed heterozygosity, p-value, power of the discriminant, and of exclusion, polymorphic information content, and random matching probability were calculated for each marker. The random matching probability was subsequently estimated to be 4.394×10-22 in the 150 dogs of the three pure-bred groups based on 18 STR loci; 3.257 × 10-16 in the Golden Retriever, 3.933 × 10-18 in the Miniature Dachshund, and 2.107 × 10-18 in the Shiba Inu breeds. In addition, principal component analysis based on genotype data revealed the Golden Retrievers, Miniature Dachshunds, and Shiba Inus separated into three clusters. The results of the genotype analysis showed that the Canine GenotypesTM Panel 2.1 Kit could be useful for identity testing and tool of population study of canines in Japan.

5.
Brain Commun ; 6(3): fcae146, 2024.
Article in English | MEDLINE | ID: mdl-38863574

ABSTRACT

Idiopathic Parkinson's disease is determined by a combination of genetic and environmental factors. Recently, the first genome-wide association study on short-tandem repeats in Parkinson's disease reported on eight suggestive short-tandem repeat-based risk loci (α = 5.3 × 10-6), of which four were novel, i.e. they had not been implicated in Parkinson's disease risk by genome-wide association analyses of single-nucleotide polymorphisms before. Here, we tested these eight candidate short-tandem repeats in a large, independent Parkinson's disease case-control dataset (n = 4757). Furthermore, we combined the results from both studies by meta-analysis resulting in the largest Parkinson's disease genome-wide association study of short-tandem repeats to date (n = 43 844). Lastly, we investigated whether leading short-tandem repeat risk variants exert functional effects on gene expression regulation based on methylation quantitative trait locus data in human 'post-mortem' brain (n = 142). None of the eight previously reported short-tandem repeats were significantly associated with Parkinson's disease in our independent dataset after multiple testing correction (α = 6.25 × 10-3). However, we observed modest support for short-tandem repeats near CCAR2 and NCOR1 in the updated meta-analyses of all available data. While the genome-wide meta-analysis did not reveal additional study-wide significant (α = 6.3 × 10-7) short-tandem repeat signals, we identified seven novel suggestive Parkinson's disease short-tandem repeat risk loci (α = 5.3 × 10-6). Of these, especially a short-tandem repeat near MEIOSIN showed consistent evidence for association across datasets. CCAR2, NCOR1 and one novel suggestive locus identified here (LINC01012) emerged from colocalization analyses showing evidence for a shared causal short-tandem repeat variant affecting both Parkinson's disease risk and cis DNA methylation in brain. Larger studies, ideally using short-tandem repeats called from whole-sequencing data, are needed to more fully investigate their role in Parkinson's disease.

6.
Taiwan J Obstet Gynecol ; 63(3): 375-380, 2024 May.
Article in English | MEDLINE | ID: mdl-38802201

ABSTRACT

OBJECTIVES: α-thalassemia is an autosomal recessive monogenic blood disorder, affecting up to 5% of the world's population. The occurrence rate of the disease in Vietnam varies up to up to 51.5%, with high rate of mutation carriers, of couples consisting of two carriers at risk of bearing a child with fetal Hb Bart, which can develop into hydrops fetalis syndrome, threatening the well-being of the mother and the child. Our study aims to facilitate birth of healthy/asymptomatic children of α-thalassemia carrier couples who received reproductive service at our centre during the period of 2019-2022. MATERIALS AND METHODS: 89 couples at risks of having α-thalassemia offsprings requested IVF procedures and PGD at Post Hospital during 2019-2022 were recruited for investigation. Couple and additional family members' peripheral blood samples of couples and additional family members were subjected to haemoglobin electrophoresis, DNA extraction for α-thalassemia gene mutation detection and STRs linkage analysis. Data were observed and analysed on GeneMarker software. RESULTS: 91 cycles of PGD for α-thalassemia were carried out for 89 couples. α-thalassemia large deletion (--SEA/αα) was the most common mutation identified in 88 couples, in which 4 cases also carried ß-thalassemia point mutations. Combining results of PGS and PGD, 278/424 amplified embryos were transferable (HBA-mutation free or carriers of single heterozygous HBA mutation, without chromosomal abnormality). 64/89 couples have been transferred with the embryos (prioritizing mutation free ones over carriers), resulting in the birth of 36 α-thalassemia disease-free children, 17 ongoing pregnancies, and 11 with miscarriages. CONCLUSION: Successful application of microsatellite-based method in PGD facilitated the birth of 36 healthy children and 17 ongoing pregnancies for 53/64 couples with embryo-transferred. All resulted clinical births displayed confirmation results in line with the PGD results, thus demonstrating the feasibility and credibility of the use of STR markers in PGD.


Subject(s)
Microsatellite Repeats , Preimplantation Diagnosis , alpha-Thalassemia , Humans , Preimplantation Diagnosis/methods , alpha-Thalassemia/genetics , alpha-Thalassemia/diagnosis , Female , Microsatellite Repeats/genetics , Pregnancy , Male , Adult , Vietnam , Heterozygote , Mutation , Fertilization in Vitro/methods
7.
Appl Clin Genet ; 17: 47-56, 2024.
Article in English | MEDLINE | ID: mdl-38737445

ABSTRACT

Background: Androgen resistance syndrome or androgen insensitivity syndrome (AIS - Androgen Insensitivity Syndrome, OMIM 300068) is an X-linked recessive genetic syndrome causing disorders of sexual development in males. This disease is caused by mutations in the AR gene located on the X chromosome, which encodes the protein that structures the androgen receptor, with the role of receiving androgens. Mutation of the AR gene causes complete or partial loss of androgen receptor function, thereby androgen not being obtained and exerting its effect on target organs, resulting in abnormalities of the male reproductive system due to this organ system, differentiating towards feminization under the influence of estrogen. Disease prevention can be achieved by using pre-implantation genetic diagnosis, which enables couples carrying the mutation to have healthy offspring. Aim: To carry out preimplantation genetic diagnosis of androgen resistance syndrome. Methods: Sanger sequencing was used to detect the mutation in the blood samples of the couple, their son, and 01 embryo that were biopsied on the fifth day based on the findings of next-generation sequencing (NGS) of the affected son. We combined Sanger sequencing and linkage analysis using short tandem repeats (STR) to provide diagnostic results. Results: We performed preimplantation genetic diagnosis for AIS on an embryo from a couple who had previously had an affected son. Consequently, one healthy embryo was diagnosed without the variant NM_000044: c.796del (p.Asp266IlefsTer30). Conclusion: We report on a novel variant (NM_000044: c.796del (p.Asp266IlefsTer30)) in the AR gene discovered in Vietnam. The developed protocol was helpful for the preimplantation genetic diagnosis process to help families with the monogenic disease of AIS but wish to have healthy children.

8.
Gac Med Mex ; 160(1): 76-85, 2024.
Article in English | MEDLINE | ID: mdl-38753554

ABSTRACT

BACKGROUND: Chromosomal abnormalities are present in 50 to 60% of miscarriages and in 6 to 19% of stillbirths. Although microarrays are preferred for studying chromosomal abnormalities, many hospitals cannot offer this methodology. OBJECTIVE: To present the results of the cytogenetic analysis of 303 products of conception (POC), which included 184 miscarriages, 49 stillbirths and 17 cases of undefined age. MATERIAL AND METHODS: Karyotyping, fluorescence in situ hybridization, short tandem repeats and microarrays were used, depending on the type of loss and available sample. RESULTS: In 29 POCs we found maternal tissue and were eliminated from the analyses. Informative results were obtained in 250 (91.2 %)/274 cases; the karyotyping success rate was 80.7%; that of single nucleotide polymorphism microarrays, 94.5%; and that of fluorescence in situ hybridization and short tandem repeat, 100%. Cytogenetic abnormalities were observed in 57.6% of miscarriages and in 24.5% of stillbirths; 94% of total anomalies were numerical and 6% were submicroscopic. CONCLUSIONS: Karyotyping with simultaneous short tandem repeat study to rule out contamination of maternal cells is effective for studying miscarriages; in stillbirths, microarrays are recommended.


ANTECEDENTES: Las alteraciones cromosómicas están presentes en 50 a 60 % de los abortos espontáneos y en 6 a 19 % de los mortinatos. Aunque se prefieren los microarreglos para estudiarlos, numerosos hospitales no pueden ofrecerlos. OBJETIVO: Presentar los resultados del estudio citogenético de 303 productos de la concepción (POC), 184 se obtuvieron de abortos espontáneos, 49 fueron mortinatos y en 17 no se identificó la de edad gestacional. MATERIAL Y MÉTODOS: Se empleó cariotipo, hibridación in situ con fluorescencia, secuencias cortas repetidas en tándem y microarreglos, según el tipo de pérdida y la muestra disponible. RESULTADOS: En 29 POC se encontró tejido materno, por lo que fueron eliminados de los análisis. En 250 (91.2 %)/274 casos se obtuvieron resultados informativos; la tasa de éxito del cariotipo fue de 80.7 %; la de los microarreglos de SNP, de 94.5 %; y la de la hibridación fluorescente in situ y la repetición corta en tándem, de 100 %. Se observaron anomalías citogenéticas en 57.6 % de los abortos espontáneos y en 24.5 % de los mortinatos; 94 % de las anomalías fueron numéricas y 6 %, submicroscópicas. CONCLUSIONES: El cariotipo en conjunto con el estudio de secuencias cortas repetidas en tándem para descartar contaminación de células maternas es efectivo para estudiar abortos espontáneos; los microarreglos se recomiendan en los mortinatos.


Subject(s)
Abortion, Spontaneous , Chromosome Aberrations , In Situ Hybridization, Fluorescence , Karyotyping , Humans , Female , Abortion, Spontaneous/epidemiology , Abortion, Spontaneous/genetics , Mexico/epidemiology , Pregnancy , Karyotyping/methods , Stillbirth/genetics , Stillbirth/epidemiology , Adult , Cytogenetic Analysis/methods , Microsatellite Repeats , Polymorphism, Single Nucleotide , Young Adult
9.
Forensic Sci Int Genet ; 71: 103047, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38598919

ABSTRACT

Massively parallel sequencing (MPS) is increasingly applied in forensic short tandem repeat (STR) analysis. The presence of stutter artefacts and other PCR or sequencing errors in the MPS-STR data partly limits the detection of low DNA amounts, e.g., in complex mixtures. Unique molecular identifiers (UMIs) have been applied in several scientific fields to reduce noise in sequencing. UMIs consist of a stretch of random nucleotides, a unique barcode for each starting DNA molecule, that is incorporated in the DNA template using either ligation or PCR. The barcode is used to generate consensus reads, thus removing errors. The SiMSen-Seq (Simple, multiplexed, PCR-based barcoding of DNA for sensitive mutation detection using sequencing) method relies on PCR-based introduction of UMIs and includes a sophisticated hairpin design to reduce unspecific primer binding as well as PCR protocol adjustments to further optimize the reaction. In this study, SiMSen-Seq is applied to develop a proof-of-concept seven STR multiplex for MPS library preparation and an associated bioinformatics pipeline. Additionally, machine learning (ML) models were evaluated to further improve UMI allele calling. Overall, the seven STR multiplex resulted in complete detection and concordant alleles for 47 single-source samples at 1 ng input DNA as well as for low-template samples at 62.5 pg input DNA. For twelve challenging mixtures with minor contributions of 10 pg to 150 pg and ratios of 1-15% relative to the major donor, 99.2% of the expected alleles were detected by applying the UMIs in combination with an ML filter. The main impact of UMIs was a substantially lowered number of artefacts as well as reduced stutter ratios, which were generally below 5% of the parental allele. In conclusion, UMI-based STR sequencing opens new means for improved analysis of challenging crime scene samples including complex mixtures.


Subject(s)
DNA Fingerprinting , High-Throughput Nucleotide Sequencing , Microsatellite Repeats , Humans , DNA Fingerprinting/methods , Alleles , Multiplex Polymerase Chain Reaction , Polymerase Chain Reaction , Sequence Analysis, DNA , Machine Learning , Genetic Markers
10.
Leg Med (Tokyo) ; 69: 102447, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38640874

ABSTRACT

This study aimed to estimate A-STR mutation rates in 2,317 Korean parent-child trios by examining 20 Combined DNA Index System (CODIS) core loci (D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D21S11, CSF1PO, FGA, TH01, TPOX, vWA, D1S1656, D2S441, D2S1338, D10S1248, D12S391, D19S433, and D22S1045) and three non-CODIS loci (Penta E, Penta D, and SE33). Locus-specific mutation rate estimates varied from 0.00 to 8.63 × 10-3 per generation, with an average mutation rate of 1.62 × 10-3 (95 % CI, 1.39-1.88 × 10-3). We also combined data from previous studies to obtain comprehensive genetic values for the Korean population, and the average mutation rate was 1.59 × 10-3 (95 % CI, 1.38-1.82 × 10-3). Single-step mutations (95.69 %) and double-step mutations (3.35 %) were observed in the mutation pattern analysis, and cases expected to have multi-step mutations (0.96 %) were also observed. Large-sized alleles exhibited more loss mutations than gain mutations, and paternal mutations (62.68 %) were more frequently observed than maternal mutations (19.62 %). The calculated values and features of the 23 A-STRs explored in this study are expected to play a crucial role in establishing criteria for forensic genetic interpretation.


Subject(s)
Microsatellite Repeats , Paternity , Female , Humans , Male , DNA Mutational Analysis/methods , Gene Frequency , Genetics, Population/methods , Mutation Rate , Republic of Korea , East Asian People/genetics
11.
Forensic Sci Res ; 9(2): owad058, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38651135

ABSTRACT

Short tandem repeats (STRs) are the most common genetic markers in forensic and human population genetics due to their high polymorphism, rapid detection, and reliable genotyping. To adapt the rapid growth of forensic DNA database and solve problems in disputed cases, a panel of 23 autosomal STR loci with high discriminating ability was constructed recently. The Tai-Kadai-speaking Gelao is the most ancient indigenous minority in Guizhou province, however, the forensic efficiency and population genetic structure remain poorly explored. Here, 490 Guizhou Gelao individuals from Southwest China were genotyped with the panel of 23 STRs using the Huaxia Platinum Kit. A total of 265 alleles were screened. The combined discrimination power and the combined probability of paternity were 0.9999 and 0.9999, respectively. This indicated the 23 loci had higher discrimination power in Guizhou Gelao and could be applied to forensic practice. Comprehensive population structures with reference populations from China and abroad using the neighbour-joining phylogenetic tree (N-J tree), multidimensional scaling, principal component analysis and heatmap demonstrated that Guizhou Gelao was genetically closer to Guizhou Han than other populations. Moreover, our results showed that a complex phylogenetic model was influenced by ethnic, geographic, and linguistic factors. Key points: The first batch of genetic data for 23 autosomal STRs in 490 Geolao individuals from Guizhou was provided.The 23 STR panel can afford high genetic polymorphisms and discrimination power and can be efficiently applied to forensic practice in Guizhou Gelao population.A complex phylogenetic model influenced by ethnic, geographic, and linguistic factors was uncovered.

12.
Forensic Sci Int ; 357: 111971, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447344

ABSTRACT

Short tandem repeats (STRs) or microsatellites are short, tandemly repeated DNA sequences that involve a repetitive unit of 1-6 bp. DNA isolation and purification from a large number and often compromised samples gives problems to forensic labs for STR typing. Many of the conventional methods used in the isolation and purification of DNA from forensic samples are time consuming, expensive, hazardous for health and are often associated with greater risks of cross contamination. FTA® technology is a method designed to simplify the collection, shipment, archiving and purification of nucleic acid from a wide variety of biological samples. We report a new method for the direct STR amplification which can amplify STR loci from human foetal tissues spotted on FTA cards, bye-passing the need of DNA purification. The STR loci amplified by this method was compared with conventional method of STR profiling and was found absolutely matching. Therefore, this new method is demonstrated to be very useful for fast, less expensive and non- hazardous forensic DNA analysis.


Subject(s)
DNA Fingerprinting , DNA , Humans , Polymerase Chain Reaction/methods , DNA Fingerprinting/methods , DNA/analysis , Microsatellite Repeats
13.
Genes (Basel) ; 15(2)2024 02 09.
Article in English | MEDLINE | ID: mdl-38397211

ABSTRACT

The SpTransformer (SpTrf) gene family in the purple sea urchin, Strongylocentrotus purpuratus, encodes immune response proteins. The genes are clustered, surrounded by short tandem repeats, and some are present in genomic segmental duplications. The genes share regions of sequence and include repeats in the coding exon. This complex structure is consistent with putative local genomic instability. Instability of the SpTrf gene cluster was tested by 10 days of growth of Escherichia coli harboring bacterial artificial chromosome (BAC) clones of sea urchin genomic DNA with inserts containing SpTrf genes. After the growth period, the BAC DNA inserts were analyzed for size and SpTrf gene content. Clones with multiple SpTrf genes showed a variety of deletions, including loss of one, most, or all genes from the cluster. Alternatively, a BAC insert with a single SpTrf gene was stable. BAC insert instability is consistent with variations in the gene family composition among sea urchins, the types of SpTrf genes in the family, and a reduction in the gene copy number in single coelomocytes. Based on the sequence variability among SpTrf genes within and among sea urchins, local genomic instability of the family may be important for driving sequence diversity in this gene family that would be of benefit to sea urchins in their arms race with marine microbes.


Subject(s)
Strongylocentrotus purpuratus , Animals , Strongylocentrotus purpuratus/genetics , Chromosomes, Artificial, Bacterial/genetics , Multigene Family , DNA , Sea Urchins/genetics , Genomic Instability
15.
Gac. méd. Méx ; 160(1): 81-91, ene.-feb. 2024. tab, graf
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1557807

ABSTRACT

Resumen Antecedentes: Las alteraciones cromosómicas están presentes en 50 a 60 % de los abortos espontáneos y en 6 a 19 % de los mortinatos. Aunque se prefieren los microarreglos para estudiarlos, numerosos hospitales no pueden ofrecerlos. Objetivo: Presentar los resultados del estudio citogenético de 303 productos de la concepción (POC), 184 se obtuvieron de abortos espontáneos, 49 fueron mortinatos y en 17 no se identificó la de edad gestacional. Material y métodos: Se empleó cariotipo, hibridación in situ con fluorescencia, secuencias cortas repetidas en tándem y microarreglos, según el tipo de pérdida y la muestra disponible. Resultados: En 29 POC se encontró tejido materno, por lo que fueron eliminados de los análisis. En 250 (91.2 %)/274 casos se obtuvieron resultados informativos; la tasa de éxito del cariotipo fue de 80.7 %; la de los microarreglos de SNP, de 94.5 %; y la de la hibridación fluorescente in situ y la repetición corta en tándem, de 100 %. Se observaron anomalías citogenéticas en 57.6 % de los abortos espontáneos y en 24.5 % de los mortinatos; 94 % de las anomalías fueron numéricas y 6 %, submicroscópicas. Conclusiones: El cariotipo en conjunto con el estudio de secuencias cortas repetidas en tándem para descartar contaminación de células maternas es efectivo para estudiar abortos espontáneos; los microarreglos se recomiendan en los mortinatos.


Abstract Background: Chromosomal abnormalities are present in 50 to 60 % of miscarriages and in 6 to 19 % of stillbirths. Although microarrays are preferred for studying chromosomal abnormalities, many hospitals cannot offer this methodology. Objective: To present the results of the cytogenetic analysis of 303 products of conception (POC), which included 184 miscarriages, 49 stillbirths and 17 cases of undefined age. Material and methods: Karyotyping, fluorescence in situ hybridization, short tandem repeats and microarrays were used, depending on the type of loss and available sample. Results: In 29 POCs we found maternal tissue and were eliminated from the analyses. Informative results were obtained in 250 (91.2 %)/274 cases; the karyotyping success rate was 80.7 %; that of single nucleotide polymorphism microarrays, 94.5 %; and that of fluorescence in situ hybridization and short tandem repeat, 100 %. Cytogenetic abnormalities were observed in 57.6 % of miscarriages and in 24.5 % of stillbirths; 94 % of total anomalies were numerical and 6 % were submicroscopic. Conclusions: Karyotyping with simultaneous short tandem repeat study to rule out contamination of maternal cells is effective for studying miscarriages; in stillbirths, microarrays are recommended.

16.
Genes (Basel) ; 15(1)2024 01 18.
Article in English | MEDLINE | ID: mdl-38255006

ABSTRACT

When analyzing challenging samples, such as low-template DNA, analysts aim to maximize information while minimizing noise, often by adjusting the analytical threshold (AT) for optimal results. A potential approach involves calculating the AT based on the baseline signal distribution in electrophoresis results. This study investigates the impact of reagent kits, testing quarters, environmental conditions, and amplification cycles on baseline signals using historical records and experimental data on low-template DNA. Variations in these aspects contribute to differences in baseline signal patterns. Analysts should remain vigilant regarding routine instrument maintenance and reagent replacement, as these may affect baseline signals. Prompt analysis of baseline status and tailored adjustments to ATs under specific laboratory conditions are advised. A comparative analysis of published methods for calculating the optimal AT from a negative signal distribution highlighted the efficiency of utilizing baseline signals to enhance forensic genetic analysis, with the exception of extremely low-template samples and high-amplification cycles. Moreover, a user-friendly program for real-time analysis was developed, enabling prompt adjustments to ATs based on negative control profiles. In conclusion, this study provides insights into baseline signals, aiming to enhance genetic analysis accuracy across diverse laboratories. Practical recommendations are offered for optimizing ATs in forensic DNA analysis.


Subject(s)
DNA , Laboratories , DNA/genetics
17.
BMC Genomics ; 25(1): 115, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38279154

ABSTRACT

BACKGROUND: Short tandem repeats (STRs) are widely distributed across the human genome and are associated with numerous neurological disorders. However, the extent that STRs contribute to disease is likely under-estimated because of the challenges calling these variants in short read next generation sequencing data. Several computational tools have been developed for STR variant calling, but none fully address all of the complexities associated with this variant class. RESULTS: Here we introduce LUSTR which is designed to address some of the challenges associated with STR variant calling by enabling more flexibility in defining STR loci, allowing for customizable modules to tailor analyses, and expanding the capability to call somatic and multiallelic STR variants. LUSTR is a user-friendly and easily customizable tool for targeted or unbiased genome-wide STR variant screening that can use either predefined or novel genome builds. Using both simulated and real data sets, we demonstrated that LUSTR accurately infers germline and somatic STR expansions in individuals with and without diseases. CONCLUSIONS: LUSTR offers a powerful and user-friendly approach that allows for the identification of STR variants and can facilitate more comprehensive studies evaluating the role of pathogenic STR variants across human diseases.


Subject(s)
Genome, Human , Microsatellite Repeats , Humans , Microsatellite Repeats/genetics , Germ Cells , High-Throughput Nucleotide Sequencing
18.
Med Mycol ; 62(2)2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38289726

ABSTRACT

Candida krusei also known as Pichia kudriavzevii is a potentially multidrug-resistant yeast because it is intrinsically resistant to fluconazole and develops acquired resistance to echinocandins and polyenes. Here, we aim to provide a better understanding of the epidemiology and transmission modes of C. krusei infections by comparing invasive bloodstream (n = 35) and non-invasive vaginal (n = 20) C. krusei isolates. The genetic relatedness of the isolates was assessed using a newly described short tandem repeat (STR) analysis and their sensitivity to eight antifungal compounds was evaluated by antifungal susceptibility testing using the CLSI microbroth dilution method. All C. krusei isolates revealed unique STR genotypes, indicating the absence of clonal transmission in the study group. Furthermore, no drug-resistant or non-wild-type isolates were identified. Our findings demonstrated high resolution of STR genotyping for the detection and simultaneous genetic analysis of multiple C. krusei strains in clinical samples and excellent in vitro activity of common antifungal agents against invasive strains.


Subject(s)
Antifungal Agents , Candida , Pichia , Female , Animals , Antifungal Agents/pharmacology , Turkey , Drug Resistance, Fungal/genetics , Molecular Typing/veterinary , Microbial Sensitivity Tests/veterinary
19.
Mycopathologia ; 189(1): 5, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38231292

ABSTRACT

The opportunistic black yeast-like fungus Exophiala dermatitidis frequently colonizes the respiratory tract of cystic fibroses (CF) patients. Additionally, it can cause superficial, systemic, and cerebral forms of phaeohyphomycoses. The objective of this study was to develop and apply a microsatellite or short tandem repeat (STR) genotyping scheme for E. dermatitidis. In total, 82 E. dermatitidis isolates from various geographic origins (environmental = 9, CF = 63, invasive isolates = 9, melanin-deficient mutant = 1) were included in this study. After next-generation sequencing of a reference strain and sequence filtering for microsatellites, six STR markers were selected and amplified in two multiplex PCR reactions. The included isolates were discriminated in a genetic cluster analysis using the Pearson algorithm to reveal the relatedness of the isolates. The E. dermatitidis isolates clustered on basis of both, their source and their origin. The invasive isolates from Asia were unrelated to isolates from CF. Nearly all environmental isolates were grouped separately from patients' isolates. The Simpson index was 0.94. In conclusion, we were able to establish a STR genotyping scheme for investigating population genomics of E. dermatitidis.


Subject(s)
Cystic Fibrosis , Exophiala , Humans , Exophiala/genetics , Asia , Cluster Analysis , Microsatellite Repeats
20.
Biochem Genet ; 62(2): 666-674, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37395849

ABSTRACT

Short tandem repeats located 5' prime to the ß-globin gene, have been observed to be in linkage disequilibrium with the HbS allele, and thought to affect the severity of sickle cell disease. Here, we report on new mutants within the HBG2 region that may impact sickle cell disease. To determine the cis-acting elements microsatellites, indels and single nucleotide polymorphisms (SNPs), within the HBG2 region by sequencing, in subjects with sickle cell disease. The case-control study was located at the Center for Clinical Genetics, Sickle cell unit, Korle-Bu Teaching Hospital. A questionnaire was used for demographic data and clinical information. Hematological profile (red blood cell, white blood cell, platelet, hemoglobin and mean corpuscular volume) were assessed in 83 subjects. A set of 45 samples comprising amplified DNA on the HBG2 gene from HbSS (22), HbSC (17) and 6 controls (HbAA) were sequenced. Differences in the microsatellite region between sickle cell disease (SCD) (HbSS and HbSC) genotypes and control subjects were identified by counting and assessed by Chi-square analysis. Red blood cells, hematocrit, platelets, white blood cells and hemoglobin indices differed in genotypic groups. HbSS subjects were affirmed to have severer hemolytic anemia than HbSC subjects. Two indels (T1824 and C905) were seen in both SS and SC genotypes. Two peculiar SNPs: G:T1860 (transition) and A:G1872 transversions were found within the HBG2 gene that were significantly associated with the HbSS genotype (Fisher's exact test, p = 0.006) and HbS allele respectively (Fisher's exact test, p = 0.006). Cis-acting elements in HbSS and HbSC were different and may contribute to the phenotype seen in the disease state.

SELECTION OF CITATIONS
SEARCH DETAIL