Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.365
Filter
1.
Food Chem ; 462: 140950, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39213968

ABSTRACT

ß-conglycinin (ß-CG) is a prominent storage protein belonging to the globulin family in soybean (Glycine max) seeds. Along with other soybean proteins, it serves as an important source of essential amino acids and high-quality nutrition. However, the digestibility and nutritional value of ß-CG are key factors affecting the nutritional profile of soy-based foods. The heterotrimeric, secondary, and quaternary structures of ß-CG, particularly the spatial arrangement of its α, α', and ß subunits, influence its functional properties. Considering these aspects, ß-CG emerges as a significant protein with diverse applications in the food and health sectors. Therefore, this review explores ß-CG's composition, structure, function, health implications, and industrial uses. Salient discussions are presented on its molecular structure, nutrition, digestibility, allergenicity, and techno-functions including emulsification, solubility, gelling, and structure-function complexities. Overall, the multifaceted potential of ß-CG in the healthcare sector and the food industry is evident.


Subject(s)
Antigens, Plant , Globulins , Seed Storage Proteins , Soybean Proteins , Globulins/chemistry , Seed Storage Proteins/chemistry , Antigens, Plant/chemistry , Soybean Proteins/chemistry , Structure-Activity Relationship , Humans , Glycine max/chemistry , Animals , Nutritive Value
2.
Breed Sci ; 74(2): 138-145, 2024 Apr.
Article in English | MEDLINE | ID: mdl-39355623

ABSTRACT

In mechanically harvested soybean, green stem disorder (GSD) is an undesirable trait that causes green-stained seeds, which are graded lower in Japan. To obtain DNA markers for reduced GSD, we conducted a quantitative trait locus (QTL) analysis for 2 years using F4 and F5 lines from a cross between 'Suzuotome' (less GSD) and 'Fukuyutaka' (more GSD). We validated the effect of a detected QTL for GSD by first identifying F4 or F5 plants in which one or more markers in the QTL region were heterozygous. The F5 or F6 progeny of each plant was used to form a pair consisting of two groups in which the QTL region was homozygous for either the 'Suzuotome' or 'Fukuyutaka' allele in a similar genetic background, and the two groups within each pair were compared for GSD. Over 3 years of testing, the 'Suzuotome' allele of a QTL on chromosome 6 was found to reduce the level of GSD. This novel QTL was mapped to the region around DNA marker W06_0130, and was not closely linked to QTLs for important agronomic traits including yield components. Using this marker, the low level of GSD from 'Suzuotome' could be conferred to 'Fukuyutaka' or other high-GSD cultivars.

3.
Poult Sci ; 103(12): 104313, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39357235

ABSTRACT

Balanced ratios of branched-chain amino acids (BCAAs) can enhance chicken growth, immunity, and muscle synthesis. However, these ratios can be affected by changes in crude protein (CP) levels or the substitution of protein sources, leading to BCAA antagonism. This, in turn, can have a negative impact on chicken growth. In Experiment 1, a total of 960 0-d-old male Cobb 500 broilers were divided into 6 treatments with 8 replicates. Three different BCAA ratios were used in High or Low CP diets as follows: 1) Low Leu group (Low level of leucine with increased valine and isoleucine levels), 2) Med Leu group, and 3) High Leu group (High level of leucine with reduced valine and isoleucine levels) for a total of 6 diets. In Experiment 2, a total of 640 0-d-old male Cobb 500 broilers were divided into 4 treatments with 8 replicates. The four diets had either High or Low CP and one of two protein sources with the same medium levels of BCAAs: 1) the soybean meal (SBM) group, which had SBM as the main protein source (protein bound AA), and 2) the wheat middlings with non-bound AAs (WM+AA) group (non-bound AA), which had additional non-bound AAs to replace SBM. The High Leu diet had a negative effect on overall growth performance, carcass weight, breast muscle weight, and body mineral composition compared to the Low Leu and Med Leu groups, particularly in the High CP diet (P < 0.05). The SBM group showed increased growth performance, breast muscle weight, expression levels of genes promoting muscle growth, and improved bone mineral composition compared to the WM+AA group, and the High CP group intensified the negative effect of the WM+AA diet (P < 0.05). In summary, balanced BCAA ratios and SBM-based diets have positive effects on chicken growth and muscle accretion, whereas excessive leucine and non-bound AA levels in the diets may negatively affect growth performance and meat yield in chickens.

4.
Front Nutr ; 11: 1444329, 2024.
Article in English | MEDLINE | ID: mdl-39360270

ABSTRACT

Background: Protein hydrolysates derived from food sources contains enormous number of peptides which are composed of amino acid possessess various bioactive properties. However, the use of protein hydrolysates as a nutraceutical is hindered due to their unpleasant flavour. The study aims to enhance the biological activity and palatability of protein hydrolysates. Methodology: In the present study, soybean protein hydrolysate (SPH) was prepared using alcalase for 4 h (control). Modification of hydrolysis (MPH) was carried out by reiterating the hydrolysis of the supernatant obtained after 2 h of hydrolysis using an enzyme to 50% of alcalase during each successive hydrolysis. Samples were characterised by their physio-chemical and functional properties. Furthermore, the effect of modification on the protein digestibility and bitterness intensity using e-tongue was studied. The suppressive effect on retrogradation of corn starch was analysed using texture profile analysis. Results: The results demonstrated increased protein content by 1.6 and 1.9% in MPH compared to SPH and UNH, respectively. MPH showed 1.5- and 1.6-fold higher DH% than SPH before and after gastrointestinal digestion (p < 0.05). A decrease in molecular weight was found in the order of UNH > SPH > MPH. Nevertheless, MPH displayed significantly higher functional properties (p ≤ 0.05). The hardness of retrograded corn starch was significantly reduced in the MPH (1.21N) than SPH (1.55 N) and UNH (1.81N) compared to control (1.71N) during 7-day storage at 4°C (p ≤ 0.05). E-tongue analysis of MPH showed a 4-fold reduction in bitterness than SPH. Conclusion: Modification of hydrolysis of soybean has demonstrated its significance in improved DH% functional properties and palatability. In addition, improved protein digestibility with promising benefits in deferral action on retrogradation of starch over the traditional process of hydrolysis was observed. The outcome of this study contributes to the potential utilisation of MPH as an ingredient in the formulation of nutraceutical products.

5.
Immunol Invest ; : 1-17, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39360672

ABSTRACT

BACKGROUND: The incidence of osteoarthritis (OA) is increasing, yet its pathogenesis remains largely unknown. Recent studies suggest that abnormal subchondral bone remodeling plays a crucial role in OA development, highlighting a gap in clinical treatments targeting this aspect. Soybean Isoflavone (SI) has shown potential in treating OA, although its mechanisms are not fully understood. METHODS: This research investigated the effects of SI on subchondral bone remodeling in an OA rat model, assessing joint damage, OARSI scores, and type H vessel formation (CD31hiEmcnhi expression). Additionally, the expression of ALP, OCN, BMP, and TSC1 was evaluated to determine involvement of the mTORC1 pathway. In vitro studies on IL-1ß-induced osteoblasts further examined the impact of SI on TSC1/mTORC1 signaling and related markers. RESULTS: SI treatment reduced joint damage and OARSI scores in the rat OA model, significantly decreasing CD31hiEmcnhi expression, indicating a reduction in type H vessel formation. SI also downregulated ALP, OCN, and BMP expression while upregulating TSC1, suggesting inhibition of the mTORC1 signaling pathway and VEGF release. In vitro, SI increased TSC1 expression and decreased mTORC1 signaling, VEGF, ALP, OCN, and BMP levels in IL-1ß-induced osteoblasts. CONCLUSION: SI targets the TSC1/mTORC1 signaling pathway to suppress osteoblast activation and VEGF release, inhibiting type H vessel formation and slowing abnormal subchondral bone remodeling. These findings provide a novel therapeutic approach for OA by focusing on subchondral bone remodeling mechanisms.

6.
Heliyon ; 10(16): e36135, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39224392

ABSTRACT

Soybean (Glycine max [L.] Merr) plays a crucial role in the advancement of agriculture in Kazakhstan, serving as a promising food crop and feed source. The primary challenge in boosting soybean production in Northern Kazakhstan lies in the absence of soybean cultivars suited to the region's conditions. As such, the foremost focus of breeding initiatives should be on creating soybean varieties that possess both early maturity and satisfactory yield potential. The objective of this research was to assess the impact of maturity time (MT) on both the yield formation and the adaptive characteristics of soybean varieties from different origins. This evaluation was conducted by analyzing the outcomes of their testing under diverse cultivation conditions in the northern region of Kazakhstan. The soybean cultivars that were examined, originating from various sources, were classified into three primary groups. These groups varied in terms of their growing season duration as well as their yield levels. The way the alleles of the E1-E4 flowering genes were spread out in the identified clusters showed that for soybean varieties where recessive alleles of the E1-E4 genes build up, the growing season usually shorter. Cultivars of Chinese, Russian, and domestic selections isolated as a result of the research were good initial material for use in local breeding programs. Within the framework of the clusters, an environmental assessment of soybean accessions was carried out, which made it possible to determine their degree of plasticity and, in general, their adaptive potential in the conditions of Northern Kazakhstan. The best cultivars were the Chinese selection 'Dongnong 63' and the Russian selection 'SIBNIIK 315'. Hence, the present study successfully discovered soybean cultivars that possess exceptional adaptability and flexibility. These cultivars hold significant potential for cultivation and practical use in the specific environmental circumstances of northern Kazakhstan.

7.
Front Plant Sci ; 15: 1421221, 2024.
Article in English | MEDLINE | ID: mdl-39224853

ABSTRACT

Eukaryotic elongation factors (eEFs) are protein factors that mediate the extension of peptide chain, among which eukaryotic elongation factor 1 alpha (eEF1A) is one of the most abundant protein synthesis factors. Previously we showed that the P3 protein of Soybean mosaic virus (SMV), one of the most destructive and successful viral pathogens of soybean, targets a component of the soybean translation elongation complex to facilitate its pathogenesis. Here, we conducted a systematic analyses of the soybean eEF (GmeEF) gene family in soybean and examinedits role in virus resistance. In this study, GmeEF family members were identified and characterized based on sequence analysis. The 42 members, which were unevenly distributed across the 15 chromosomes, were renamed according to their chromosomal locations. The GmeEF members were further divided into 12 subgroups based on conserved motif, gene structure, and phylogenetic analyses. Analysis of the promoter regions showed conspicuous presence of myelocytomatosis (MYC) and ethylene-responsive (ERE) cis-acting elements, which are typically involved in drought and phytohormone response, respectively, and thereby in plant stress response signaling. Transcriptome data showed that the expression of 15 GmeEF gene family members changed significantly in response to SMV infection. To further examine EF1A function in pathogen response, three different Arabidopsis mutants carrying T-DNA insertions in orthologous genes were analyzed for their response to Turnip crinkle virus (TCV) and Cucumber mosaic virus (CMV). Results showed that there was no difference in viral response between the mutants and the wild type plants. This study provides a systematic analysis of the GmeEF gene family through analysis of expression patterns and predicted protein features. Our results lay a foundation for understanding the role of eEF gene in soybean anti-viral response.

8.
Plant Physiol ; 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39268876

ABSTRACT

Soybean [Glycine max (L.) Merr.] is a major oil-producing crop worldwide. Although several related proteins regulating soybean oil accumulation have been reported, little is known about the regulatory mechanisms. In this study, we characterized vascular plant one-zinc-finger 1A (GmVOZ1A) that interacts with WRINKLED 1a (GmWRI1a) using yeast two-hybrid library screening. The GmVOZ1A-GmWRI1a interaction was further verified by protein-protein interaction assays in vivo and in vitro. GmVOZ1A enhanced the seed fatty acid and oil contents by regulating genes involved in lipid biosynthesis. Conversely, a loss-of-function mutation in GmVOZ1A resulted in a reduction in triacylglycerol (TAG) content in soybean. Protein-DNA interaction assays revealed that GmVOZ1A and GmWRI1a cooperate to up-regulate the expression level of acyl-coenzymeA-binding protein 6a (GmACBP6a) and promote the accumulation of TAG. In addition, GmACBP6a overexpression promoted seed fatty acid and oil contents, as well as increased seed size and 100-seed weight. Taken together, these findings indicate that the transcription factor GmVOZ1A regulates soybean oil synthesis and cooperates with GmWRI1a to up-regulate GmACBP6a expression and oil biosynthesis in soybean. The results lay a foundation for a comprehensive understanding of the regulatory mechanisms underlying soybean oil biosynthesis and will contribute to improving soybean oil production through molecular breeding approaches.

9.
J Tradit Complement Med ; 14(5): 522-533, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39262663

ABSTRACT

Neuroinflammation is considered the principal pathogenic mechanism underlying neurodegenerative diseases, and the incidence of brain disorders is closely linked to dietary fat consumption and intestinal health. To investigate this relationship, 60 8-week-old C57BL/6J mice were subjected to a 20-week dietary intervention, wherein they were fed lard and soybean oil, each at 15% and 35% fat energy. At a dietary fat energy level of 35%, inflammation was observed in both the soybean oil and lard groups. Nevertheless, inflammation was more pronounced in the mice that were administered soybean oil. The process by which nerve cell structure is compromised, inflammatory factors are upregulated, brain antioxidant capacity is diminished, and the TLR4/MyD88/NF-κB p65 inflammatory pathway is activated resulting in damage to the brain-gut barrier. This, in turn, leads to a reduction in the abundance of Akkermansia and unclassified_f_Lachnospiraceae, as well as an increase in Dubosiella abundance, ultimately resulting in brain inflammation and damage. These results suggested that soybean oil induces more severe neuroinflammation compared to lard. Our study demonstrated that, at a dietary fat energy level of 35%, compared to soybean oil, lard could be the healthier option, the outcomes would help provide a reference basis for the selection of residents' daily dietary oil.

10.
Glob Chang Biol ; 30(9): e17500, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39262235

ABSTRACT

The coincidence of rising ozone concentrations ([O3]), increasing global temperatures, and drought episodes is expected to become more intense and frequent in the future. A better understanding of the responses of crop yield to elevated [O3] under different levels of drought and high temperature stress is, therefore, critical for projecting future food production potential. Using a 15-year open-air field experiment in central Illinois, we assessed the impacts of elevated [O3] coupled with variation in growing season temperature and water availability on soybean seed yield. Thirteen soybean cultivars were exposed to a wide range of season-long elevated [O3] in the field using free-air O3 concentration enrichment. Elevated [O3] treatments reduced soybean seed yield from as little as 5.3% in 2005 to 35.2% in 2010. Although cultivars differed in yield response to elevated [O3] (R), ranging from 17.5% to -76.4%, there was a significant negative correlation between R and O3 dosage. Soybean cultivars showed greater seed yield losses to elevated [O3] when grown at drier or hotter conditions compared to wetter or cooler years, because the hotter and drier conditions were associated with greater O3 treatment. However, year-to-year variation in weather conditions did not influence the sensitivity of soybean seed yield to a given increase in [O3]. Collectively, this study quantitatively demonstrates that, although drought conditions or warmer temperatures led to greater O3 treatment concentrations and O3-induced seed yield reduction, drought and temperature stress did not alter soybean's sensitivity to O3. Our results have important implications for modeling the effects of rising O3 pollution on crops and suggest that altering irrigation practices to mitigate O3 stress may not be effective in reducing crop sensitivity to O3.


Subject(s)
Droughts , Glycine max , Hot Temperature , Ozone , Seasons , Seeds , Glycine max/growth & development , Glycine max/physiology , Glycine max/metabolism , Ozone/analysis , Seeds/growth & development , Seeds/metabolism , Illinois
11.
J Adv Res ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39236976

ABSTRACT

INTRODUCTION: Heat stress poses a severe threat to the growth and production of soybean (Glycine max). Brassinosteroids (BRs) actively participate in plant responses to abiotic stresses, however, the role of BR signaling pathway genes in response to heat stress in soybean remains poorly understood. OBJECTIVES: In this study, we investigate the regulatory mechanisms of GmBSK1 and GmBES1.5 in response to heat stress and the physiological characteristics and yield performance under heat stress conditions. METHODS: Transgenic technology and CRISPR/Cas9 technology were used to generated GmBSK1-OE, GmBES1.5-OE and gmbsk1 transgenic soybean plants, and transcriptome analysis, LUC activity assay and EMSA assay were carried out to elucidate the potential molecular mechanism underlying GmBSK1-GmBES1.5-mediated heat stress tolerance in soybean. RESULTS: CRISPR/Cas9-generated gmbsk1 knockout mutants exhibited increased sensitivity to heat stress due to a reduction in their ability to scavenge reactive oxygen species (ROS). The expression of GmBES1.5 was up-regulated in GmBSK1-OE plants under heat stress conditions, and it directly binds to the E-box motif present in the promoters of abiotic stress-related genes, thereby enhancing heat stress tolerance in soybean plants. Furthermore, we identified an interaction between GmGSK1 and GmBES1.5, while GmGSK1 inhibits the transcriptional activity of GmBES1.5. Interestingly, the interaction between GmBSK1 and GmGSK1 promotes the localization of GmGSK1 to the plasma membrane and releases the transcriptional activity of GmBES1.5. CONCLUSION: Our findings suggest that both GmBSK1 and GmBES1.5 play crucial roles in conferring heat stress tolerance, highlighting a potential strategy for breeding heat-tolerant soybean crops involving the regulatory module consisting of GmBSK1-GmGSK1-GmBES1.5.

12.
Sci Rep ; 14(1): 20765, 2024 09 05.
Article in English | MEDLINE | ID: mdl-39237583

ABSTRACT

Drought is one of the major environmental issues that reduce crop yield. Seed germination is a crucial stage of plant development in all crop plants, including soybean. In soybean breeding, information about genetic mechanism of drought tolerance has great importance. However, at germination stage, there is relatively little knowledge on the genetic basis of soybean drought resistance. The objective of this work was to find the quantitative trait nucleotides (QTNs) linked to drought tolerance related three traits using a genome-wide association study (GWAS), viz., germination rate (GR), root length (RL), and whole seedling length (WSL), using germplasm population of 240 soybean PIs with 34,817 SNPs genotype data having MAF > 0.05. It was observed that heritability (H2) for GR, WSL, and RL across both environments (2020, and 2019) were high in the range of 0.76-0.99, showing that genetic factors play a vital role in drought tolerance as compared to environmental factors. A number of 23 and 27 QTNs were found to be linked to three traits using MLM and mrMLM, respectively. Three significant QTNs, qGR8-1, qWSL13-1, and qRL-8, were identified using both MLM and mrMLM methods among these QTNs. QTN8, located on chromosome 8 was consistently linked to two traits (GR and RL). The area (± 100 Kb) associated with this QTN was screened for drought tolerance based on gene annotation. Fifteen candidate genes were found by this screening. Based on the expression data, four candidate genes i.e. Glyma08g156800, Glyma08g160000, Glyma08g162700, and Glyma13g249600 were found to be linked to drought tolerance regulation in soybean. Hence, the current study provides evidence to understand the genetic constitution of drought tolerance during the germination stage and identified QTNs or genes could be utilized in molecular breeding to enhance the yield under drought stress.


Subject(s)
Droughts , Genome-Wide Association Study , Germination , Glycine max , Quantitative Trait Loci , Seeds , Glycine max/genetics , Glycine max/growth & development , Glycine max/physiology , Germination/genetics , Seeds/genetics , Seeds/growth & development , Polymorphism, Single Nucleotide , Stress, Physiological/genetics , Genotype , Phenotype , Drought Resistance
13.
Heliyon ; 10(18): e37466, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39309962

ABSTRACT

Soybean (Glycine max L.) serves not only as food for humans, animals, and industrial purposes, but is also a plant that can be used to comprehend molecular mechanisms occurring in stress response to various development techniques. To reveal the effect of applying dicarboxylic acids as stress priming agents on a metabolic level in soybean leaf extracts, the chemical profile of methanolic extracts were collected at different time points (1 h, 2 h, 12 h, 24 h, 1 week, 2 weeks and 3 weeks) after spraying were analyzed using 1H-NMR based metabolomics by way of PCA and OPLS-DA. The OPLS-DA revealed several metabolites, including organic acids (fumarate, citrate and malate) and amino acids (asparagine, alanine and GABA), which accumulated in higher amounts, with fumarate accumulating the highest in Glycine max L. leaf extracts compared to untreated leaves. Denaturing 1DE gels were prepared for MS-based protein analysis and the presence of fatty acids (linolenic, oleic and α-linolenic acid) were confirmed by gas chromatography coupled with mass spectrometry (GC-MS), which served as jasmonic acid precursors. The MS-based profiling of proteins on the denaturing 1DE gels revealed several proteins that were differentiated between the treated and untreated leaf extracts. These proteins included ferritins, CaM, ferredoxin-thioredoxin reductase and chalcone-flavanone isomerase 1A. Following the treatment, fumarate was significantly elevated at 12 h to 3 weeks, compared to other compounds. It is, therefore, proposed that elevated quantities of fumarate could be related to the KEAP1-NRF2 metabolic pathway. This study represents the initial investigation of the effect of dicarboxylic acid application as a stress priming agent on Glycine max L. using 1H-NMR metabolomic analysis, GC-MS and proteomic analysis.

14.
Physiol Mol Biol Plants ; 30(9): 1463-1473, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39310709

ABSTRACT

Vegetable soybean [Glycine max (L.) Merr.] is gaining popularity because of its high nutritive values and health benefits; however, its productivity is scarce. Recognizing the need to accelerate breeding progress, a modified approach of 'speed breeding' was used in 16 vegetable soybean genotypes to reduce the breeding periods. The genotypes were exposed to cycles of 10 h light (30 °C) and 14 h dark (25 °C) with CO2 (550 ppm) and without CO2 supplementation under the light intensity of 220 µmol m-2 s-1 at the canopy level and 70-80% relative humidity. To reduce the time further, physiologically matured pods were harvested once they changed their color from green to greenish yellow and dried in the oven for 7 days at 25 ± 2 °C with RH 10-20%. The genotypes showed variable responses towards days to flowering coupled with an increase in the number of pods, number of seeds and seed weight per plant, and 100 seed weight during a short breeding period under CO2 supplement. A couple of genotypes behaved indifferently under normal and elevated CO2 levels. The fresh oven-dried seeds displayed 73.33-100% germination, while that in the seeds stored at 4 °C for 10 months was 80-100%. Thus, the modified speed breeding technique could effectively reduce the breeding period without affecting the germination of the seeds. With this approach, we could save 6-34 days in a genotype dependent way which would at least give 4-4.5 generations of soybean per year instead of the usual 1-2 generations. Further, the reduction in maturity duration was more in longer duration genotypes than the shorter duration ones. This represents the country's initial report of rapid breeding in vegetable soybean and offers ample opportunity for rapid generation advancement in this crop. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01503-z.

15.
Food Chem ; 463(Pt 3): 141359, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39312831

ABSTRACT

In this study, quercetin (Que) was encapsulated for controlled release during gastrointestinal digestion using zein-soy isolate protein (SPI) composite nanoparticles that were made following an antisolvent precipitation technique. The average particle size of the composite nanoparticles ranged from 182.1 to 230.9 nm, and the polydispersity index (PDI) was small (0.105-0.323). The microstructure revealed that the composite nanoparticles were spherically distributed and that Que. was embedded on the surface of the nanoparticles. Que. has an encapsulation efficiency of up to 93.3 %. Spectrum analysis, molecular docking and zeta potential measurements revealed that the interactions between the composite nanoparticles and Que. occurred mainly through hydrophobic interactions, hydrogen bonding, and electrostatic interactions. Compared with single zein nanoparticles, the composite nanoparticles showed a significant and controlled release of Que. during the whole simulated gastrointestinal digestion process. This study provides a novel method for the development of a controlled-release drug delivery system for controlling the release of Que.

16.
Food Chem ; 463(Pt 3): 141300, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39306991

ABSTRACT

In this study, free radicals generated by ultrasound were used to prepare conjugates of food proteins (soybean protein isolates, sodium caseinate and gelatin) with epigallocatechin gallate (EGCG). The changes in free amino and sulfhydryl group contents were used to confirm the occurrence of conjugation. The formation of covalent interactions on surface hydrophobicity, functional groups, structures, thermal stability, and gelation behavior of three proteins were investigated. The results showed that conjugation led to decrease in free amino and sulfhydryl group contents, reduction in the intensity of amide A and fluorescence intensity, and increase in ß-fold content. The conjugation also resulted in a decrease in surface hydrophobicity and thermal stability of soybean protein isolates and sodium caseinate, but an increase in the surface hydrophobicity and thermal stability of gelatin. Furthermore, the covalent bonding between proteins and EGCG improved gel strength, water holding capacity, and resulted in a denser and more compact microstructure.

17.
New Phytol ; 2024 Sep 22.
Article in English | MEDLINE | ID: mdl-39307530

ABSTRACT

Genome editing is a revolution in biotechnology for crop improvement with the final product lacking transgenes. However, most derived traits have been generated through edits that create gene knockouts. Our study pioneers a novel approach, utilizing gene editing to enhance gene expression by eliminating transcriptional repressor binding motifs. Building upon our prior research demonstrating the protein-boosting effects of the transcription factor NF-YC4, we identified conserved motifs targeted by RAV and WRKY repressors in the NF-YC4 promoters from rice (Oryza sativa) and soybean (Glycine max). Leveraging CRISPR/Cas9 technology, we deleted these motifs, resulting in reduced repressor binding and increased NF-YC4 expression. This strategy led to increased protein content and reduced carbohydrate levels in the edited rice and soybean plants, with rice exhibiting up to a 68% increase in leaf protein and a 17% increase in seed protein, and soybean showing up to a 25% increase in leaf protein and an 11% increase in seed protein. Our findings provide a blueprint for enhancing gene expression through precise genomic deletions in noncoding sequences, promising improved agricultural productivity and nutritional quality.

18.
Plant Sci ; 349: 112247, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39313002

ABSTRACT

Phytophthora root and stem rot caused by Phytophthora sojae (P. sojae) is one of the most destructive diseases to affect soybean (Glycine max (L.) Merr) production. GmSRC2 that encodes a C2 domain-containing protein can respond to various stresses, however, the molecular mechanism of GmSRC2 in resistance of soybean to P. sojae is yet to be fully elucidated. In this study, GmSRC2 was found to be significantly up-regulated under P. sojae treatment; GmSRC2-overexpression (OE) transgenic lines and GmSRC2-silencing transient plants were generated via Agrobacterium tumefaciens mediated transformation and virus-induced gene silencing (VIGS) system, respectively. Infected leaves and cotyledons of OE-GmSRC2-1 and OE-GmSRC2-2 lines showed significant decreases in the disease symptoms and P. sojae biomass than those of wild type (WT); the activities of superoxide dismutase (SOD) and peroxidase (POD) confirmed the accumulation of reactive oxygen species (ROS) in overexpressed transgenic lines. Whereas, silencing of GmSRC2 severely increased the disease symptoms and the biomass of P. sojae. Further, we confirmed that GmSRC2 interacted with the effector PsAvh23 of P. sojae, and the C2 domain was crucial for the interaction. Overexpression of GmSRC2 upregulated the ADA2/GCN5 module upon P. sojae. The aforementioned results demonstrated that GmSRC2 played vital roles in regulating soybean resistance to oomycetes.

19.
Int J Biol Macromol ; 280(Pt 1): 135598, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39276878

ABSTRACT

This study proposed a novel extraction method for soy protein isolate, which involved solid-state fermentation of high-temperature soybean meal. The proteinases secreted by microorganisms acted on the high-temperature soybean meal, making the SPI easier to extract. The study concludes that Bacillus amyloliquefaciens subsp. plantarum CICC 10265 could be used for solid-state fermentation of soybean meal, and the fermentation effect was good, with a yield of 41.91 % for SPI. Compared to the direct extraction of SPI from high-temperature soybean meal, the yield had increased by 130.19 %. Meanwhile, we also conducted research on the losses during the SPI extraction process. Through experiments, the study identified the patterns of protease activity changes and microbial colony growth during solid-state fermentation of soybean meal by Bacillus amyloliquefaciens subsp. plantarum CICC 10265. It was concluded that extracting SPI after 8 h of fermentation is more suitable. The experimental results indicated that the total amino acid content of SPI extracted from fermented soybean meal was 2.1 % higher compared to SPI extracted from low-temperature soybean meal. The extracted SPI also met the microbial standards.

20.
Microbiol Res ; 289: 127911, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39303412

ABSTRACT

Soybean root rot, caused by soil-borne pathogens such as Fusarium oxysporum, frequently occurs in Northeast China and leads to a decline in soil health and becoming a bottleneck for soybean yield in the region. To address this issue, applying beneficial microorganisms and altering soil microbial community structure have become effective strategies. In this study, the 90-day soybean pot experiment was conducted to explore the assembly process and life strategy selection of bacterial communities in the rhizosphere of healthy (inoculated with Funneliformis mosseae, F group and treated with Pseudomonas putida, P group) and diseased (inoculated with F. oxysporum, O group) soybean plants, as well as the recovery effect of beneficial microorganisms on soil-borne diseases (combined treatments OP and OF). Results indicated that in healthy soils (P and F), microbial community assembly process in the soybean rhizosphere was entirely governed by heterogeneous selection (HeS, 100 %). However, inoculated with P. putida (OP) was primarily driven by stochastic processes (HeS 40 %, dispersal limitation (DL) 60 %), and the F. mosseae treatment (OF) predominantly followed a deterministic process (HeS 89 %, DL 11 %) in diseased soils. Inoculation of plant growth-promoting microorganisms (PGPMs) in diseased soil drove the life strategy of the rhizosphere bacterial community from r- to K-strategy, evident from the lower rRNA operon (rrn) copy numbers (O 3.7, OP 2.1, OF 2.3), higher G+ to G- ratios (O 0.47, OP 0.58, OF 0.57), and a higher abundance of oligotrophs (O 50 %, OP 53 %, OF 54 %). In healthy (P and F) and diseased (O, OP, OF) rhizosphere soils, OTU820, OTU6142, and OTU8841 under the K-strategy, and OTU6032 and OTU6917 under the r-strategy, which served as keystone species, had a significant promoting relationship with plant biomass and defense capabilities ( p <0.05). Additionally, inoculation of PGPMs improved autotoxin degradation and positively correlated with bacterial life strategies in both healthy and diseased soils (P, F, OP and OF) ( p <0.05). These findings enhance our understanding of soil-microbe interactions and offer new insights and precise control measures for soybean disease management and soil environment remediation.

SELECTION OF CITATIONS
SEARCH DETAIL