Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 534
Filter
1.
Sci Rep ; 14(1): 13379, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862689

ABSTRACT

As age increases, a decline in lower extremity strength leads to reduced mobility and increased fall risks. This decline outpaces the age-related reduction in muscle mass, resulting in mobility limitations. Older adults with varying degrees of mobility-disability use different stepping strategies. However, the link between functional lower extremity strength and stepping strategy is unknown. Therefore, understanding how age-related reductions in functional lower extremity strength influence stepping strategy is vital to unraveling mobility limitations. Twenty participants (17F, 72 ± 6 years) were recruited and tested at a local community event. Participants were outfitted with inertial measurement units (IMU) and walked across a pressurized walkway under single and dual motor task conditions (walking with and without carrying a tray with water) at their usual and fast speeds. Participants were dichotomized into normal (11) or low functional strength groups (9) based on age-specific normative cutoffs using the instrumented 5-repetition Sit-to-Stand test duration. Our study reveals that older adults with normal strength prefer adjusting their step time during walking tasks, while those with reduced strength do not exhibit a preferred stepping strategy. This study provides valuable insights into the influence of functional lower extremity strength on stepping strategy in community-dwelling older adults during simple and complex walking tasks. These findings could aid in diagnosing gait deviations and developing appropriate treatment or management plans for mobility disability in older adults.


Subject(s)
Independent Living , Lower Extremity , Muscle Strength , Walking , Humans , Aged , Male , Female , Walking/physiology , Lower Extremity/physiology , Muscle Strength/physiology , Gait/physiology , Aged, 80 and over , Mobility Limitation
2.
Cell Rep ; 43(6): 114312, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38848217

ABSTRACT

We used a step-wheel system to examine the activity of striatal projection neurons as mice practiced stepping on complexly arranged foothold pegs in this Ferris-wheel-like device to receive reward. Sets of dorsolateral striatal projection neurons were sensitive to specific parameters of repetitive motor coordination during the runs. They responded to combinations of the parameters of continuous movements (interval, phase, and repetition), forming "chunking responses"-some for combinations of these parameters across multiple body parts. Recordings in sensorimotor cortical areas exhibited notably fewer such responses but were documented for smaller neuron sets whose heterogeneity was significant. Striatal movement encoding via chunking responsivity could provide insight into neural strategies governing effective motor control by the striatum. It is possible that the striking need for external rhythmic cuing to allow movement sequences by Parkinson's patients could, at least in part, reflect dysfunction in such striatal coding.


Subject(s)
Corpus Striatum , Movement , Animals , Corpus Striatum/physiology , Mice , Movement/physiology , Male , Mice, Inbred C57BL , Neurons/physiology , Periodicity , Motor Activity/physiology
3.
Children (Basel) ; 11(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38929302

ABSTRACT

Adolescent idiopathic scoliosis (AIS) is a common form of scoliosis. As the name suggests, etiopathogenesis is not clearly defined, so treatment is still anchored in the musculoskeletal theory and correction/prevention of high Cobb angle values. This study aimed to determine whether there is any connection between developing scoliotic curvature and a positive history of motion sickness as a symptom of a peripheral vestibular dysfunction/deficit, and if vestibular rehabilitation exercises could be integrated into the treatment plan. The study was conducted over 12 months on a selected population of 159 patients to evaluate or treat scoliotic curvatures in a private clinic. The collected data were analyzed using IBM SPSS Statistics 25 and illustrated using Microsoft Office Excel/Word 2021. Patients with peripheral vestibular dysfunction had significantly higher Cobb angle values when compared to patients with a negative result in an instrumental test for peripheral vestibular dysfunction. Motion sickness was considerably more associated with peripheral vestibular dysfunction, and a positive Fukuda stepping test was associated with a positive history of motion sickness. Adolescent idiopathic scoliosis with higher Cobb angles is related to positive motion sickness history as part of peripheral vestibular dysfunction. Conservative treatment for scoliosis could incorporate sensory integration techniques, and a positive history of motion sickness could be an indicator of a higher risk of progression in adolescent idiopathic scoliosis.

4.
bioRxiv ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38854143

ABSTRACT

Older adults and neurological populations tend to walk with slower speeds, more gait variability, and a higher metabolic cost. This higher metabolic cost could be related to their increased gait variability, but this relationship is still unclear. The purpose of this study was to determine how increased step length variability affects the metabolic cost of waking. Eighteen healthy young adults completed a set of 5-minute trials of treadmill walking at 1.20 m/s while we manipulated their step length variability. Illuminated rectangles were projected onto the surface of a treadmill to cue step length variabilities of 0, 5 and 10% (coefficient of variation). Actual step lengths and their variability were tracked with reflective markers on the feet, while metabolic cost was measured using indirect calorimetry. Changes in metabolic cost across habitual walking (no projections) and the three variability conditions were analyzed using a linear mixed effects model. Metabolic power was largest in the 10% condition (4.30 ± 0.23 W/kg) compared to 0% (4.16 ± 0.18 W/kg) and habitual (3.98 ± 0.25 W/kg). The participant's actual step length variability did not match projected conditions for 0% (3.10%) and 10% (7.03%). For every 1% increase in step length variability, there is an 0.7% increase in metabolic cost. Our results demonstrate an association between the metabolic cost of walking and gait step length variability. This suggests that increased gait variability contributes to a portion of the increased cost of walking seen in older adults and neurological populations.

5.
Anim Cells Syst (Seoul) ; 28(1): 251-260, 2024.
Article in English | MEDLINE | ID: mdl-38721229

ABSTRACT

The COVID-19 pandemic has significantly impacted human life, posing serious physical and psychological threats, particularly to the elderly. While individuals of all ages are susceptible to contracting COVID-19, older people face a heightened risk of developing various diseases due to age-related immunophysiological changes and preexisting health conditions. The interplay between immune health and physical activity is believed to hold even greater significance during a pandemic. Recent findings from our research indicate that the intervention of square stepping exercise (SSE), characterized by a rhythmic and controlled stepping pattern, resulted in increased levels of Brain-Derived Neurotrophic Factor (BDNF) in the elderly. BDNF, known to influence not only nerve cells but also immune cells, suggests a potential link between SSE and immune system modulation. Consequently, this exercise regimen holds promise in counteracting age-related immunophysiological changes, fine-tuning immune responses, and mitigating the severity of potential new virus outcomes, such as 'Disease X.' This review aims to underscore the significance of integrating SSE as a home-based program, serving as a potent tool to enhance immune resilience, prepare for future potential pandemics, and empower older individuals during challenging times. Through the practice of SSE, older adults may strengthen their ability to navigate the challenges posed by pandemics and maintain a sense of control over their well-being.

6.
Scand J Med Sci Sports ; 34(5): e14645, 2024 May.
Article in English | MEDLINE | ID: mdl-38736180

ABSTRACT

INTRODUCTION: Age-related decline in physical functioning has significant implications for health in later life but declines begin earlier in midlife. Physical activity (PA) volume is associated with physical function, but the importance of the pattern in which PA is accumulated is unclear. This study investigates associations between patterns of PA accumulation, including the composition, variation, and temporal distribution of upright and stepping events, with physical function in midlife. METHODS: Participants (n = 4378) from the 1970 British Cohort Study wore an activPAL3 accelerometer on the thigh for 7 consecutive days. Exposure measures included a suite of metrics describing the frequency, duration, and composition of upright events, as well as the duration and volume (total steps) of stepping events. In addition, patterns of accumulation of upright and sedentary events were examined including how fragmented/transient they were (upright-to-sedentary transition probability [USTP]) and their burstiness (the tendency for events to be clustered together followed by longer interevent times). Physical function outcomes included grip strength (GS), balance, and SF-36 physical functioning subscale (SF-36pf). Cross-sectional analyses included multivariable linear regression models to assess associations, adjusting for covariates including overall PA volume (mean daily step count). RESULTS: Higher upright event burstiness was associated with higher GS, and higher USTP was associated with lower GS. Duration and step volume of stepping events were positively associated with SF-36pf in females. Step-weighted cadence was positively associated with SF-36pf and balance. Contradictory findings were also present (e.g., more transient stepping events were associated with better GS) particularly for GS in males. Inconsistencies between sexes were observed across some associations. CONCLUSION: Our study reveals that diverse patterns of PA accumulation exhibit distinct associations with various measures of physical function in midlife, irrespective of the overall volume. Contradictory findings and inconsistency between sexes warrant further investigation. Patterns of PA accumulation, in addition to volume, should be considered in future PA research. Longitudinal studies are required to determine whether a given volume of activity accumulated in different patterns, impacts associations between PA and health outcomes.


Subject(s)
Accelerometry , Exercise , Hand Strength , Humans , Female , Male , Middle Aged , Cross-Sectional Studies , United Kingdom , Hand Strength/physiology , Exercise/physiology , Sedentary Behavior , Postural Balance/physiology , Cohort Studies , Walking/physiology
7.
Res Sq ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38558996

ABSTRACT

As age increases, a decline in lower extremity strength leads to reduced mobility and increased fall risks. This decline outpaces the age-related reduction in muscle mass, resulting in mobility limitations. Older adults with varying degrees of mobility-disability use different stepping strategies. However, the link between functional lower extremity strength and stepping strategy is unknown. Therefore, understanding how age-related reductions in functional lower extremity strength influence stepping strategy is vital to unraveling mobility limitations. Participants were recruited and tested at a local community event, where they were outfitted with IMUs and walked across a pressurized walkway. Our study reveals that older adults with normal strength prefer adjusting their step time during walking tasks, while those with reduced strength do not exhibit a preferred stepping strategy. This study provides valuable insights into the influence of functional lower extremity strength on stepping strategy in community-dwelling older adults during simple and complex walking tasks. These findings could aid in diagnosing gait deviations and developing appropriate treatment or management plans for mobility disability in older adults.

8.
BMC Geriatr ; 24(1): 326, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600478

ABSTRACT

BACKGROUND: Preservation of mobility and fall prevention have a high priority in geriatric rehabilitation. Square-Stepping Exercise (SSE) as an evaluated and standardized program has been proven to be an effective training for older people in the community setting to reduce falls and improve subjectively perceived health status. This randomized controlled trial (RCT), for the first time, examines SSE in the context of inpatient early geriatric rehabilitation compared to conventional physiotherapy (cPT). METHODS: Data were collected in a general hospital in the department of acute geriatric care at admission and discharge. Fifty-eight inpatients were randomized to control (CG, n = 29) or intervention groups (IG, n = 29). CG received usual care with cPT five days per week during their hospital stay. For the IG SSE replaced cPT for at least six sessions, alternating with cPT. Physical function was measured with the Short Physical Performance Battery (SPPB) and Timed "Up & Go" (TUG). Gait speed was measured over a distance of 10 m. In a subgroup (n = 17) spatiotemporal gait parameters were analyzed via a GAITRite® system. RESULTS: Both the SPPB total score improved significantly (p = < 0.001) from baseline to discharge in both groups, as did the TUG (p < 0.001). In the SPPB Chair Rise both groups improved with a significant group difference in favor of the IG (p = 0.031). For both groups gait characteristics improved: Gait speed (p = < 0.001), walk ratio (p = 0.011), step length (p = < 0.001), stride length (p = < 0.001) and double support (p = 0.009). For step length at maximum gait speed (p = 0.054) and stride length at maximum gait speed (p = 0.060) a trend in favor of the IG was visible. CONCLUSIONS: SSE in combination with a reduced number of sessions of cPT is as effective as cPT for inpatients in early geriatric rehabilitation to increase physical function and gait characteristics. In the Chair Rise test SSE appears to be superior. These results highlight that SSE is effective, and may serve as an additional component for cPT for older adults requiring geriatric acute care. TRIAL REGISTRATION: DRKS00026191.


Subject(s)
Exercise , Inpatients , Humans , Aged , Pilot Projects , Walking , Exercise Therapy/methods , Gait , Postural Balance
9.
J Biomech ; 166: 112069, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38579560

ABSTRACT

We assessed the effects of a passive, back-support exoskeleton (BSE) on lower-limb joint kinetics during the initiation and swing phases of recovery from a forward loss of balance. Sixteen (8M, 8F) young, healthy participants were released from static forward-leaning postures and attempted to recover their balance with a single-step while wearing a BSE (backXTM) with different levels of support torque and in a control condition. The BSE provided âˆ¼ 15-20 Nm of external hip extension torque on the stepping leg at the end of initiation and beginning of swing phases. Participants were unable to generate sufficient hip flexion torque, power, and work to counteract this external torque, although they sustained hip flexion torque for a more prolonged period, resulting in slightly increased hip contribution to positive leg work (compared to control). However, net positive leg work, and the net contribution of hip joint (human + BSE) to total leg work decreased with BSE use. While all participants had changes in hip joint kinetics, a significant compensatory increase in ankle contribution to positive leg work was observed only among females. Our results suggest that BSE use adversely affects reactive stepping by decreasing the stepping leg kinetic energy for forward propulsion, and that the relative contributions of lower-limb joints to total mechanical work done during balance recovery are altered by BSE use. BSEs may thus need to be implemented with caution for dynamic tasks in occupational settings, as they may impair balance recovery following a forward loss of balance.


Subject(s)
Exoskeleton Device , Female , Humans , Knee Joint , Lower Extremity , Hip Joint , Ankle , Biomechanical Phenomena
10.
Exp Gerontol ; 191: 112424, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38604252

ABSTRACT

INTRODUCTION: Reactive stepping capacity to recover from a loss of balance declines with aging, which increases the risk of falling. To gain insight into the underlying mechanisms, we investigated whether muscle coordination patterns of reactive stepping differed between healthy young and older individuals. METHODS: We performed a cross-sectional study between 15 healthy young and 14 healthy older adults. They recovered from 200 multidirectional platform translations that evoked reactive stepping responses. We determined spatiotemporal step variables and used muscle synergy analysis to characterize stance- and swing-leg muscle coordination patterns from the start of perturbation until foot landing. RESULTS: We observed delayed step onsets in older individuals, without further spatiotemporal differences. Muscle synergy structure was not different between young and older individuals, but age-related differences were observed in the time-varying synergy activation patterns. In anterior-posterior directions, the older individuals demonstrated significantly enhanced early swing-leg synergy activation consistent with non-stepping behavior. In addition, around step onset they demonstrated increased levels of synergy coactivation (mainly around the ankle) in lateral and anterior directions, which did not appear to hamper foot clearance. CONCLUSION: Although synergy structure was not affected by age, the delayed step onsets and the enhanced early synergy recruitment point at a relative bias towards non-stepping behavior in older adults. They may need more time for accumulating information on the direction of perturbation and making the corresponding sensorimotor transformations before initiating the step. Future work may investigate whether perturbation-based training improves these age-related deficits.


Subject(s)
Aging , Muscle, Skeletal , Postural Balance , Humans , Cross-Sectional Studies , Male , Aged , Female , Muscle, Skeletal/physiology , Postural Balance/physiology , Aging/physiology , Young Adult , Adult , Electromyography , Biomechanical Phenomena , Accidental Falls/prevention & control , Middle Aged , Walking/physiology
11.
Waste Manag ; 182: 132-141, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38653042

ABSTRACT

Household organic waste has great potential for closing nutrient cycles in agriculture. This requires proper waste separation by households. Personal communication at the doorstep potentially improves household waste separation behaviour but it is expensive and findings from existing research are mixed. Based on results of previous studies and from a quasi-experiment with non-equivalent groups design in two German municipalities, this paper argues that efficiency of personal communication depends on its context. It can positively influence behaviour when recycling is voluntary and participation rates are low. However, it has no significant effects if recycling is mandatory. One explanation could be different perceptions of recycling in mandatory and voluntary schemes. In voluntary schemes door stepping can activate the intrinsic motivation of households. In mandatory schemes, all households need to participate irrespective of intrinsic motivation. This research shows that this creates a situation in which a small share of households is responsible for almost all contamination. This can be overcome by considering extrinsic factors that affect recycling behaviour. The paper recommends further research to understand which combination of incentives, sanctions and information is efficient in affecting behaviour change in mandatory recycling schemes.


Subject(s)
Communication , Family Characteristics , Recycling , Germany , Recycling/methods , Waste Management/methods , Humans , Motivation , Agriculture/methods
12.
Hum Mov Sci ; 95: 103200, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38461747

ABSTRACT

PURPOSE: Considering the relationship between aging and neuromuscular control decline, early detection of age-related changes can ensure that timely interventions are implemented to attenuate or restore neuromuscular deficits. The dynamic motor control index (DMCI), a measure based on variance accounted for (VAF) by one muscle synergy (MS), is a metric used to assess age-related changes in neuromuscular control. The aim of the study was to investigate the use of one-synergy VAF, and consecutively DMCI, in assessing age-related changes in neuromuscular control over a range of exercises with varying difficulty. METHODS: Thirty-one subjects walked on a flat and inclined treadmill, as well as performed forward and lateral stepping up tasks. Motion and muscular activity were recorded, and muscle synergy analysis was conducted using one-synergy VAF, DMCI, and number of synergies. RESULTS: Difference between older and younger group was observed for one-synergy VAF, DMCI for forward stepping up task (one-synergy VAF difference of 2.45 (0.22, 4.68) and DMCI of 9.21 (0.81, 17.61), p = 0.033), but not for lateral stepping up or walking. CONCLUSION: The use of VAF based metrics and specifically DMCI, rather than number of MS, in combination with stepping forward exercise can provide a low-cost and easy to implement approach for assessing neuromuscular control in clinical settings.


Subject(s)
Aging , Muscle, Skeletal , Walking , Humans , Male , Female , Adult , Aged , Aging/physiology , Middle Aged , Muscle, Skeletal/physiology , Walking/physiology , Young Adult , Electromyography , Exercise Test , Biomechanical Phenomena/physiology , Age Factors
13.
Q J Exp Psychol (Hove) ; : 17470218241242420, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38485517

ABSTRACT

Previous studies have shown that choices about how to configure stepping-stones to be used as playground or exercise equipment reflect a person's action capabilities. In two experiments, we investigated whether choices about how to configure stepping-stones to be used as a path for locomotion additionally reflect the goals for which or the constraints under which the path is to be used. In Experiment 1, participants created stepping-stone configurations (with rubber mats) that would allow them to cross a given space quickly, comfortably, or carefully. Configurations in the "Quickly" condition consisted of fewer mats, and longer mean (linear) distances between mats, and greater "challenge" (relative to maximum stepping distance) than in the other two conditions. In Experiment 2, participants created stepping-stone configurations that would be fun to use or that would be easy to use to cross a given space. Configurations in the "Fun" condition consisted of more mats, longer linear distances between mats, and greater "challenge" than those in the "Easy" condition. Moreover, paths in the "Fun" condition were also wider, longer, and exhibited larger changes in distances and angles between consecutive mats than in the "Easy" condition. The results are discussed both in terms of implications for understanding affordances and for the design of stepping-stone paths.

14.
Front Psychol ; 15: 1360198, 2024.
Article in English | MEDLINE | ID: mdl-38469219

ABSTRACT

Previous research found that when participants across the lifespan could be the architect of their own stepping-stones landscapes, they create nonstandardized configurations with gap-width variation. Yet, architects often use standardized dimensions in their designs for playgrounds and outdoor fitness areas. To scrutinize why architects tend to seek for more standardized designs than the examined target users, we tested the hypothesis that the difference is caused by a different perspective during the making process. After all, landscape architects generally design on 2D maps, while the participants designed in situ. We asked 67 participants to design a stepping-stones landscape on a 2D map and 67 other participants to create the landscape in situ. Contrary to our expectations, we found no indications that designing on a 2D map leads to more standardized configurations. We end with discussing other characteristics of the design processes that could potentially explain the omnipresent standardization in design.

15.
Elife ; 122024 Mar 25.
Article in English | MEDLINE | ID: mdl-38526916

ABSTRACT

The striatum serves an important role in motor control, and neurons in this area encode the body's initiation, cessation, and speed of locomotion. However, it remains unclear whether the same neurons also encode the step-by-step rhythmic motor patterns of individual limbs that characterize gait. By combining high-speed video tracking, electrophysiology, and optogenetic tagging, we found that a sizable population of both D1 and D2 receptor expressing medium spiny projection neurons (MSNs) were phase-locked to the gait cycle of individual limbs in mice. Healthy animals showed balanced limb phase-locking between D1 and D2 MSNs, while dopamine depletion led to stronger phase-locking in D2 MSNs. These findings indicate that striatal neurons represent gait on a single-limb and step basis, and suggest that elevated limb phase-locking of D2 MSNs may underlie some of the gait impairments associated with dopamine loss.


Subject(s)
Dopamine , Receptors, Dopamine D1 , Mice , Animals , Receptors, Dopamine D1/metabolism , Corpus Striatum/physiology , Neostriatum/physiology , Gait , Mice, Transgenic
16.
Brain Imaging Behav ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38530517

ABSTRACT

Reactive steps are rapid responses after balance challenges. People with Parkinson's Disease (PwPD) demonstrate impaired reactive stepping, increasing fall-risk. Although PwPD can improve steps through practice, the neural mechanisms contributing to improved reactive stepping are poorly understood. This study investigated white-matter correlates of responsiveness to reactive step training in PwPD. In an eighteen-week multiple-baseline study, participants (n = 22) underwent baseline assessments (B1 and B2 two-weeks apart), a two-week training protocol, and post-training assessments immediately (P1) and two-months (P2) post-training. Assessments involved three backward reactive step trials, measuring anterior-posterior margin of stability (AP MOS), step length, and step latency. Tract-Based Spatial Statistics correlated white-matter integrity (fractional anisotropy (FA) and radial diffusivity (RD)) with retained (P2-B2) and immediate improvements (P1-B2) in stepping. Significant and sustained improvements in step length and AP MOS were observed. Greater retention of step length improvement correlated with increased FA in the left anterior thalamic radiation (ATR), left posterior thalamic radiation (PTR), left superior longitudinal fasciculus (SLF), and right inferior longitudinal fasciculus (ILF). Step latency retention was associated with lower RD in the left posterior corona radiata and left PTR. Immediate improvements in AP MOS correlated with increased FA of the right ILF, right SLF, and right corticospinal tract. Immediate step length improvements were associated with increased FA in right and left ATR and right SLF. These findings highlight the importance of white-matter microstructural integrity in motor learning and retention processes in PD and could aid in identifying individuals with PD who would benefit most from balance rehabilitation.

17.
Mult Scler ; 30(4-5): 571-584, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38362861

ABSTRACT

BACKGROUND: Cognitive-motor step training can improve stepping, balance and mobility in people with multiple sclerosis (MS), but effectiveness in preventing falls has not been demonstrated. OBJECTIVES: This multisite randomised controlled trial aimed to determine whether 6 months of home-based step exergame training could reduce falls and improve associated risk factors compared with usual care in people with MS. METHODS: In total, 461 people with MS aged 22-81 years were randomly allocated to usual care (control) or unsupervised home-based step exergame training (120 minutes/week) for 6 months. The primary outcome was rate of falls over 6 months from randomisation. Secondary outcomes included physical, cognitive and psychosocial function at 6 months and falls over 12 months. RESULTS: Mean (standard deviation (SD)) weekly training duration was 70 (51) minutes over 6 months. Fall rates did not differ between intervention and control groups (incidence rates (95% confidence interval (CI)): 2.13 (1.57-2.69) versus 2.24 (1.35-3.13), respectively, incidence rate ratio: 0.96 (95% CI: 0.69-1.34, p = 0.816)). Intervention participants performed faster in tests of choice-stepping reaction time at 6 months. No serious training-related adverse events were reported. CONCLUSION: The step exergame training programme did not reduce falls among people with MS. However, it significantly improved choice-stepping reaction time which is critical to ambulate safely in daily life environment.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/complications , Multiple Sclerosis/therapy , Exercise Therapy , Exergaming , Risk Factors , Quality of Life
18.
Front Hum Neurosci ; 18: 1337504, 2024.
Article in English | MEDLINE | ID: mdl-38410257

ABSTRACT

Introduction: Rhythmic visual cues (RVCs) may influence gait initiation by modulating cognition resources. However, it is unknown how RVCs modulate cognitive resources allocation during gait movements. This study focused on investigating the effects of RVCs on cortical hemodynamic response features during stepping to evaluate the changes of cognitive resources. Methods: We recorded cerebral hemoglobin concentration changes of 14 channels in 17 healthy subjects using functional near-infrared spectroscopy (fNIRS) during stepping tasks under exposure to RVCs and non-rhythmic visual cues (NRVCs). We reported mean oxygenated hemoglobin (HbO) concentration changes, ß-values, and functional connectivity (FC) between channels. Results: The results showed that, the RVC conditions revealed lower HbO responses compared to the NRVC conditions during the preparation and early stepping. Correspondingly, the ß-values reflected that RVCs elicited lower hemodynamic responses than NRVCs, and there was a decreasing trend in stimulus-evoked cortical activation as the task progressed. However, the FC between channels were stronger under RVCs than under NRVCs during the stepping progress, and there were more significant differences in FC during the early stepping. Discussion: In conclusion, there were lower cognitive demand and stronger FC under RVC conditions than NRVC conditions, which indicated higher efficiency of cognitive resources allocation during stepping tasks. This study may provide a new insight for further understanding the mechanism on how RVCs alleviate freezing of gait.

19.
Mol Ecol ; 33(6): e17282, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38299701

ABSTRACT

Many species are shifting their ranges in response to climate-driven environmental changes, particularly in high-latitude regions. However, the patterns of dispersal and colonization during range shifting events are not always clear. Understanding how populations are connected through space and time can reveal how species navigate a changing environment. Here, we present a fine-scale population genomics study of gentoo penguins (Pygoscelis papua), a presumed site-faithful colonial nesting species that has increased in population size and expanded its range south along the Western Antarctic Peninsula. Using whole genome sequencing, we analysed 129 gentoo penguin individuals across 12 colonies located at or near the southern range edge. Through a detailed examination of fine-scale population structure, admixture, and population divergence, we inferred that gentoo penguins historically dispersed rapidly in a stepping-stone pattern from the South Shetland Islands leading to the colonization of Anvers Island, and then the adjacent mainland Western Antarctica Peninsula. Recent southward expansion along the Western Antarctic Peninsula also followed a stepping-stone dispersal pattern coupled with limited post-divergence gene flow from colonies on Anvers Island. Genetic diversity appeared to be maintained across colonies during the historical dispersal process, and range-edge populations are still growing. This suggests large numbers of migrants may provide a buffer against founder effects at the beginning of colonization events to maintain genetic diversity similar to that of the source populations before migration ceases post-divergence. These results coupled with a continued increase in effective population size since approximately 500-800 years ago distinguish gentoo penguins as a robust species that is highly adaptable and resilient to changing climate.


Subject(s)
Founder Effect , Spheniscidae , Humans , Animals , Population Density , Spheniscidae/genetics , Antarctic Regions , Whole Genome Sequencing
20.
Gait Posture ; 109: 126-132, 2024 03.
Article in English | MEDLINE | ID: mdl-38306781

ABSTRACT

BACKGROUND AND OBJECTIVE: Adequate reactive steps are critical for preventing falls following balance perturbations. Perturbation-based balance training was shown to improve reactive stepping in various clinical populations, but its delivery is labor-intensive and generally uses expensive equipment. Action observation of reactive steps with either motor imagery (AOMI) or motor simulation (AOMS) are potential alternative training modalities. We here aimed to study their effects on reactive stepping performance. METHODS: Sixty healthy young subjects were subjected to forward platform translations that elicited backward reactive steps. The AOMI group (n = 20) was tested after AOMI of an actor's reactive steps, while the AOMS group (n = 20) additionally stepped along with the actor. The control group (n = 20) was tested without any prior observation. Our primary outcome was the step quality of the first trial response, as this best represents a real-life loss-of-balance. Step quality was quantified as the leg angle with respect to the vertical at stepping-foot contact. We also studied single step success rates and reactive step quality across repeated trials. RESULTS: Reactive step quality was significantly better in the AOMI and AOMS groups than in the control group, which differences coincided with a twofold higher single step success rate. Reactive step quality improved upon repeated trials in all groups, yet the AOMS group needed the fewest repetitions to reach plateau performance. SIGNIFICANCE: The present results demonstrate that both AOMI and AOMS improved first and repeated trial reactive stepping performance. These findings point at the potential applicability of these concepts for home-based reactive balance training, for instance in serious games, with overt movements (AOMS) possibly having some benefits over mental imaginations (AOMI). Whether similar beneficial effects also emerge in the target populations of balance-impaired individuals remains to be investigated.


Subject(s)
Foot , Movement , Humans , Movement/physiology , Health Status , Physical Therapy Modalities , Lower Extremity , Postural Balance/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...