Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
J Phys Condens Matter ; 35(31)2023 May 09.
Article in English | MEDLINE | ID: mdl-37071999

ABSTRACT

We theoretically examine a topological nanospaser that is optically pumped using an ultra-fast circularly-polarized pulse. The spasing system consists of a silver nanospheroid, which supports surface plasmon (SP) excitations, and a transition metal dichalcogenide (TMDC) monolayer nanoflake. The silver nanospheroid screens the incoming pulse and creates a non-uniform spatial distribution of electron excitations in the TMDC nanoflake. These excitations decay into the localized SPs, which can be of two types with the corresponding magnetic quantum number ±1. The amount and the type of the generated SPs depend on the intensity of the optical pulse. For small pulse amplitude, only one plasmonic mode is predominantly generated, resulting in far-field elliptically polarized radiation. For large amplitude of the optical pulse, both plasmonic modes are generated in almost the same amount, resulting in linearly polarized far-field radiation.

2.
Nanomaterials (Basel) ; 11(5)2021 May 17.
Article in English | MEDLINE | ID: mdl-34067886

ABSTRACT

Plasmonic nanoresonators consisting of a gold nanorod and a spherical silica core and gold shell, both coated with a gain layer, were optimized to maximize the stimulated emission in the near-field (NF-c-type) and the outcoupling into the far-field (FF-c-type) and to enter into the spasing operation region (NF-c*-type). It was shown that in the case of a moderate dye concentration, the nanorod has more advantages: smaller lasing threshold and larger slope efficiency and larger achieved intensities in the near-field in addition to FF-c-type systems' smaller gain and outflow threshold, earlier dip-to-peak switching in the spectrum and slightly larger far-field outcoupling efficiency. However, the near-field (far-field) bandwidth is smaller for NF-c-type (FF-c-type) core-shell nanoresonators. In the case of a larger dye concentration (NF-c*-type), although the slope efficiency and near-field intensity remain larger for the nanorod, the core-shell nanoresonator is more advantageous, considering the smaller lasing, outflow, absorption and extinction cross-section thresholds and near-field bandwidth as well as the significantly larger internal and external quantum efficiencies. It was also shown that the strong-coupling of time-competing plasmonic modes accompanies the transition from lasing to spasing occurring, when the extinction cross-section crosses zero. As a result of the most efficient enhancement in the forward direction, the most uniform far-field distribution was achieved.

3.
ACS Nano ; 15(6): 9935-9944, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34029074

ABSTRACT

Plasmonic modes in optical cavities can be amplified through stimulated emission. Using this effect, plasmonic lasers can potentially provide chip-integrated sources of coherent surface plasmon polaritons (SPPs). However, while plasmonic lasers have been experimentally demonstrated, they have not generated propagating plasmons as their primary output signal. Instead, plasmonic lasers typically involve significant emission of free-space photons that are intentionally outcoupled from the cavity by Bragg diffraction or that leak from reflector edges due to uncontrolled scattering. Here, we report a simple cavity design that allows for straightforward extraction of the lasing mode as SPPs while minimizing photon leakage. We achieve plasmonic lasing in 10-µm-long distributed-feedback cavities consisting of a Ag surface periodically patterned with ridges coated by a thin layer of colloidal semiconductor nanoplatelets as the gain material. The diffraction to free-space photons from cavities designed with second-order feedback allows a direct experimental examination of the lasing-mode profile in real- and momentum-space, in good agreement with coupled-wave theory. In contrast, we demonstrate that first-order-feedback cavities remain "dark" above the lasing threshold and the output signal leaves the cavity as propagating SPPs, highlighting the potential of such lasers as on-chip sources of plasmons.

4.
ACS Nano ; 14(11): 14375-14390, 2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33119269

ABSTRACT

The plasmonic nanolaser is a class of lasers with the physical dimensions free from the optical diffraction limit. In the past decade, progress in performance, applications, and mechanisms of plasmonic nanolasers has increased dramatically. We review this advance and offer our prospectives on the remaining challenges ahead, concentrating on the integration with nanochips. In particular, we focus on the qualifications for electrical pumping, energy consumption, and ultrafast modulation. At last, we evaluate the strategies for on-chip source construction design and further threshold reduction to achieve a long-term room-temperature electrically pumped plasmonic nanolaser, the ultimate goal toward practical applications.

5.
Nanomaterials (Basel) ; 10(3)2020 Feb 27.
Article in English | MEDLINE | ID: mdl-32120985

ABSTRACT

Active nanoplasmonics have recently led to the emergence of many promising applications. One of them is the spaser (surface plasmons amplification by stimulated emission of radiation) that has been shown to generate coherent and intense fields of selected surface plasmon modes that are strongly localized in the nanoscale. We propose a novel nanospaser composed of a metal nanoparticles-graphene nanodisks hybrid plasmonic system as its resonator and a quantum dots cascade stack as its gain medium. We derive the plasmonic fields induced by pulsed excitation through the use of the effective medium theory. Based on the density matrix approach and by solving the Lindblad quantum master equation, we analyze the ultrafast dynamics of the spaser associated with coherent amplified plasmonic fields. The intensity of the plasmonic field is significantly affected by the width of the metallic contact and the time duration of the laser pulse used to launch the surface plasmons. The proposed nanospaser shows an extremely low spasing threshold and operates in the mid-infrared region that has received much attention due to its wide biomedical, chemical and telecommunication applications.

6.
Adv Mater ; 30(21): e1706918, 2018 May.
Article in English | MEDLINE | ID: mdl-29633385

ABSTRACT

Given the high demand for miniaturized optoelectronic circuits, plasmonic devices with the capability of generating coherent radiation at deep subwavelength scales have attracted great interest for diverse applications such as nanoantennas, single photon sources, and nanosensors. However, the design of such lasing devices remains a challenging issue because of the long structure requirements for producing strong radiation feedback. Here, a plasmonic laser made by using a nanoscale hyperbolic metamaterial cube, called hyperbolic metacavity, on a multiple quantum-well (MQW), deep-ultraviolet emitter is presented. The specifically designed metacavity merges plasmon resonant modes within the cube and provides a unique resonant radiation feedback to the MQW. This unique plasmon field allows the dipoles of the MQW with various orientations into radiative emission, achieving enhancement of spontaneous emission rate by a factor of 33 and of quantum efficiency by a factor of 2.5, which is beneficial for coherent laser action. The hyperbolic metacavity laser shows a clear clamping of spontaneous emission above the threshold, which demonstrates a near complete radiation coupling of the MQW with the metacavity. This approach shown here can greatly simplify the requirements of plasmonic nanolaser with a long plasmonic structure, and the metacavity effect can be extended to many other material systems.

7.
ACS Nano ; 12(4): 3865-3874, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29641176

ABSTRACT

Hybrid plasmonic nanolasers are intensively studied due to their nanoscale mode confinement and potentials in highly integrated photonic and quantum devices. Until now, the characteristics of plasmonic nanolasers are mostly determined by the crystal facets of top semiconductors, such as ZnO nanowires or nanoplates. As a result, the spasers are isolated, and their lasing wavelengths are random and difficult to tune. Herein, we experimentally demonstrate the formation of lead halide perovskite (MAPbX3) based hybrid plasmonic nanolasers and nanolaser arrays with arbitrary cavity shapes and controllable lasing wavelengths. These spasers are composed of MAPbX3 perovskite nanosheets, which are separated from Au patterns with a 10 nm SiO2 spacer. In contrast to previous reports, here, the spasers are determined by the boundary of Au patterns instead of the crystal facets of MAPbX3 nanosheets. As a result, whispering gallery mode based circular spasers and spaser arrays were successfully realized by patterning the Au substrate into circles and gratings, respectively. The standard wavelength deviation of spaser arrays is as small as 0.3 nm. Meanwhile, owing to the anion-exchangeable property of MAPbX3 perovskite, the emission wavelengths of spasers were tuned more than 100 nm back and forth by changing the stoichiometry of perovskite postsynthetically.

8.
ACS Nano ; 11(12): 12573-12582, 2017 12 26.
Article in English | MEDLINE | ID: mdl-29087690

ABSTRACT

The inception of the plasmonic laser or spaser (surface plasmon amplification by stimulated emission of radiation) concept in 2003 provides a solution for overcoming the diffraction limit of electromagnetic waves in miniaturization of traditional lasers into the nanoscale. From then on, many spaser designs have been proposed. However, all existing designs use closed resonators. In this work, we use cavity quantum electrodynamics analysis to theoretically demonstrate that it is possible to design an electric spaser with an open resonator or a closed resonator with much weak feedback in the extreme quantum limit in an all-carbon platform. A carbon nanotube quantum dot plays the role of a gain element, and Coulomb blockade is observed. Graphene nanoribbons are used as the resonator, and surface plasmon polariton field distribution with quantum electrodynamics features can be observed. From an engineering perspective, our work makes preparations for integrating spasers into nanocircuits and/or photodynamic therapy applications.

9.
Sci Adv ; 3(4): e1601962, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28439539

ABSTRACT

Spasers are a new class of laser devices with cavity sizes free from optical diffraction limit. They are an emergent tool for various applications, including biochemical sensing, superresolution imaging, and on-chip optical communication. According to its original definition, a spaser is a coherent surface plasmon amplifier that does not necessarily generate a radiative photon output. However, to date, spasers have only been studied with scattered photons, and their intrinsic surface plasmon emission is a "dark" emission that is yet to be revealed because of its evanescent nature. We directly image the surface plasmon emission of spasers in spatial, momentum, and frequency spaces simultaneously. We demonstrate a nanowire spaser with a coupling efficiency to plasmonic modes of 74%. This coupling efficiency can approach 100% in theory when the diameter of the nanowire becomes smaller than 50 nm. Our results provide clear evidence of the surface plasmon amplifier nature of spasers and will pave the way for their various applications.

10.
Ann Phys ; 528(3-4): 295-306, 2016 04.
Article in English | MEDLINE | ID: mdl-27158151

ABSTRACT

It is known (yet often ignored) from quantum mechanical or energetic considerations, that the threshold gain of the quasi-static spaser depends only on the dielectric functions of the metal and the gain material. Here, we derive this result from the purely classical electromagnetic scattering framework. This is of great importance, because electrodynamic modelling is far simpler than quantum mechanical one. The influence of the material dispersion and spaser geometry are clearly separated; the latter influences the threshold gain only indirectly, defining the resonant wavelength. We show that the threshold gain has a minimum as a function of wavelength. A variation of nanoparticle shape, composition, or spasing mode may shift the plasmonic resonance to this optimal wavelength, but it cannot overcome the material-imposed minimal gain. Furthermore, retardation is included straightforwardly into our framework; and the global spectral gain minimum persists beyond the quasi-static limit. We illustrate this with two examples of widely used geometries: Silver spheroids and spherical shells embedded in and filled with gain materials.

11.
ACS Nano ; 9(12): 11582-8, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26456299

ABSTRACT

Plasmon lasers support cavity structures with sizes below that of the diffraction limit. However, most plasmon-based lasers show bidirectional lasing emission or emission with limited far-field directionality and large radiative losses. Here, we report unidirectional lasing from ultrasmooth, template-stripped two-dimensional (2D) plasmonic crystals. Optically pumped 2D plasmonic crystals (Au or Ag) surrounded by dye molecules exhibited lasing in a single emission direction and their lasing wavelength could be tuned by modulating the dielectric environment. We found that 2D plasmonic crystals were an ideal architecture to screen how nanocavity unit-cell structure, metal material, and gain media affected the lasing response. We discovered that template-stripped strong plasmonic materials with cylindrical posts were an optimal cavity design for a unidirectional laser operating at room temperature.

12.
Beilstein J Nanotechnol ; 4: 974-87, 2013 Dec 30.
Article in English | MEDLINE | ID: mdl-24455456

ABSTRACT

We numerically simulate the compensation of absorption, the near-field enhancement as well as the differential far-field scattering cross section for dye-doped polystyrene spheres (radius 195 nm), which are half-covered by a silver layer of 10-40 nm thickness. Such silver capped spheres are interesting candidates for nanoplasmonic lasers, so-called spasers. We find that spasing requires gain levels less than 3.7 times higher than those in commercially available dye-doped spheres. However, commercially available concentrations are already apt to achieve negative absorption, and to narrow and enhance scattering by higher order modes. Narrowing of the plasmonic modes by gain also makes visible higher order modes, which are normally obscured by the broad spectral features of the lower order modes. We further show that the angular distribution of the far-field scattering of the spasing modes is by no means dipole-like and is very sensitive to the geometry of the structure.

SELECTION OF CITATIONS
SEARCH DETAIL