Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Plant Dis ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769290

ABSTRACT

Tar spot of corn (Zea mays L.) is a significant disease in the United States and Canada caused by Phyllachora maydis, an obligate biotroph fungus. However, field research critical for understanding and managing the disease has been hindered by a need for methods to inoculate corn with P. maydis in field environments. In this study, we developed and demonstrated the efficacy of a method to initiate tar spot in field settings using inoculations of corn leaves with P. maydis inoculum that had been stored at -20 °C for 10 months. Stromata of P. maydis were observed 19 days after inoculations in two field experiments, and stromata resulting from secondary spread were initially observed 39 to 41 days after the initial inoculations. Tar spot was not present in the fields beyond the inoculated areas or localized spread area, signifying that the establishment of initial disease resulted solely from inoculations. This study enhances our understanding of inoculation and infection of corn with P. maydis and tar spot development in field environments. The results will aid new research into understanding the corn tar spot pathosystem and improving management strategies.

2.
MycoKeys ; 100: 205-232, 2023.
Article in English | MEDLINE | ID: mdl-38098976

ABSTRACT

Vetiver grass (Chrysopogonzizanioides) has received extensive attention in recent years due to its diverse applications in soil and water conservation, heavy metal remediation, as well as essential oil and phenolic acids extraction. In 2019, the emergence of tar spot disease on C.zizanioides was documented in Zhanjiang, Guangdong Province, China. Initially, the disease manifested as black ascomata embedded within leaf tissue, either scattered or clustered on leaf surfaces. Subsequently, these ascomata became surrounded by fisheye lesions, characterised by brown, elliptical, necrotic haloes, which eventually coalesced, resulting in leaf withering. Koch's postulates demonstrated that the fungus isolated from these lesions was the causal agent. Microscopic examination showed that the pathogen morphologically belonged to Microdochium. The phylogenetic tree inferred from the combined ITS, LSU, tub2 and rpb2 sequences revealed the three isolates including GDMCC 3.683, LNU-196 and LNU-197 to be a novel species of Microdochium. Combining the results of phylogenetic, pathogenicity and morphological analyses, we propose a new species named M.chrysopogonis as the causal agent of C.zizanioides in southern China. The optimum growth temperature for M.chrysopogonis was determined to be 30 °C. The in vitro fungicide sensitivity of M.chrysopogonis was determined using a mycelial growth assay. Four demethylation-inhibiting (DMI) fungicides, including difenoconazole, flusilazole, propiconazole and tebuconazole and one methyl benzimidazole carbamate (MBC) fungicide, carbendazim, were effective against M.chrysopogonis, with mean 50% effective concentration (EC50) values of 0.077, 0.011, 0.004, 0.024 and 0.007 µg/ml, respectively. These findings provide essential references for the precise diagnosis and effective management of M.chrysopogonis.

3.
Microorganisms ; 11(6)2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37375052

ABSTRACT

Tar spot disease in corn, caused by Phyllachora maydis, can reduce grain yield by limiting the total photosynthetic area in leaves. Stromata of P. maydis are long-term survival structures that can germinate and release spores in a gelatinous matrix in the spring, which are thought to serve as inoculum in newly planted fields. In this study, overwintered stromata in corn leaves were collected in Central Illinois, surface sterilized, and caged on water agar medium. Fungi and bacteria were collected from the surface of stromata that did not germinate and showed microbial growth. Twenty-two Alternaria isolates and three Cladosporium isolates were collected. Eighteen bacteria, most frequently Pseudomonas and Pantoea species, were also isolated. Spores of Alternaria, Cladosporium, and Gliocladium catenulatum (formulated as a commercial biofungicide) reduced the number of stromata that germinated compared to control untreated stromata. These data suggest that fungi collected from overwintered tar spot stromata can serve as biological control organisms against tar spot disease.

4.
BMC Res Notes ; 16(1): 69, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37143103

ABSTRACT

OBJECTIVE: Tar spot is a foliar disease of corn caused by Phyllachora maydis, which produces signs in the form of stromata that bear conidia and ascospores. Phyllachora maydis cannot be cultured in media; therefore, the inoculum source for studying tar spot comprises leaves with stromata collected from naturally infected plants. Currently, there is no effective protocol to induce infection under controlled conditions. In this study, an inoculation method was assessed under greenhouse and growth chamber conditions to test whether stromata of P. maydis could be induced on corn leaves. RESULTS: Experiments resulted in incubation periods ranging between 18 and 20 days and stromata development at the beginning of corn growth stage VT-R1 (silk). The induced stromata of P. maydis were confirmed by microscopy, PCR, or both. From thirteen experiments conducted, four (31%) resulted in the successful production of stromata. Statistical analyses indicate that if an experiment is conducted, there are equal chances of obtaining successful or unsuccessful infections. The information from this study will be valuable for developing more reliable P. maydis inoculation methods in the future.


Subject(s)
Plant Diseases , Zea mays , Plant Diseases/microbiology , Fungi , Phyllachorales , Spores, Fungal
5.
Plant Dis ; 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36880862

ABSTRACT

Tar spot caused by the fungus Phyllachora maydis Maubl. is a significant foliar disease of corn (Zea mays L.). Threatening corn production across the Americas, this disease can reduce the quality of silage and grain yield (Rocco da Silva et al. 2021; Valle-Torres et al. 2020). Lesions caused by P. maydis are usually black, glossy, and raised stromata on the leaf surface and occasionally on the husk. (Liu 1973; Rocco da Silva et al. 2021). Samples consistent with tar spot of corn were collected between September and October of 2022 from 6 fields in Kansas, 23 in Nebraska, and 6 in South Dakota. One sample was selected from each of the three states for further microscopic evaluation and molecular analysis. Signs of the fungus were visually and microscopically confirmed in eight Nebraska counties in October 2021; however, in the 2021, season tar spot sings were not found in Kansas and South Dakota. In the 2022 season disease severity varied by location; some fields in Kansas had <1% incidence, whereas in South Dakota disease incidence approached 1-2%, and in Nebraska between <1-5%. Stromata were present on both green and senescing tissues. Morphological characteristics of the pathogen were similar and consistent with the description of P. maydis (Parbery 1967) from all examined leaves across all locations. Asexual spores (conidia) were produced in pycnidial fruiting bodies ranging in size 1.29 to 2.82 x 8.84 to 16.95 µm (n = 40, average 1.98 × 13.30 µm). The pycnidial fruiting bodies were often found adjacent to perithecia within the stromata. For molecular confirmation, stromata were aseptically removed from leaves collected at each location and DNA extracted using a phenol chloroform method. The internal transcribed spacer (ITS) regions of the ribosomal RNA gene were sequenced using ITS1/ITS4 universal primers (Larena et al. 1999). Amplicons were Sanger sequenced (Genewiz, Inc., South Plainfield, NJ), and a consensus sequence for each sample was deposited in GenBank: Kansas (OQ200487), Nebraska (OQ200488), and South Dakota (OQ200489). Using the BLASTn, sequences from Kansas, Nebraska and South Dakota showed 100% homology with 100% query cover to other P. maydis GenBank accessions (MG881848.1; OL342916.1; OL342915.1). Koch's postulates were not performed given the obligate nature of the pathogen (Muller and Samuels 1984). This report documents the first confirmation of tar spot on corn in Kansas, Nebraska, and South Dakota (Great Plains).

6.
Mol Plant Microbe Interact ; 36(7): 411-424, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36853195

ABSTRACT

Tar spot is a devasting corn disease caused by the obligate fungal pathogen Phyllachora maydis. Since its initial identification in the United States in 2015, P. maydis has become an increasing threat to corn production. Despite this, P. maydis has remained largely understudied at the molecular level, due to difficulties surrounding its obligate lifestyle. Here, we generated a significantly improved P. maydis nuclear and mitochondrial genome, using a combination of long- and short-read technologies, and also provide the first transcriptomic analysis of primary tar spot lesions. Our results show that P. maydis is deficient in inorganic nitrogen utilization, is likely heterothallic, and encodes for significantly more protein-coding genes, including secreted enzymes and effectors, than previous determined. Furthermore, our expression analysis suggests that, following primary tar spot lesion formation, P. maydis might reroute carbon flux away from DNA replication and cell division pathways and towards pathways previously implicated in having significant roles in pathogenicity, such as autophagy and secretion. Together, our results identified several highly expressed unique secreted factors that likely contribute to host recognition and subsequent infection, greatly increasing our knowledge of the biological capacity of P. maydis, which have much broader implications for mitigating tar spot of corn. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Plant Diseases , Zea mays , United States , Zea mays/genetics , Zea mays/microbiology , Plant Diseases/microbiology , Gene Expression Profiling
7.
Plant Dis ; 107(2): 262-266, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35836387

ABSTRACT

Tar spot is a major foliar disease of corn caused by the obligate fungal pathogen Phyllachora maydis, first identified in Indiana in 2015. Under conducive weather conditions, P. maydis causes significant yield losses in the United States and other countries, constituting a major threat to corn production. Relatively little is known about resistance to tar spot other than a major quantitative gene that was identified in tropical maize lines. To test for additional sources of resistance against populations of P. maydis in North America, 26 parental inbred lines of the nested associated mapping (NAM) population were evaluated for tar spot resistance in Indiana in replicated field trials under natural infection for 3 years. Tar spot disease severity was scored visually using a 0-to-100% scale. Maximum disease severity (MDS) for tar spot scoring at reproductive growth stage ranged from 0 to 48.3%, with 0% being most resistant and 48.3% being most susceptible. Nine inbred lines were resistant to P. maydis with MDS ranging from 0 to 5.0%, six were moderately resistant (5.2 to 10.6% MDS), two were moderately susceptible (11.7 to 26.0% MDS), and the remaining eight inbred lines were rated as susceptible (30.0 to 48.3% MDS). There was some variability between years, due to higher disease pressure after 2019. Inbred B73, the common parent of the NAM populations, was rated as susceptible, with MDS of 30.0%. The nine highly resistant lines provide a potential source of new genes for genetic analysis and mapping of tar spot resistance in corn.


Subject(s)
Plant Diseases , Zea mays , United States , Zea mays/genetics , Zea mays/microbiology , Indiana , Plant Diseases/microbiology , North America
8.
Phytopathology ; 112(12): 2538-2548, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35815936

ABSTRACT

Most fungal pathogens secrete effector proteins into host cells to modulate their immune responses, thereby promoting pathogenesis and fungal growth. One such fungal pathogen is the ascomycete Phyllachora maydis, which causes tar spot disease on leaves of maize (Zea mays). Sequencing of the P. maydis genome revealed 462 putatively secreted proteins, of which 40 contain expected effector-like sequence characteristics. However, the subcellular compartments targeted by P. maydis effector candidate (PmEC) proteins remain unknown, and it will be important to prioritize them for further functional characterization. To test the hypothesis that PmECs target diverse subcellular compartments, cellular locations of super yellow fluorescent protein-tagged PmEC proteins were identified using a Nicotiana benthamiana-based heterologous expression system. Immunoblot analyses showed that most of the PmEC-fluorescent protein fusions accumulated protein in N. benthamiana, indicating that the candidate effectors could be expressed in dicot leaf cells. Laser-scanning confocal microscopy of N. benthamiana epidermal cells revealed that most of the P. maydis putative effectors localized to the nucleus and cytosol. One candidate effector, PmEC01597, localized to multiple subcellular compartments including the nucleus, nucleolus, and plasma membrane, whereas an additional putative effector, PmEC03792, preferentially labelled both the nucleus and nucleolus. Intriguingly, one candidate effector, PmEC04573, consistently localized to the stroma of chloroplasts as well as stroma-containing tubules (stromules). Collectively, these data suggest that effector candidate proteins from P. maydis target diverse cellular organelles and could thus provide valuable insights into their putative functions, as well as host processes potentially manipulated by this fungal pathogen.


Subject(s)
Plant Diseases , Zea mays , Plant Diseases/microbiology , Zea mays/microbiology , Plant Cells/metabolism , Phyllachorales/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism
9.
Ecol Evol ; 12(4): e8832, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35494500

ABSTRACT

The genus Phyllachora contains numerous obligate fungal parasites that produce raised, melanized structures called stromata on their plant hosts referred to as tar spot. Members of this genus are known to infect many grass species but generally do not cause significant damage or defoliation, with the exception of P. maydis which has emerged as an important pathogen of maize throughout the Americas, but the origin of this pathogen remains unknown. To date, species designations for Phyllachora have been based on host associations and morphology, and most species are assumed to be host specific. We assessed the sequence diversity of 186 single stroma isolates collected from 16 hosts representing 15 countries. Samples included both herbarium and contemporary strains that covered a temporal range from 1905 to 2019. These 186 isolates were grouped into five distinct species with strong bootstrap support. We found three closely related, but genetically distinct groups of Phyllachora are capable of infecting maize in the United States, we refer to these as the P. maydis species complex. Based on herbarium specimens, we hypothesize that these three groups in the P. maydis species complex originated from Central America, Mexico, and the Caribbean. Although two of these groups were only found on maize, the third and largest group contained contemporary strains found on maize and other grass hosts, as well as herbarium specimens from maize and other grasses that include 10 species of Phyllachora. The herbarium specimens were previously identified based on morphology and host association. This work represents the first attempt at molecular characterization of Phyllachora species infecting grass hosts and indicates some Phyllachora species can infect a broad range of host species and there may be significant synonymy in the Phyllachora genus.

11.
Front Plant Sci ; 12: 675975, 2021.
Article in English | MEDLINE | ID: mdl-34659275

ABSTRACT

Quantifying symptoms of tar spot of corn has been conducted through visual-based estimations of the proportion of leaf area covered by the pathogenic structures generated by Phyllachora maydis (stromata). However, this traditional approach is costly in terms of time and labor, as well as prone to human subjectivity. An objective and accurate method, which is also time and labor-efficient, is of an urgent need for tar spot surveillance and high-throughput disease phenotyping. Here, we present the use of contour-based detection of fungal stromata to quantify disease intensity using Red-Green-Blue (RGB) images of tar spot-infected corn leaves. Image blocks (n = 1,130) generated by uniform partitioning the RGB images of leaves, were analyzed for their number of stromata by two independent, experienced human raters using ImageJ (visual estimates) and the experimental stromata contour detection algorithm (SCDA; digital measurements). Stromata count for each image block was then categorized into five classes and tested for the agreement of human raters and SCDA using Cohen's weighted kappa coefficient (κ). Adequate agreements of stromata counts were observed for each of the human raters to SCDA (κ = 0.83) and between the two human raters (κ = 0.95). Moreover, the SCDA was able to recognize "true stromata," but to a lesser extent than human raters (average median recall = 90.5%, precision = 89.7%, and Dice = 88.3%). Furthermore, we tracked tar spot development throughout six time points using SCDA and we obtained high agreement between area under the disease progress curve (AUDPC) shared by visual disease severity and SCDA. Our results indicate the potential utility of SCDA in quantifying stromata using RGB images, complementing the traditional human, visual-based disease severity estimations, and serve as a foundation in building an accurate, high-throughput pipeline for the scoring of tar spot symptoms.

12.
Front Plant Sci ; 12: 672525, 2021.
Article in English | MEDLINE | ID: mdl-34335648

ABSTRACT

Tar spot complex (TSC) is one of the most important foliar diseases in tropical maize. TSC resistance could be furtherly improved by implementing marker-assisted selection (MAS) and genomic selection (GS) individually, or by implementing them stepwise. Implementation of GS requires a profound understanding of factors affecting genomic prediction accuracy. In the present study, an association-mapping panel and three doubled haploid populations, genotyped with genotyping-by-sequencing, were used to estimate the effectiveness of GS for improving TSC resistance. When the training and prediction sets were independent, moderate-to-high prediction accuracies were achieved across populations by using the training sets with broader genetic diversity, or in pairwise populations having closer genetic relationships. A collection of inbred lines with broader genetic diversity could be used as a permanent training set for TSC improvement, which can be updated by adding more phenotyped lines having closer genetic relationships with the prediction set. The prediction accuracies estimated with a few significantly associated SNPs were moderate-to-high, and continuously increased as more significantly associated SNPs were included. It confirmed that TSC resistance could be furtherly improved by implementing GS for selecting multiple stable genomic regions simultaneously, or by implementing MAS and GS stepwise. The factors of marker density, marker quality, and heterozygosity rate of samples had minor effects on the estimation of the genomic prediction accuracy. The training set size, the genetic relationship between training and prediction sets, phenotypic and genotypic diversity of the training sets, and incorporating known trait-marker associations played more important roles in improving prediction accuracy. The result of the present study provides insight into less complex trait improvement via GS in maize.

13.
Plant Dis ; 104(10): 2541-2550, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32762502

ABSTRACT

Tar spot of corn has been a major foliar disease in several Latin American countries since 1904. In 2015, tar spot was first documented in the United States and has led to significant yield losses of approximately 4.5 million t. Tar spot is caused by an obligate pathogen, Phyllachora maydis, and thus requires a living host to grow and reproduce. Due to its obligate nature, biological and epidemiological studies are limited and impact of disease in corn production has been understudied. Here we present the current literature and gaps in knowledge of tar spot of corn in the Americas, its etiology, distribution, impact and known management strategies as a resource for understanding the pathosystem. This will in tern guide current and future research and aid in the development of effective management strategies for this disease.


Subject(s)
Plant Diseases , Zea mays , Americas , United States
14.
Mol Plant Microbe Interact ; 33(7): 884-887, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32233960

ABSTRACT

Phyllachora maydis is an important fungal pathogen that causes tar spot of corn and has led to significant yield loss in the United States and other countries. P. maydis is an obligate biotroph belonging to the Sordariomycetes class of Ascomycota. Due to the challenges posed by their obligate nature, there is no genome sequence available in the Phyllachora genus. P. maydis isolate PM01 was collected from a corn field in Indiana and the genome was determined by next-generation sequencing. The assembly size is 45.7 Mb, with 56.46% repetitive sequences. There are 5,992 protein-coding genes and 59 are predicted as effector proteins. This genome resource will increase our understanding of genomic features of P. maydis and will assist in studying the corn-P. maydis interaction and identifying potential resistant candidates for corn breeding programs.


Subject(s)
Ascomycota , Genome, Fungal , Plant Diseases/microbiology , Zea mays/microbiology , Ascomycota/genetics , Ascomycota/pathogenicity , Repetitive Sequences, Nucleic Acid , United States
15.
Mycologia ; 110(5): 835-859, 2018.
Article in English | MEDLINE | ID: mdl-30215574

ABSTRACT

Species of tropical tar spot fungi (Phyllachorales, Ascomycota) are obligate biotrophic plant parasitic fungi associated with living leaves of a wide range of families of host plants, mainly in tropical and subtropical regions. In this study, samples of tropical tar spot fungi were collected in forests in Costa Rica and Panamá. To identify taxa, we used morphology and information on host plants and combined multigene phylogeny of four genes: the large subunit nuclear ribosomal DNA (28S rDNA), the small subunit nuclear ribosomal DNA (18S rDNA), the complete internal transcribed spacer region of ribosomal DNA (nuc rDNA ITS1-5.8S-ITS2; ITS), and the translation elongation factor 1-α (tef1). Here we propose one new species in the genus Camarotella and eight new species in Telimena with their morphological descriptions, illustrations, and sequence data. The newly described species are Camarotella licaniae on Licania arborea (Chrysobalanaceae) and in the genus Telimena: T. billiae on Billia rosea (Sapindaceae), T. drymoniae on Drymonia multiflora (Gesneriaceae), T. hydrangeae on Hydrangea sp. (Hydrangeaceae), T. miravallensis on Symplocos panamensis (Symplocaceae), T. protii on Protium sp. (Burseraceae), T. rinoreae on Rinorea sp. (Violaceae), T. semialarii on Semialarium mexicanum (Celastraceae), and T. triseptata on Tapirira mexicana (Anacardiaceae). The new name Telimena nitens on Schlegelia brachyanta (Schlegeliaceae) is presented and 10 species of Phyllachora are transferred to Telimena, leading to the new combinations T. canarii, T. galavisii, T. insueta, T. ruelliae, T. scutiformis, T. serjaniicola, T. spicatae, T. subrepens, T. symploci, and T. symplocicola. Additionally, revisions of tar spot fungi on host families Burseraceae, Sapindaceae, and Symplocaceae are provided, and four new synonyms are proposed.


Subject(s)
Fruiting Bodies, Fungal/growth & development , Phyllachorales/classification , Phyllachorales/isolation & purification , Phylogeny , Cluster Analysis , Costa Rica , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Microscopy , Microscopy, Phase-Contrast , Panama , Peptide Elongation Factor 1/genetics , Phyllachorales/genetics , Plant Diseases/microbiology , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 28S/genetics , Sequence Analysis, DNA
16.
Persoonia ; 39: 74-90, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29503471

ABSTRACT

The order Phyllachorales (Pezizomycotina, Ascomycota) is a group of biotrophic, obligate plant parasitic fungi with a tropical distribution and high host specificity. Traditionally two families are recognised within this order: Phyllachoraceae and Phaeochoraceae, based mostly on morphological and host characteristics. Currently, the position of the order within the class Sordariomycetes is inconclusive, as well as the monophyly of the order, and its internal phylogenetic structure. Here we present a phylogeny of the order Phyllachorales based on sequence data of 29 species with a broad host range resulting from a wide geographical sampling. We inferred Maximum Likelihood and Bayesian phylogenies from data of five DNA regions: nrLSU rDNA, nrSSU rDNA, ITS rDNA, and the protein coding genes RPB2, and TEF1. We found that the order Phyllachorales is monophyletic and related to members of the subclass Sordariomycetidae within Sordariomycetes. Within the order, members of the family Phaeochoraceae form a monophyletic group, and the family Phyllachoraceae is split into two lineages. Maximum Likelihood ancestral state reconstructions indicate that the ancestor of Phyllachorales had a monocotyledonous host plant, immersed perithecia, and a black stroma. Alternative states of these characters evolved multiple times independently within the order. Based on our results we redefine the family Phyllachoraceae and propose the new family Telimenaceae with Telimena erythrinae as type species, resulting in three families in the order. Species of Telimena spp. occur in several monocotyledonous and eudicotyledonous host plants except Poaceae, and generally have enlarged black pseudostroma around the perithecia, a character not present in species of Phyllachoraceae.

17.
Environ Pollut ; 214: 549-555, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27131814

ABSTRACT

Elevated sulphur dioxide (SO2) concentrations were the major cause of the absence of symptoms of tar spot (Rhytisma acerinum) of sycamore (Acer pseudoplatanus), in urban areas in the 1970s. The subsequent large decline in SO2 concentrations has not always been accompanied by increased tar spot symptoms, for reasons that have remained unresolved. We used a large citizen science survey, providing over 1000 records across England, to test two competing hypotheses proposed in earlier studies. We were able to demonstrate the validity of both hypotheses; tar spot symptoms were reduced where there were fewer fallen leaves as a source of inoculum, and elevated nitrogen dioxide concentrations reduced tar spot symptoms above a threshold concentration of about 20 µg m(-3). Symptom severity was also lower at sites with higher temperature and lower rainfall. Our findings demonstrate the power of citizen science to resolve competing hypotheses about the impacts of air pollution and other environmental drivers.


Subject(s)
Acer/microbiology , Air Pollutants/analysis , Ascomycota/growth & development , Environmental Monitoring/methods , Nitrogen Dioxide/analysis , Air Pollutants/chemistry , Air Pollution/analysis , England , Plant Diseases/microbiology , Plant Leaves/microbiology , Sulfur Dioxide/pharmacology , Temperature
18.
New Phytol ; 108(2): 175-181, 1988 Feb.
Article in English | MEDLINE | ID: mdl-33874164

ABSTRACT

This study examined ecological aspects of the distribution of tar spot disease caused by the fungus Rhytisma acerinum (Pers.) Fries on Acer pseudoplatanus L. (sycamore). The host is abundant in Edinburgh and surrounding areas yet no tar spots were found in the city, although they were abundant on sycamore in the surrounding countryside, especially at sheltered sites. The vertical distribution from a localized source of leaf litter from infected sycamore showed an approximately linear relationship between tar spot index of attached leaves (TSI = no. of tar spots per 100 cm2 of leaf) and the log of height of such infected foliage above the ground. The distribution of tar spots was controlled primarily by the presence or absence of overwintered sycamore leaves infected with R. acerinum. In Edinburgh these leaves are actively removed by man and passively by wind, so reducing the potential source of inoculum by the following spring. The presence of SO2 was unimportant in the distribution of R. acerinum. An experiment to study the relative importance of current air concentrations of SO2 on the incidence of infection by R. acerinum showed that the average SO2 concentration of < 50 µg m-3 hail no effect. The observed distribution of tar spot throughout the city and surrounding countryside could be explained entirely by distance from the nearest source of inoculum without involving a role for air pollutants.

SELECTION OF CITATIONS
SEARCH DETAIL