Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.247
Filter
1.
J Environ Sci (China) ; 148: 364-374, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095171

ABSTRACT

Increasing nitrogen and phosphorus discharge and decreasing sediment input have made silicon (Si) a limiting element for diatoms in estuaries. Disturbances in nutrient structure and salinity fluctuation can greatly affect metal uptake by estuarine diatoms. However, the combined effects of Si and salinity on metal accumulation in these diatoms have not been evaluated. In this study, we aimed to investigate how salinity and Si availability combine to influence the adsorption of metals by a widely distributed diatom Phaeodactylum tricornutum. Our data indicate that replete Si and low salinity in seawater can enhance cadmium and copper adsorption onto the diatom surface. At the single-cell level, surface potential was a dominant factor determining metal adsorption, while surface roughness also contributed to the higher metal loading capacity at lower salinities. Using a combination of non-invasive micro-test technology, atomic force microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy, we demonstrate that the diversity and abundance of the functional groups embedded in diatom cell walls vary with salinity and Si supply. This results in a change in the cell surface potential and transient metal influx. Our study provides novel mechanisms to explain the highly variable metal adsorption capacity of a model estuarine diatom.


Subject(s)
Diatoms , Salinity , Silicon , Water Pollutants, Chemical , Adsorption , Silicon/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Estuaries , Seawater/chemistry , Metals/chemistry
2.
ACS Nano ; 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39288450

ABSTRACT

We report the bottom-up synthesis of colloidal two-dimensional (2D) layered silicon carbide (SiC) quantum dots with a cubic structure, lateral size of 5-10 nm, ⟨110⟩ exfoliation to few atomic layers, and surface passivation with 1-dodecene. Samples shielded from oxygen and plasma-annealed for purity exhibit narrow blue photoluminescence (PL) with quantum yields (QYs) over 60% in exceptional cases, while unshielded nanocrystals (NCs) exhibit broad blue/green/white PL with 10-15% QY. The latter scenario is attributed to excess surface carbon and oxygen accrued during synthesis and processing, with size separation through ultracentrifugation revealing size-dependent impurity emission. In contrast, the shape of the bright narrow blue PL shows little variation with NC size, while in both scenarios, the maximum QY occurs near four atomic layers. When dried under heat, the disk-like NC suspensions are observed to aggregate into microscale domains, with further self-assembly into planar superlattice domains with common crystalline orientation. The results are compared with photophysical simulations and bring clarity to the broad emission commonly reported for top-down approaches, while inspiring bottom-up schemes directed at improved material quality.

3.
Nano Lett ; 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39302814

ABSTRACT

Piezo-optomechanics presents a promising route to convert microwave signals to the optical domain, implementing processing tasks that are challenging using conventional electronics. The surge of integrated photonics facilitates the exploitation of localized light-sound interactions toward new technological paradigms. However, efficient acousto-optic interaction has yet to be fully exploited in silicon due to the absence of piezoelectricity, despite its maturity in photonic integrated circuits. Here, we introduce a distinctive acousto-optic scheme to supplement silicon photonic devices through heterogeneous integration with lithium niobate (LN). Utilizing LN as an efficient acoustic pump to harness the inherently exceptional photoelasticity in silicon, we demonstrate efficient microwave-to-acoustic transduction, ultimately achieving a modulation figure-of-merit of VπL ∼ 0.496 V·cm. This efficient modulation scheme is further extended to implement non-reciprocal intermodal modulation. The proposed hybrid integration route opens new possibilities for tailoring photon-phonon interactions in silicon, consolidating acousto-optic technology in multifunctional integrated photonics.

4.
Heliyon ; 10(18): e37425, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39315184

ABSTRACT

Fruit crops are essential for human nutrition and health, yet high level of heavy metal levels in soils can degrade fruit quality. These metals accumulate in plant roots and tissues due to factors like excessive fertilizer and pesticide use, poor waste management, and unscientific agricultural practices. Such accumulation can adversely affect plant growth, physiology, and yield. Consuming fruits contaminated with toxic metals poses significant health risks, including nervous system disorders and cancer. Various strategies, such as organic manuring, biomaterials, and modified cultivation practices have been widely researched to reduce heavy metal accumulation. Recently, silicon (Si) application has emerged as a promising and cost-effective solution for addressing biological and environmental challenges in food crops. Si, which can be applied to the soil, through foliar application or a combination of both, helps reduce toxic metal concentrations in soil and plants. Despite its potential, there is currently no comprehensive review that details Si's role in mitigating heavy metal stress in fruit crops. This review aims to explore the potential of Si in reducing heavy metal-induced damage in fruit crops while enhancing growth by alleviating heavy metal toxicity.

5.
Chemosphere ; 365: 143259, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39236923

ABSTRACT

Citrate-modified biochar nanoparticles (CBCNPs) represent a promising amendment with plant-available silicon (PASi) releasing capacity. However, the co-transport behavior with released PASi remain poorly understood. This study investigated their co-transport in saturated porous media under various solution chemistry and low molecular weight organic acids (LMWOAs). Experimental and two-site kinetic model results revealed that higher ionic strength caused favorable aggregation and size-selective, hindering CBCNPs transport. Divalent Ca2+ ions retained CBCNPs more effectively than K+ due to stronger charge screening and cation bridging. The pH buffering capacity of CBCNPs resulted in consistent transport behavior across a broad pH range (4-8). XDLVO calculation clarified the impact mechanisms of IS, ion types and pH on CBCNPs transport. Furthermore, LMWOAs exhibited a time-dependent blocking effect on CBCNPs transport. Oxalic acid (OA) and citric acid (CA) facilitated CBCNPs transport though mechanisms beyond XDLVO, including steric hindrance, competitive adsorption, and surface hydrophilicity. The presence of LMWOAs significantly hindered PASi co-transport, with the inhibitory effect ranked as acetic acid (AA) ≈ CA > OA > absence of organic acids. The inhibition is attributed to the blocking effect and formation of Si-organic acid complexes, as evidenced by breakthrough curves and density functional theory calculations. This study provides novel insights into the co-transport of CBCNPs with released PASi through mutual mechanisms, indicating both potential environmental benefits and risks.

6.
Sci Rep ; 14(1): 21948, 2024 09 20.
Article in English | MEDLINE | ID: mdl-39304700

ABSTRACT

Contamination of agricultural products with Cadmium (Cd) is a global problem that should be considered for minimizing the risks to human health. Considering the potential effects of SiNPs in decreasing abiotic stress, a study was conducted to investigate the effect of SiNPs in the reduction of Cd stress on Solanum lycopersicum. SiNPs was used at 0, 25, 50 and 100 mg/l and CdCl2 at 0, 100 and 200 µM concentrations. The results showed that Cd stress caused a significant decrease in dry weight, content of GSH, ASA, significently increasing the activity of GR, APX, GST, SOD, as well as content of H2O2, MDA, proline, and GABA in shoots and roots compared to the control. SiNPs significantly increased shoot and root dry weight compared to the control. As a coenzyme, SiNPs induced the activity of antioxidant enzymes and significantly increased GST and GR gene expression compared to the control. SiNPs also caused a substantial increase in the content of ASA, GSH, proline and GABA compared to the control. By inducing the activity of antioxidant enzymes and metabolites of the ascorbate-glutathione (ASA-GSH) cycle, SiNPs removed a large content of H2O2 and significantly reduced the MDA content, and as a result led to the stability of cell membrane under Cd stress. Induction of ASA-GSH, GABA and SOD cycle by SiNPs clearly showed that SiNPs could be a potential tool to alleviate Cd stress in plants cultivated in areas contaminated with this heavy metal.


Subject(s)
Cadmium , Glutathione , Silicon , Solanum lycopersicum , Stress, Physiological , gamma-Aminobutyric Acid , Glutathione/metabolism , Cadmium/toxicity , Cadmium/metabolism , Solanum lycopersicum/metabolism , Solanum lycopersicum/drug effects , gamma-Aminobutyric Acid/metabolism , Silicon/pharmacology , Silicon/metabolism , Stress, Physiological/drug effects , Superoxide Dismutase/metabolism , Antioxidants/metabolism , Nanoparticles/chemistry , Hydrogen Peroxide/metabolism , Oxidative Stress/drug effects , Ascorbic Acid/metabolism , Plant Roots/metabolism , Plant Roots/drug effects
7.
Sci Technol Adv Mater ; 25(1): 2396272, 2024.
Article in English | MEDLINE | ID: mdl-39308887

ABSTRACT

Multicrystalline materials play a crucial role in our society. However, their microstructure is complicated, and there is no universal approach to achieving high performance. Therefore, a methodology is necessary to answer the fundamental question of how we should design and create microstructures. 'Multicrystalline informatics' is an innovative approach that combines experimental, theoretical, computational, and data sciences. This approach helps us understand complex phenomena in multicrystalline materials and improve their performance. The paper covers various original research bases of multicrystalline informatics, such as the three-dimensional visualization of crystal defects in multicrystalline materials, the machine learning model for predicting crystal orientation distribution, network analysis of multicrystalline structures, computational methods using artificial neural network interatomic potentials, and so on. The integration of these research bases proves to be useful in understanding unexplained phenomena in complex multicrystalline materials. The paper also presents examples of efficient optimization of the growth process of high-quality materials with the aid of informatics, as well as prospects for extending the methodology to other materials.


We introduce our attempt to explore a methodology for high-performance multicrystalline materials development, multicrystalline informatics, using silicon as a model material.

8.
ACS Nano ; 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39276130

ABSTRACT

Intrinsically disordered proteins (IDPs) are emerging therapeutic targets for human diseases. However, probing their transient conformations remains challenging because of conformational heterogeneity. To address this problem, we developed a biosensor using a point-functionalized silicon nanowire (SiNW) that allows for real-time sampling of single-molecule dynamics. A single IDP, N-terminal transactivation domain of tumor suppressor protein p53 (p53TAD1), was covalently conjugated to the SiNW through chemical engineering, and its conformational transition dynamics was characterized as current fluctuations. Furthermore, when a globular protein ligand in solution bound to the targeted p53TAD1, protein-protein interactions could be unambiguously distinguished from large-amplitude current signals. These proof-of-concept experiments enable semiquantitative, realistic characterization of the structural properties of IDPs and constitute the basis for developing a valuable tool for protein profiling and drug discovery in the future.

9.
Int J Mol Sci ; 25(17)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39273096

ABSTRACT

In recent years, with the advent of a super-aged society, lifelong dental care has gained increasing emphasis, and implant therapy for patients with an edentulous jaw has become a significant option. However, for implant therapy to be suitable for elderly patients with reduced regenerative and immunological capabilities, higher osteoconductive and antimicrobial properties are required on the implant surfaces. Silicon nitride, a non-oxide ceramic known for its excellent mechanical properties and biocompatibility, has demonstrated high potential for inducing hard tissue differentiation and exhibiting antibacterial properties. In this study, silicon nitride was deposited on pure titanium metal surfaces and evaluated for its biocompatibility and antibacterial properties. The findings indicate that silicon nitride improves the hydrophilicity of the material surface, enhancing the initial adhesion of rat bone marrow cells and promoting hard tissue differentiation. Additionally, the antibacterial properties were assessed using Staphylococcus aureus, revealing that the silicon nitride-coated surfaces exhibited significant antibacterial activity. Importantly, no cytotoxicity was observed, suggesting that silicon nitride-coated titanium could serve as a novel implant material.


Subject(s)
Anti-Bacterial Agents , Coated Materials, Biocompatible , Silicon Compounds , Staphylococcus aureus , Surface Properties , Titanium , Titanium/chemistry , Titanium/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Rats , Staphylococcus aureus/drug effects , Silicon Compounds/chemistry , Silicon Compounds/pharmacology , Materials Testing , Cell Adhesion/drug effects , Bone Marrow Cells/drug effects , Cell Differentiation/drug effects
10.
J Hazard Mater ; 480: 135819, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39265390

ABSTRACT

Arsenate [As(V)] pollution is a challenge for water treatment, and the effect of coexisting microplastics (MPs) on As(V) removal is still not clear. In this study, series novel covalently bonded organic silicon-aluminum/iron composite coagulants (CSA/F) with different Al/Fe molar ratios were prepared for enhancing As(V) removal. The effect mechanism of MPs (PS MPs and PS-COOH MPs) on As(V) removal by using CSAF coagulation was analyzed. CSAF and CSF showed significantly better As(V) removal performance than other coagulants under the same conditions, especially CSF, more than 90 % As(V) removal was achieved at dosage of 20 mg/L and pH of 4.0-8.0. Interestingly, the introduction of silane coupling agent and the increase of Fe content in CSA/F changed the Al/Fe species distribution. Charge neutralization dominant in As(V) removal by using CSA, whereas adsorption and net sweeping contributed to As(V) coagulation by using CSAF and CSF with higher iron proportion at neutral pH. 3 µm MPs were removed by net sweeping of amorphous Al/Fe hydroxides, while 26 µm MPs were charge-neutralized or surface adsorbed by coagulant hydrolysates. The aliphatic C-H and -COOH functional groups of MPs were the main sites of hydrogen bonding adsorption with the hydroxyl groups of coagulant hydrolysates. This study is conducive to mitigating the environmental toxicity of arsenic and provides new insights into the interaction mechanism between composite pollutants and coagulants in waters.

11.
Small ; : e2406229, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39263781

ABSTRACT

Highly vertically thermally conductive silicon rubber (SiR) composites are widely used as thermal interface materials (TIMs) for chip cooling. Herein, inspired by water transport and transpiration of Moso bamboo-forests extensively existing in south China, and guided by filler self-assembly simulation, bamboo-forest-like heat conduction networks, with bamboo-stems-like vertically aligned polydopamine-coated carbon fibers (VA-PCFs), and bamboo-leaves-like horizontally layered Al2O3(HL-Al2O3), are rationally designed and constructed. VA-PCF/HL-Al2O3/SiR composites demonstrated enhanced heat conduction properties, and their through-plane thermal conductivity and thermal diffusivity reached 6.47 W (mK)-1 and 3.98 mm2 s-1 at 12 vol% PCF and 4 vol% Al2O3 loadings, which are 32% and 38% higher than those of VA-PCF (12 vol%) /SiR composites, respectively. The heat conduction enhancement mechanisms of VA-PCF/HL-Al2O3 networks on their SiR composites are revealed by multiscale simulation: HL-Al2O3 bridges the separate VA-PCF heat flow channels, and transfers more heat to the matrix, thereby increasing the vertical heat flux in composites. Along with high volume resistivity, low compression modulus, and coefficient of thermal expansion, VA-PCF/HL-Al2O3/SiR composites demonstrate great application potential as TIMs, which is proven using multiphysics simulation. This work not only makes a meaningful attempt at simulation-driven biomimetic material structure design but also provides inspiration for the preparation of TIMs.

12.
Article in English | MEDLINE | ID: mdl-39264232

ABSTRACT

Most breast implants currently used in both reconstructive and cosmetic surgery have a silicone outer shell, which, despite much progress, remains susceptible to mechanical failure, infection, and foreign body response. This study shows that the durability and biocompatibility of breast implant-grade silicone can be enhanced by incorporating carbon nanomaterials of sp2 and sp3 hybridization into the polymer matrix and onto its surface. Plasma treatment of the implant surface can be used to modify platelet adhesion and activation to prevent thrombosis, postoperative infection, and inflammation disorders. The addition of 0.8% graphene flakes resulted in an increase in mechanical strength by 64% and rupture strength by around 77% when compared to pure silicone, whereas when nanodiamond (ND) was used as the additive, the mechanical strength was increased by 19.4% and rupture strength by 37.5%. Composites with a partially embedded surface layer of either graphene or ND showed superior antimicrobial activity and biocompatibility compared to pure silicone. All composite materials were able to sustain the attachment and growth of human dermal fibroblast, with the preferred growth noted on ND-coated surfaces when compared to graphene-coated surfaces. Exposure of these materials to hydrogen plasma for 5, 10, and 20 s led to substantially reduced platelet attachment on the surfaces. Hydrogen-treated pure silicone showed a decrease in platelet attachment for samples treated for 5-20 s, whereas silicone composite showed an almost threefold decrease in platelet attachment for the same plasma treatment times. The absence of platelet activation on the surface of composite materials suggests a significant improvement in hemocompatibility of the material.

13.
J Biomater Appl ; : 8853282241281439, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264258

ABSTRACT

Large bone defect repair is a striking challenge in orthopedics. Currently, inorganic-organic composite scaffolds are considered as a promising approach to these bone regeneration. Silicon ions (Si4+) are bioactive and beneficial to bone regeneration and Si4+-containing inorganic mesoporous silica (MS) can effectively load drugs for bone repair. To better control the release of drug, we prepared biodegradable MS/PLGA (MP) microspheres. MP loaded organic silk fibroin/carboxymethyl chitosan/sodium alginate (MP/SF/CMCS/SA) composite scaffolds were further constructed by genipin and Ca2+ crosslinking. All MP/SF/CMCS/SA scaffolds had good swelling ability, degradation rate and high porosity. The incorporation of 1% MP significantly enhanced the compressive strength of composite scaffolds. Besides, MP loaded scaffold showed a sustained release of Si4+ and Ca2+. Moreover, the release rate of rhodamine (a model drug) of MP/SF/CMCS/SA scaffolds was obviously lower than that of MP. When culturing with rat bone marrow mesenchymal stem cells, scaffolds with 1% MP displayed good proliferation, adhesion and enhanced osteogenic differentiation ability. Based on the results above, the addition of 1% MP in SF/CMCS/SA scaffolds is a prospective way for drug release in bone regeneration and is promising for further in vivo bone repair applications.

14.
Sci Rep ; 14(1): 21069, 2024 09 09.
Article in English | MEDLINE | ID: mdl-39256459

ABSTRACT

Pyrolysis of animal manure at high temperature is necessary to effectively immobilize heavy metals, while the available phosphorus (P) level in biochar is relatively low, rendering it unsuitable for use as fertilizer. In this study, the pretreatment of swine manure with different potassium (K) sources (KOH, K2CO3, CH3COOK and C6H5K3O7) was conducted to produce a biochar with enhanced P availability and heavy metals immobility. The addition of all K compounds lowered the peak temperature of decomposition of cellulose in swine manure. The percentage of ammonium citrate and formic acid extractable P in biochar increased with K addition compared to undoped biochar, with CH3COOK and C6H5K3O7 showing greater effectiveness than KOH and K2CO3, however, water- extractable P did not exhibit significant changes. Additionally, the available and dissolved Si increased due to the doping of K, with KOH and K2CO3 having a stronger effect than CH3COOK and C6H5K3O7. X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) analysis revealed that K addition led to the formation of soluble CaKPO4 and silicate. In addition, the incorporation of K promoted the transformation of labile copper (Cu) and znic (Zn) into the stable fraction while simultaneously reducing their environmental risk. Our study suggest that the co-pyrolysis of swine manure and organic K represents an effective and valuable method for producing biochar with optimized P availability and heavy metals immobility.


Subject(s)
Charcoal , Manure , Metals, Heavy , Phosphorus , Potassium , Animals , Manure/analysis , Charcoal/chemistry , Phosphorus/chemistry , Phosphorus/analysis , Metals, Heavy/analysis , Metals, Heavy/chemistry , Swine , Potassium/chemistry , Potassium/metabolism , Fertilizers/analysis , Potassium Compounds/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
15.
Environ Sci Pollut Res Int ; 31(43): 55535-55548, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39235755

ABSTRACT

Heavy metal stress poses a significant threat to the productivity of agricultural systems and human health. Silicon (Si) is widely reported to be very effective against the different heavy metal stresses in crops. According to reports, it can help plants that are under cadmium (Cd) and nickel (Ni) stress. The presented work investigated how silicon interacted in Cd- and Ni-stressed wheat and mitigated metal toxicity. A pot experiment was carried out in which wheat crop was irrigated with Cd- and Ni-contaminated water. Application of Cd and Ni-contaminated water to wheat significantly reduced the root and shoot growth parameters and physiological and biochemical factors while increasing the antioxidant enzymatic activity and bioaccumulation of Cd and Ni metal in shoot and root as compared to the control. Application of Si led to an improvement in physiological parameters, i.e., greenness of leaves, i.e., SPAD values (17% and 26%), membrane stability (26% and 25%), and growth parameters i.e., root surface area (42% and 23%), root length (81% and 79%), root dry weight (456% and 190%), root volume (64% and 32%), shoot length (41% and 35%), shoot dry weight of shoot (111% and 117%), and overall grain weight (62% and 72%) under Cd and Ni stress, respectively. It increased the activity of antioxidant activity (max. up to 20%) whereas decreased the metal bioaccumulation of Cd and Ni in the roots and shoot (max. up to 62%) of wheat. It was concluded that the application of Si potentially increases antioxidant activity and metal chelation resulting in decreased oxidative damage and reducing the effect of Cd and Ni stress on wheat which improves growth and physiological parameters as well as inhibits Cd and Ni inclusion in food chain under Cd and Ni toxicity reducing health risks associated with these metals.


Subject(s)
Cadmium , Nickel , Triticum , Triticum/growth & development , Triticum/drug effects , Risk Assessment
16.
ACS Appl Bio Mater ; 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39302025

ABSTRACT

Glutathione (GSH), a tripeptide molecule, is the most abundant nonprotein biothiol in living cells, playing a crucial role in preventing oxidative damage to cellular components and maintaining intracellular redox homeostasis. As a thiol molecule, GSH contains a sulfhydryl (-SH) group that is vital for the body's response to reactive oxygen species (ROS). To confirm whether GSH can be used as a bioindicator or in the early diagnosis of cancers at the cellular level, it is essential to achieve highly selective detection and conjugation of GSH to silicon nanoparticles (SiNPs) under pathological conditions. We are herein excited to report a type of fluorescent ratiometric near-infrared silicon nanoparticle (NIR-SiNP) probe, that is, glutathione peptide conjugated (NIR-SiNPs-GSH), which simultaneously possess small pore sizes at an average of 6.7 nm, an emission of 670 nm, a bioimaging functionality of living cancer cells and animals, and favorable biocompatibility. Taking advantage of these virtues, we further manifest that such resulting NIR-SiNPs, NIR-SiNPs-GSH bioprobes are marvelously worthy for immunofluorescence imaging of cancer cells and living mice. Furthermore, it was shown that DAPI and probes could selectively stain malignant tumor cell nuclei, indicating the possibility for bioimaging and identification of cancer cells and animals. In summary, the suggested NIR-SiNPs-GSH probe has the potential to be a very effective chemical tool for early tumor detection in the future.

17.
Polymers (Basel) ; 16(17)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39274087

ABSTRACT

The primary characteristic of ablative materials is their fire resistance. This study explored the development of cost-effective ablative materials formed into application-specific shapes by using a polymer matrix reinforced with ceramic powder. A thermoplastic (polypropylene; PP) and a thermoset (polyester; UPE) matrix were used to manufacture ablative materials with 50 wt% silicon carbide (SiC) particles. The reference composites (50 wt% SiC) were compared to those with 1 and 3 wt% short glass fibers (0.5 mm length) and to composites using a 1 and 3 wt% glass fiber mesh. Fire resistance was tested using a butane flame (900 °C) and by measuring the transmitted heat with a thermocouple. Results showed that the type of polymer matrix (PP or UPE) did not influence fire resistance. Composites with short glass fibers had a fire-resistance time of 100 s, while those with glass fiber mesh tripled this resistance time. The novelty of this work lies in the exploration of a specific type of material with unique percentages of SiC not previously studied. The aim is to develop a low-cost coating for industrial warehouses that has improved fire-protective properties, maintains lower temperatures, and enhances the wear and impact resistance.

18.
Article in English | MEDLINE | ID: mdl-39269660

ABSTRACT

Integrating light emitters based on III-V materials with silicon-based electronics is crucial for further increase in data transfer rates in communication systems since the indirect bandgap of silicon prevents its direct use as a light source. We investigate here InAs/InGaAlAs quantum dot (QD) structures grown directly on 5° off-cut Si substrate and emitting light at 1.5 µm, compatible with established telecom platform. Using different dislocation defect filtering layers, exploiting strained superlattices, and supplementary QD layers, we mitigate the effects of lattice constant and thermal expansion mismatches between III-V materials and Si during growth. Complementary optical spectroscopy techniques, i.e. photoreflectance and temperature-, time- and polarization-resolved photoluminescence, allow us to determine the optical quality and application potential of the obtained structures by comparing them to a reference sample-state-of-the-art QDs grown on InP. Experimental findings are supported by calculations of excitonic states and optical transitions by combining multiband k•p and configuration-interaction methods. We show that our design of structures prevents the generation of a considerable density of defects, as intended. The emission of Si-based structures appears to be much broader than for the reference dots, due to the creation of different QD populations which might be a disadvantage in particular laser applications, however, could be favorable for others, e.g., in broadly tunable devices, sensors, or optical amplifiers. Eventually, we identify the overall most promising combination of defect filtering layers and discuss its advantages and limitations and prospects for further improvements.

19.
ChemSusChem ; : e202401459, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39269735

ABSTRACT

Porous silicon (Si) has a tetrahedral structure similar to that of sp3- hybridized carbon atoms in a typical diamond structure, which affords it unique chemical and physical properties including an adjustable intrinsic bandgap, a high-speed carrier transfer efficiency. It has shown great potential in photocatalysis, rechargeable batteries, solar cells, detectors, and electrocatalysis. This review introduces various porous Si-supported electrocatalysts and analyzes the reasons why porous Si is used as a new carrier/active sites from the perspectives of its molecular structure, electronic properties, synthesis methods, etc. The electrochemical applications of porous Si-based electrocatalysts in energy conversion reactions such as hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, and total water decomposition together with lithium-ion batteries (LIBs) and supercapacitors in energy storage are summarized. The challenges and future research directions for porous Si are also discussed. This review aims to deepen the understanding of porous Si and promote the development and applications of this new type of Si material.

20.
Sci Rep ; 14(1): 21612, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39284882

ABSTRACT

Co-doping of phosphorus and boron elements into crystalline silicon quantum dot (c-Si QD) is an effective approach for enhancing the photoluminescence (PL) performance. In this paper, we report on the preparation of hydrogenated silicon nitride (SiNx:H) thin films embedded with phosphorus-boron co-doped c-Si QDs via plasma enhanced chemical vapor deposition route. Mixed dilution including hydrogen (H2) and argon (Ar) is applied in the in-situ deposition process for optimizing the deposition process. The P-B co-doped c-Si QD/SiNx:H thin films exhibit a wide range of PL spectra. The emission is greatly improved especially for the short-wavelength light when compared to the SiOx:H thin film containing P-B co-doped c-Si QDs. The effects of H2/Ar flow ratio on the structural and optical characteristics of thin films are systematically investigated through a series of characterizations. Experimental results show that various properties, such as crystallinity, QD size, optical band gap and doping concentrations, are effectively controlled by tuning H2/Ar flow ratio. Based on the red-shift of QCE-related PL peak, the successful P-B co-doping into Si QDs are verified. Finally, a comprehensive discussion has been made to analyze the influence of H2-Ar mixed dilution on the film growth and impurity doping in detail in this paper.

SELECTION OF CITATIONS
SEARCH DETAIL