Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 955
Filter
1.
Clin Cosmet Investig Dermatol ; 17: 1773-1782, 2024.
Article in English | MEDLINE | ID: mdl-39132029

ABSTRACT

Introduction: The aging of the skin, which is affected by both external and internal causes, can reflect the external age and the internal health status. While the aging characteristics differ across ethnic groups, the specific changes in skin aging within the Chinese population have been underexplored. Moreover, investigating the similarity of aging skin characteristics between parent-offspring pairs remains uncharted territory. This study aims to fill these gaps by examining the skin aging features of Chinese women and assessing the similarity in aging skin characteristics between mother-daughter pairs. Methods: A total of 40 mother-daughter pairs were recruited and analyzed. The perceived ages of the participants were evaluated, and their aging skin traits were systematically graded. Statistical methods were employed to discern the trends of the aging skin characteristics. By introducing a novel similarity parameter, we compared whether various skin aging characteristics have similar patterns between mothers and daughters. Results: Our findings indicate that age 50 represents a pivotal point in skin aging. Beyond this age, the increase in rhytides and laxity scores accelerated noticeably, whereas the escalation in dyschromia scores became less marked. By introducing similar parameters between mother-daughter pairs and the radar map, we discovered that the skin aging characteristics are remarkably consistent between mother-daughter pairs. Conclusion: Understanding the main aging skin characteristics of different age groups can allow caregivers to devise treatments for preventing skin aging in women of various ages. The mother's skin aging trend is also significant for the daughter's skin aging prevention.


Skin aging, a complex process influenced by both internal and external factors, exhibits distinct patterns across ethnic groups. Despite this, the specific aging characteristics within the Chinese population and the hereditary similarities between parents and offspring have not been thoroughly investigated. To address this gap, our study focused on the skin aging features of Chinese women and explored the resemblance in these features between mother-daughter pairs. Eighty-seven women from the same community, including 40 mother-daughter pairs, participated in our study. We assessed how old each participant appeared to be and methodically evaluated their skin aging signs by a modified scale. With the introduction of a new similarity parameter, we further examined the extent to which skin aging traits showed parallel trends between mothers and their daughters. Our findings pinpoint age 50 as a pivotal moment in the skin aging trajectory, where the increase in wrinkles and skin laxity becomes more pronounced, contrasting with a deceleration in skin discoloration. Remarkably, a consistent pattern of aging characteristics was observed between mother-daughter pairs, suggesting a potential genetic influence. This study not only sheds light on the specific skin aging patterns among Chinese women but also underscores the significance of genetic factors in shaping these patterns. The insights gained pave the way for developing targeted interventions for skin aging prevention and treatment, emphasizing the importance of considering familial aging trends.

2.
J Cosmet Laser Ther ; : 1-9, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39135491

ABSTRACT

OBJECTIVE: The purpose of this study was to assess changes in skin elasticity and other skin defects related to the aging of skin around eyes following the use of combination treatment carboxytherapy and chemical peels (ferulic acid combined with ascorbic acid, lactobionic acid). MATERIAL AND METHODS: A total of 39 Caucasian patients were subjected to a series of five combination carboxytherapy and chemical peels treatments at weekly intervals. The Cutometer device was used to objectively measure skin elasticity. The assessment was supplemented by photographic documentation. RESULTS: A statistically significant improvement in skin elasticity assessed on the basis of R2 and R7 parameters (p < .0001, p = .001, respectively) was demonstrated after a series of five sessions of carboxytherapy combined with chemical peels. The improvement in the R2 parameter was observed in 82.1%, while R7 in 76.9% of study participants. It observed that the number of participants who benefited from treatment with ferulic acid and ascorbic acid was statistically higher compared with the second group (p = .036). Improved R2 values were reported in 100% of participants undergoing carboxytherapy combined with ferulic and ascorbic acid. CONCLUSION: Carboxytherapy in combination with chemical peels improved skin elasticity and can be used to reduce other skin defects.

3.
J Invest Dermatol ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39127929

ABSTRACT

Skin in vitro models offer much promise for research, testing drugs, cosmetics, and medical devices, reducing animal testing and extensive clinical trials. There are several in vitro approaches to mimicking human skin behavior, ranging from simple cell monolayer to complex organotypic and bioengineered 3-dimensional models. Some have been approved for preclinical studies in cosmetics, pharmaceuticals, and chemicals. However, development of physiologically reliable in vitro human skin models remains in its infancy. This review reports on advances in in vitro complex skin models to study skin homeostasis, aging, and skin disease.

4.
Biomol Ther (Seoul) ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39091010

ABSTRACT

Skin aging results from complex interactions of intrinsic and extrinsic factors, leading to structural and biochemical changes such as wrinkles and dryness. Ultraviolet (UV) irradiation leads to the degradation of hyaluronic acid (HA) in the skin, and the with fragmented HA contributes to inflammation. This study revealed that the synergistic combination of carnosine and retinol (ROL) increases HA production in normal human epidermal keratinocytes (NHEKs) by upregulating hyaluronan synthase 2 (HAS2) gene transcription. Simultaneously, the combined treatment of carnosine and ROL significantly attenuates UVB-induced prostaglandin E2 (PGE2) synthesis in NHEKs. A significant correlation exists between the increase of HA synthesis and the inhibition of PGE2 production. This study suggested that combined treatment of carnosine and ROL can improve skin aging phenotypes associated with UVB irradiation.

5.
Ecotoxicol Environ Saf ; 282: 116738, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39029221

ABSTRACT

Air pollution, a global health concern, has been associated with adverse effects on human health. In particular, particulate matter (PM), which is a major contributor to air pollution, impacts various organ systems including the skins. In fact, PM has been suggested as a culprit for accelerating skin aging and pigmentation. In this study, using single-cell RNA sequencing, IL-24 was found to be highly upregulated among the differentially expressed genes commonly altered in keratinocytes and fibroblasts of ex vivo skins exposed to PM. It was verified that PM exposure triggered the expression of IL-24 in keratinocytes, which subsequently led to a decrease in type I procollagen expression and an increase in MMP1 expression in fibroblasts. Furthermore, long-term treatment of IL-24 induced cellular senescence in fibroblasts. Through high-throughput screening, we identified chemical compounds that inhibit the IL-24-STAT3 signaling pathway, with lovastatin being the chosen candidate. Lovastatin not only effectively reduced the expression of IL24 induced by PM in keratinocytes but also exhibited a capacity to restore the decrease in type I procollagen and the increase in MMP1 caused by IL-24 in fibroblasts. This study provides insights into the significance of IL-24, illuminating mechanisms behind PM-induced skin aging, and proposes IL-24 as a promising target to mitigate PM-associated skin aging.

6.
Medicina (Kaunas) ; 60(7)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39064550

ABSTRACT

Background and Objectives: The facial skin defects associated with aging are common concerns in the aging population. Hyaluronic-acid-based intradermal gels have established themselves as safe and effective treatments for addressing these concerns. Recently developed enriched products aim to enhance the efficacy of these gels, yet their effectiveness lacks thorough validation in the existing literature. Materials and Methods: In this retrospective analysis, we investigated the outcomes of intradermal gel treatments in 103 patients with soft tissue defects. This study included three groups: 35 patients received amino-acid-enriched hyaluronic acid gel, another 35 were treated with hydroxyapatite-enriched hyaluronic acid gel, and the remaining 33 underwent hyaluronic acid treatment only. The efficacy of the treatments was assessed using the Global Aesthetic Improvement Scale (GAIS) score, while patient satisfaction was gauged through a detailed questionnaire. Any adverse event was monitored. Results: The treatments demonstrated remarkable efficacy, as evidenced by mean GAIS scores of 1.714 points for those treated with amino acid-enriched hyaluronic acid gel, 1.886 points for individuals receiving hydroxyapatite-enriched hyaluronic acid gel, and 1.697 for those treated with hyaluronic acid alone, all showing statistical significance (p < 0.0001). Patient satisfaction was very high. Significantly, there were no recorded instances of major adverse events. Conclusions: Hyaluronic gels, particularly those enriched with amino acids and hydroxyapatite, are effective and safe interventions for addressing facial skin aging defects. They serve as valuable tools in mitigating age-related blemishes and contribute to the overall improvement of skin aesthetics.


Subject(s)
Amino Acids , Durapatite , Gels , Hyaluronic Acid , Patient Satisfaction , Humans , Hyaluronic Acid/administration & dosage , Hyaluronic Acid/therapeutic use , Female , Durapatite/administration & dosage , Durapatite/therapeutic use , Middle Aged , Retrospective Studies , Male , Amino Acids/administration & dosage , Amino Acids/therapeutic use , Adult , Aged , Face , Skin Aging/drug effects , Treatment Outcome , Surveys and Questionnaires , Cosmetic Techniques
7.
Nutrients ; 16(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39064646

ABSTRACT

Strategies for successful aging, including the use of food supplements, are part of the approach to support skin youthfulness. To demonstrate the efficacy of fermented bilberry extract (FBE) against skin aging and uneven complexion, a clinical trial was carried out on 66 subjects with visible "crow's feet" wrinkles, mild-to-moderate skin slackness, and uneven skin tone. The wrinkle depth, skin smoothness (Ra) and roughness (Rz), skin firmness (R0) and elasticity (R2), skin coloration (ITA°), and skin antioxidant capacity were measured before and after 28 (D28), 56 (D56), and 84 (D84) days of product use (either FBE or a placebo). These parameters were also integrated with a clinical evaluation, carried out by a dermatologist, and a self-assessment questionnaire to align the measured efficacy with the visual or perceived efficacy. At D84, the wrinkle depth had decreased by 10.6%, Ra had improved by 7.9%, Rz had decreased by 7.3%, R0 had improved by 13.3%, R2 had improved by 12.4%, and skin antioxidant capacity had increased by 20.8%. ITA° increased by 20.8% and was accompanied by a decrease in the skin's redness component by 16.8% and an increase in the lightness component by 2.2%. The variation of all the above-mentioned parameters was statistically significant between the FBE and PL groups. Our findings demonstrate the efficacy of FBE in improving skin aging and complexion evenness.


Subject(s)
Antioxidants , Plant Extracts , Skin Aging , Vaccinium myrtillus , Humans , Skin Aging/drug effects , Antioxidants/pharmacology , Plant Extracts/pharmacology , Female , Vaccinium myrtillus/chemistry , Double-Blind Method , Middle Aged , Adult , Male , Skin/drug effects , Skin Pigmentation/drug effects , Fermentation , Dietary Supplements , Aged , Anthocyanins
8.
Antioxidants (Basel) ; 13(7)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39061838

ABSTRACT

Intradermal injection of bioactive compounds is used to reduce the effects of aging skin. The aim of this work is to study the response of facial injection of a hyaluronic acid complex supplemented with amino acids and antioxidant vitamins on skin rejuvenation. A total of 40 healthy adult subjects were recruited to whom this complex was injected into the facial skin, three consecutive times every two weeks. Together with assessing the degree of skin hydration, the level of skin microcirculation, wrinkles, skin color, and skin biomechanical parameters were evaluated. Using the GAIS scale, the degree of satisfaction of the participants was assessed. At 42 days (D42), there was an 11-12% increase in skin hydration and viscoelasticity, a 23% increase in skin density, a 27% increase in skin microcirculation, and a significant lightening and whitening of skin color, but without causing changes in skin wrinkles. A value between 1 and 3 on the GAIS scale was observed between 70 and 92% of the participants, and 87% of subjects found their skin more beautiful, 85% would recommend this treatment, and more than 50% found their face rejuvenated. In summary, the intradermal treatment tested suggests skin rejuvenation, with a good degree of safety.

9.
Iran J Basic Med Sci ; 27(9): 1105-1114, 2024.
Article in English | MEDLINE | ID: mdl-39055870

ABSTRACT

Objectives: To study the anti-aging effect of (-)-α-bisabolol ((-)-α-bis) on the skin and preliminarily clarify its mechanism. Materials and Methods: Human skin fibroblasts (HSF) were induced senescence by D-Galactose. Senescence ß-galactosidase staining was utilized to evaluate the senescence of HSF. TNF-α, IL-6, IL-8, IL-1ß, CCL-2, CCL-5, and MMP-9 in senescence-as-sociated secretory phenotype (SASP) were detected by RT-qPCR. Meanwhile, aged BALB/c mice were applied topically with 0.5% and 2%(-)-α-bis gel for 30 days continuously to evaluate anti-aging parameters on the skin such as surface measurement, the Trans Epidermal Water Loss (TEWL), and skin barrier index of dorsal skin. Then, HE staining, Masson staining, and IHC were applied to measure epidermal thickness, collagen fiber content in the dermis, and content of dermal collagen I, respectively. Last, SOD, MDA, and HYP contents of the back skin tissue of mice were also detected. Results: (-)-α-Bis reduced the expression of senescence-associated ß-galactosidase (SA-ß-gal) and expression levels of SASP in HSF cells stimulated by D-Gal (P<0.05). Mice aged 9 months were applied locally with (-)-α-bis gel to improve skin aging, the TEWL and skin barrier index of dorsal skin, and ameliorate the epidermal thickness and contents of dermal collagen fibers and collagen I (P<0.05). Furthermore, (-)-α-bis up-regulated the mRNA expression levels of elastin and collagen III effectively (P<0.05). Conclusion: (-)-α-Bis can delay the senescence of HSF cells by reducing the expression of SA-ß-gal and SASP factors in vitro. Improved skin barrier function as well as SASP is responsible for the delay of skin aging in vivo.

10.
Histochem Cell Biol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954026

ABSTRACT

Skin represents the main barrier against the external environment, but also plays a role in human relations, as one of the prime determinants of beauty, resulting in a high consumer demand for skincare-related pharmaceutical products. Given the importance of skin aging in both medical and social spheres, the present research aims to characterize microscopic changes in human skin composition due to intrinsic aging (as opposed to aging influenced by external factors) via histological analysis of a photoprotected body region. Samples from 25 autopsies were taken from the periumbilical area and classified into four age groups: group 1 (0-12 years), group 2 (13-25 years), group 3 (26-54 years), and group 4 (≥ 55 years). Different traditional histological (hematoxylin-eosin, Masson's trichrome, orcein, toluidine, Alcian blue, and Feulgen reaction) and immunohistochemical (CK20, CD1a, Ki67, and CD31) stains were performed. A total of 1879 images photographed with a Leica DM3000 optical microscope were morphometrically analyzed using Image ProPlus 7.0 for further statistical analysis with GraphPad 9.0. Our results showed a reduction in epidermis thickness, interdigitation and mitotic indexes, while melanocyte count was raised. Papillary but not reticular dermis showed increased thickness with aging. Specifically, in the papillary layer mast cells and glycosaminoglycans were expanded, whereas the reticular dermis displayed a diminution in glycosaminoglycans and elastic fibers. Moreover, total cellularity and vascularization of both dermises were diminished with aging. This morphometric analysis of photoprotected areas reveals that intrinsic aging significantly influences human skin composition. This study paves the way for further research into the molecular basis underpinning these alterations, and into potential antiaging strategies.

11.
J Cosmet Dermatol ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014903

ABSTRACT

BACKGROUND: Aging is a physiological phenomenon in the process of life, and skin aging has a significant impact on human appearance. Therefore, the search for methods to delay skin aging is of great significance for improving the quality of human life. MATERIALS AND METHODS: This study investigated the anti-photoaging effect of Tricholoma matsutake (T) extract composition combined with bakuchiol (B) and ergothioneine (E), and explored its potential mechanism through transcriptome, metabolomics, and network pharmacology. RESULTS: 57 main chemical components are identified from the ethanol extract of T. matsutake (T), including D-carnitine (24.55%), α,α-trehalose (15.56%), DL malic acid (8.99%), D-(-)-quinic acid (7.46%), erucamide (7.04%) and so on. After TBE treatment, inflammation of the mice dorsal skin is significantly minimized. Hematoxylin and eosin (H&E) staining and toluidine blue staining reveal that TBE has an anti-inflammatory effect on the back skin tissue of mice. Masson staining shows that TBE has a repair effect on mice dorsal skin tissue. In addition, the inflammatory factors (IL-1ß, IL-6, TNF-α) in the mice dorsal skin tissues are significantly reduced but collagen (COL-1) is significantly increased. By cellular immunofluorescence assay, TBE is shown to promote PPAR-α expression in cells. Transcriptomics, metabolomics, and network pharmacology have revealed that TBE can regulate exogenous stimuli and cancer-related signaling pathways to prevent skin aging. CONCLUSION: The results suggest that TBE can be a beneficial supplement to natural anti-aging.

12.
J Hazard Mater ; 476: 135176, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39029193

ABSTRACT

Chlorothalonil (CHT) is a widely used antifungal agent and is reported to be a sensitizer that can cause allergic contact dermatitis (ACD). ACD initiation is associated with various innate immune cell contributions and is usually accompanied by persistent inflammation, which is a potential contributing factor to skin damage. However, detailed information on the mechanisms by which CHT induces skin sensitization and damage is still insufficient. This study focused on investigating the possible sensitization process and mechanism of CHT and the adverse effects of repeated CHT exposure. CHT activates dendritic cells and promotes the proliferation of lymph cells in the skin sensitization phase, causing severe inflammation. Keratinocytes activate the NLRP3 inflammasome pathway to cause inflammation during CHT treatment, and macrophages also secrete inflammatory cytokines. In addition, CHT-induced inflammation triggered skin wrinkles, decreased epidermal thickness and decreased collagen. Cell experiments also showed that repeated exposure to CHT led to cell proliferation inhibition and senescence, and CHT-induced autophagy dysfunction was not only the reason for inflammation but also for senescence. This study defined the possible process through which CHT is involved in the skin sensitization phase and elucidated the mechanism of CHT-induced inflammation in innate immune responses. We also determined that repeated CHT exposure caused persistent inflammation, ultimately leading to skin aging.


Subject(s)
Keratinocytes , Nitriles , Skin Aging , Nitriles/toxicity , Animals , Skin Aging/drug effects , Keratinocytes/drug effects , Adverse Outcome Pathways , Cell Proliferation/drug effects , Skin/drug effects , Skin/immunology , Dermatitis, Allergic Contact/immunology , Autophagy/drug effects , Dendritic Cells/drug effects , Dendritic Cells/immunology , Mice , Macrophages/drug effects , Macrophages/immunology , Fungicides, Industrial/toxicity , Humans , Cytokines/metabolism , Female , Immunity, Innate/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammation/chemically induced
13.
J Ethnopharmacol ; 334: 118535, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38972529

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Blumea balsamifera (L.) DC. (BB), the source of Blumea balsamifera oil (BBO), is an aromatic medicinal plant, renowned for its pharmacological properties and its traditional use in Southeast Asian countries such as China, Thailand, Vietnam, Malaysia, and the Philippines for centuries. Traditionally, BB has been used as a raw herbal medicine for treating various skin conditions like eczema, dermatitis, athlete's foot, and wound healing for skin injuries. AIM OF THE STUDY: This research aimed to explore the inhibitory effects of BBO on skin aging using two models: in vitro analysis with human dermal fibroblasts (HDF) under UVB-induced stress, and in vivo studies on UVA-induced dorsal skin aging in mice. The study sought to uncover the mechanisms behind BBO's anti-aging effects, specifically, its impact on cellular and tissue responses to UV-induced skin aging. MATERIALS AND METHODS: We applied doses of 10-20 µL/mL of BBO to HDF cells that had been exposed to UVB radiation to simulate skin aging. We measured cell viability, and levels of reactive oxygen species (ROS), SA-ß-gal, pro-inflammatory cytokines, and matrix metalloproteinases (MMPs). In addition, we investigated the involvement of mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB) signaling pathways in mediating the anti-aging effects of BBO. Histopathological and biochemical analyses were conducted in a mouse model to examine the effects of BBO on UV-induced photoaging. RESULTS: UV exposure accelerated aging, and caused cellular damage and inflammatory responses through ROS-mediated pathways. In HDF cells, BBO treatment countered the UVB-induced senescence, and the recovery of cell viability was correlated to notable reductions in SA-ß-gal, ROS, pro-inflammatory cytokines, and MMPs. Mechanistically, the anti-aging effect of BBO was associated with the downregulation of the JNK/NF-κB signaling pathways. In the in vivo mouse model, BBO exhibited protective capabilities against UV-induced photoaging, which were manifested by the enhanced antioxidant enzyme activities and tissue remodeling. CONCLUSIONS: BBO effectively protects fibroblasts from UV-induced photoaging through the JNK/NF-κB pathway. Recovery from photoaging involves an increase in dermal fibroblasts, alleviation of inflammation, accelerated synthesis of antioxidant enzymes, and slowed degradation of ECM proteins. Overall, BBO enhances the skin's defensive capabilities against oxidative stress, underscoring its potential as a therapeutic agent for oxidative stress-related skin aging.


Subject(s)
Asteraceae , Fibroblasts , Skin Aging , Ultraviolet Rays , Animals , Skin Aging/drug effects , Skin Aging/radiation effects , Ultraviolet Rays/adverse effects , Humans , Fibroblasts/drug effects , Fibroblasts/radiation effects , Mice , Asteraceae/chemistry , Plant Oils/pharmacology , Reactive Oxygen Species/metabolism , Cell Survival/drug effects , Skin/drug effects , Skin/radiation effects , Skin/pathology , Skin/metabolism , Male , NF-kappa B/metabolism , Female
14.
Ann Dermatol ; 36(4): 215-224, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39082657

ABSTRACT

BACKGROUND: Anti-aging products are widely used, but the desire for safe and more efficient anti-aging products continues to increase. Dissolving microneedle patches (MNPs) have provided a more efficient transdermal drug delivery solution. MNP is a promising candidate for developing better anti-aging products. OBJECTIVE: To develop a more efficient anti-aging MNP product, we fabricated a dual anti-wrinkle microneedle patch (named DA-MNP) using droplet extension (DEN®) technology and evaluated its skin puncture ability, safety, and efficacy through clinical studies. METHODS: A DA-MNP comprising hyaluronic acid (HA) polymer backbone, acetyl octapeptide-3, and L-ascorbic acid 2-glucoside and sodium cyclic lysophosphatidic acid was fabricated using DEN® technology. Placebo MNPs comprising only HA were also fabricated. Twenty-four healthy subjects were enrolled in this comparative clinical study. The DA-MNP or placebo MNP was separately applied to the left and right eyes of subjects for overnight. Assessments, including wrinkle improvement, trans-epidermal water loss (TEWL), eye lifting and adverse effects were evaluated at each scheduled visit day for 28 days. RESULTS: The DA-MNP showed mechanical strength enough for puncturing the stratum corneum. Compared to placebo MNP group, the DA-MNP treated group showed an effective eye wrinkles improvement and better anti-aging of skin, with reduced TEWL, enhanced skin elasticity and lifting, and no adverse effects. CONCLUSION: The present study demonstrated that the fabricated DA-MNP exhibited fast acting on deep wrinkles and enhanced anti-aging efficacy, with no skin safety concern. Thus, this DA-MNP may serve as a new transdermal delivery solution for skin wrinkling and aging.

15.
Front Immunol ; 15: 1394530, 2024.
Article in English | MEDLINE | ID: mdl-38881903

ABSTRACT

Objective: Injectable skin fillers offer a wider range of options for cutaneous anti-aging and facial rejuvenation. PLLA microspheres are increasingly favored as degradable and long-lasting fillers. The present study focused solely on the effect of PLLA on dermal collagen, without investigating its impact on the epidermis. In this study, we investigated the effects of PLLA microspheres on epidermal stem cells (EpiSCs). Methods: Different concentrations of PLLA microspheres on epidermal stem cells (EpiSCs) in vitro through culture, and identification of primary rat EpiSCs. CCK-8 detection, apoptosis staining, flow cytometry, Transwell assay, wound healing assay, q-PCR analysis, and immunofluorescence staining were used to detect the effects of PLLA on EpiSCs. Furthermore, we observed the effect on the epidermis by injecting PLLA into the dermis of the rat skin in vivo. Results: PLLA microspheres promote cell proliferation and migration while delaying cell senescence and maintaining its stemness. In vitro, Intradermal injection of PLLA microspheres in the rat back skin resulted in delayed aging, as evidenced by histological and immunohistochemical staining of the skin at 2, 4, and 12 weeks of follow-up. Conclusion: This study showed the positive effects of PLLA on rat epidermis and EpiSCs, while providing novel insights into the anti-aging mechanism of PLLA.


Subject(s)
Cellular Senescence , Microspheres , Polyesters , Skin Aging , Animals , Rats , Cellular Senescence/drug effects , Skin Aging/drug effects , Stem Cells/metabolism , Stem Cells/cytology , Cell Proliferation/drug effects , Epidermal Cells/metabolism , Cells, Cultured , Rats, Sprague-Dawley , Epidermis/metabolism , Epidermis/drug effects , Cell Movement/drug effects , Dermal Fillers/pharmacology , Dermal Fillers/administration & dosage
16.
J Funct Morphol Kinesiol ; 9(2)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38921635

ABSTRACT

This review aims to reveal the effectiveness of myofunctional speech therapy on facial rejuvenation and/or improvement of orofacial function. A systematic review of four medical electronic databases (Medline, Google Scholar, SciELO, and LILACS) was conducted between January and March 2023. The research question was defined using the PICO model: Population (P): adult subjects with signs of physiological aging of facial skin. Intervention (I): aesthetic speech therapy (facial exercises and/or myofunctional therapy). Control (C): absence of treatment. Outcome (O): facial rejuvenation. Through the search process, a total of 472 potentially relevant articles were identified. A total of 21 studies were included in the review. Most of the studies required the participants to perform exercises learned during the weekly session on a daily basis. The subjects underwent an integrated treatment with facial exercises and worked on the stomatognathic functions for different durations. Many differences were found in the evaluation tools used to investigate the starting situation and the effects obtained following the treatment. At the diagnostic level, there was no concordance in the choice of the most appropriate scales and assessment tools, but great heterogeneity was observed. Indeed, forty-eight percent of the studies collected objective data through the use of various instruments (oral devices, electromyographs, cutometers, muscle ultrasound scans, and laser scans of the face). The observed improvements included not only a reduction in wrinkles and frown lines but also decreased muscle tension and slackness, enhanced facial symmetry and lip competence, improved skin elasticity, and restored stomatognathic function. These changes led to myofunctional restoration and facial rejuvenation, resulting in increased satisfaction with self-image and proprioception.

17.
J Ethnopharmacol ; 333: 118421, 2024 Oct 28.
Article in English | MEDLINE | ID: mdl-38880400

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Si Jun Zi Tang (SJZT) is a famous traditional Chinese medicine formula composing of 4 herbal medicines (Ginseng Radix et Rhizoma, Atractylodis macrocephalae Rhizoma, Poria, and Glycyrrhizae Radix et Rhizoma) with tonifying spleen and anti-aging effects. It is also known that SJZT can be used to tone, nourish the skin and accelerate wound healing. However, due to the complexity of the formulation, the anti-aging especially anti-skin aging mechanisms as well as the key components of SJZT have not been fully investigated. Therefore, further in vitro and in vivo experimental studies are particularly needed to investigate the anti-skin ageing efficacy of SJZT. AIM OF THE STUDY: The purpose of this article was to explore the therapeutic effect and possible pharmacological mechanism of SJZT in the treatment of skin aging by topical application using network pharmacology and to validate the findings using in vitro and in vivo tests. MATERIALS AND METHODS: Network pharmacology method was applied to predict the underlying biological function and mechanism involved in the anti-skin aging effect of SJZT. Molecular docking was used to preliminarily predict the active components of SJZT-Skin Aging. UPLC QTOF MS/MS was carried out to analyze the chemical compounds. Finally, to confirm the anti-skin aging effort of SJZT, a mouse skin-aging model and UVB-induced EpiSCs (epidermal stem cells) senescence model were established. RESULTS: PPI network analysis and KEGG studies indicated that TP53, CDKN2A, TNF, IL6, and IL1B might be parts of the core targets associated with EpiSCs senescence. Furthermore, molecular docking suggested the top active components, glycyrrhizin, ginsenoside Rg5, ginsenoside Rh2, liquiritin, polyporenic acid C and atractylenolide II showed strong affinity to the key proteins involved in cellular senescence signaling. UPLC QTOF MS/MS analysis of SJZT confirmed the presence of these key components. In-vivo experiments revealed that SJZT could improve UVB-induced skin thickening, increase the number of collagen fibers, strengthen the structure of elastin fibers, and decrease the expression of MDA, as well as increase the expression of CAT and T-SOD in the skin tissue of mouse. And, in-vitro experiments indicated that SJZT could reduce ROS generation and oxidative stress, increase mitochondrial membrane potential, and upregulate the expression of stem cell markers. Moreover, SJZT could suppress the expression of p53, p-p53 and p21, downregulated p38 phosphorylation. Furthermore, the anti-cellular senescence effect of SJZT on EpiSCs disappeared after treatment with the p38 inhibitor adesmapimod. Taken all together, the regulation of senescence signaling in EpiSCs is an important mechanism of SJZT in combating skin aging. CONCLUSION: The research results indicate that SJZT has anti-skin aging effects on UVB-induced skin-aging model, possibly by mediating p38/p53 signaling pathway. These findings strongly demonstrate the great potential of SJZT as an active composite for anti-skin aging and cosmeceutical applications.


Subject(s)
Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Skin Aging , Animals , Skin Aging/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Mice , Humans , Skin/drug effects , Skin/metabolism , Skin/radiation effects , Male , Female
18.
Nutr Res Pract ; 18(3): 357-371, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38854476

ABSTRACT

BACKGROUND/OBJECTIVES: Collagen is commonly used in diverse forms as a functional component in skincare products. On the other hand, the effects of collagen on human skin are controversial. Dietary collagen hydrolysates from freshwater Pangasius hypophthalmus fish skin ameliorated photo-aged skin of hairless mice. This study conducted a randomized, double-blind, placebo-controlled clinical trial to determine if liquid fish collagen (Collagen-Tripep20™, Tripep20) as a drink strengthens skin health and quality. SUBJECTS/METHODS: In this clinical trial, 85 subjects aged 35-60 yrs were diagnosed with photo-aged skin. Eighty-five subjects were randomized to receive either Tripep20 (n = 44) or placebo (n = 41). Seventy-eight subjects fully participating for a 12-week period consumed 1,000 mg of Tripep20 (n = 41) or placebo (n = 37) in a 50-mL bottle as a daily drink. The intend-to-treat and per-protocol populations were 85 and 78, respectively. Skin hydration, wrinkles, and elasticity were assessed at 0 (baseline), 6, and 12 weeks during the study period. RESULTS: Skin hydration in the Tripep20 group was significantly higher from 6 weeks (P < 0.001) than the baseline. After 12 weeks, the Crow's-feet visual score and skin roughness (Ra, Rq, and Rmax) were significantly improved in the Tripep20 group than in the placebo group (P < 0.05). Consuming liquid collagen Tripep20 greatly enhanced skin elasticity (Gross R2, Net R5, and Biological elasticity R7) in 6 weeks compared to the placebo group. The Tripep20 group showed a significant increase in skin elasticity from the baseline after 6 and 12 weeks (P < 0.001). Neither abnormal symptoms nor adverse events were encountered during the study period in subjects ingesting Tripep20 or placebo. The changes in parameters related to hematology and clinical chemistry were within the normal ranges. CONCLUSION: Oral consumption of liquid collagen Tripep20 was safe and well-tolerated. The results of this study show that freshwater fish-derived liquid collagen Tripep20 can be used as a healthy functional food ingredient to improve skin moisturizing, anti-wrinkling, and elasticity in an aging population.

19.
Clin Cosmet Investig Dermatol ; 17: 1309-1319, 2024.
Article in English | MEDLINE | ID: mdl-38854850

ABSTRACT

Background: Ergothioneine (EGT) is an antioxidant, which could be detected in human tissues, and human skin cells could utilize EGT and play an anti-oxidative role in keratinocytes. And in this study we are going to elucidate whether EGT could protect the skin from photoaging by Ultraviolet (UV) exposure in mice and its molecule pathway. Methods: Histological analysis was performed for evaluating the skin structure change. Malondialdehyde (MDA) and superoxide dismutase (SOD) levels were measured with biological assay for evaluating oxidative and antioxidative ability of skin exposed to UV light. And the level of marker molecules in mouse skin were detected by hydroxyproline (Hyp) assay, immunohistochemical analysis, Western blot, and quantitative real-time PCR (qRT-PCR). The markers of skin aging and cell death were tested by cell culture and treatment, Western blot and qRT-PCR. Results: EGT decreased the levels of inflammatory factors induced by UV exposure in mouse skin. MDA and SOD activity detection showed that EGT decreased MDA levels, increased SOD activity, and upregulated PI3K/Akt/Nrf2 signals in mouse skin exposed to UV, which further activated Nrf2 in the nucleus and enhanced the expression of Nrf2 target genes. In the cell model, we revealed that EGT could inhibit the increase in senescence-associated ß-galactosidase-positive cells and p16 and γ-H2A.X positive cells induced by etoposide and activate PI3K/Akt/Nrf2 signaling. Moreover, a PI3K inhibitor blocked EGT protection against etoposide-induced cell death. Conclusion: The study showed EGT may play an important protective role against cell damage or death through the PI3K/Akt/Nrf2 signaling pathway in skin.

20.
Photobiomodul Photomed Laser Surg ; 42(7): 473-479, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38836757

ABSTRACT

Objective: This study aimed to evaluate physical skin changes and patients' subjective perception of treatment with photothermal bioactivated platelet-rich plasma (MCT Plasma) for hand rejuvenation. Background: Age-related changes in the dorsum of the hand include volume loss, dyschromia, and soft-tissue atrophy, which result in wrinkles and prominent deep structures. Methods: We conducted a prospective, single-center, randomized pilot study on 10 healthy female volunteers from 30 to 65 years with hand aging signs. Patients received two sessions of MCT Plasma on the treated hand and two sessions of standard platelet-rich plasma (PRP) on the control hand. Results were assessed through high-frequency ultrasonography, photographs, a patient satisfaction survey, patient perception of skin aspect, and patient perception of amelioration survey. Results: Ten women with a mean age of 57.5 years (standard deviation 10.5, range 31 - 67) were included, and seven (70%) completed the study. The treated hands' skin subepidermal low-echogenic band (SLEB) decreased from 20% to 60%, and 57.1% (n = 4) had better results than control. Twenty percent of patients were very satisfied with the results, 40% were satisfied, 40% were neutral, and none were unsatisfied or very unsatisfied. Patients perceived the skin of the treated hand (MCT Plasma) as "much better" (20%), "better" (60%), and "no changes" (20%) compared with the skin of the control hand (standard PRP). No treatment-related adverse events were reported during the study. Conclusions: Hands treated with MCT Plasma tended to have better outcomes in reducing SLEB compared with those treated with standard PRP. Patients were satisfied and the treatment was safe with no technical complications. However, further randomized controlled trials with larger sample sizes are mandatory to validate the extent of improvement provided by this device based on photothermal biomodulation.


Subject(s)
Hand , Platelet-Rich Plasma , Rejuvenation , Skin Aging , Humans , Female , Pilot Projects , Middle Aged , Prospective Studies , Skin Aging/radiation effects , Adult , Aged , Patient Satisfaction , Photothermal Therapy , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL