Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 291
Filter
Add more filters











Publication year range
1.
Angew Chem Int Ed Engl ; : e202406358, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073222

ABSTRACT

The synthesis and guest recognition properties of a neutral Pd24-cubic cage, [{Pd3(NiPr)3PO}8(µ2-Cl)24] 1 are reported. The formation of the cubical assembly takes place by an exclusive one-pot ligand-assisted pathway directed by an oximido linker. The initial coordination of the oximido ligand pre-organizes the [Pd3(NiPr)3PO]3+ polyhedral building units into a tetrameric intermediate, which then transforms into an oximido-tethered tetrahedral assembly and to the cubical cage 1 in the presence of chloride ions. In the absence of the directing oximido linker, no cage formation was observed, and the Pd6-precursor was found to undergo self-condensation, giving rise to a new pentameric polyhedral cluster, [Pd5{(NiPr)3PO}2(OAc)2(OH)2] 2. The central cavity of the cube has been probed for guest encapsulation studies, which shows a high binding with phenolic guest molecules with association constants of the order of 104-105 M-1. The favorable formation of host-guest complexes was attributed to the strong hydrogen bonding interactions between the host and guest functional groups.

2.
J Colloid Interface Sci ; 668: 282-292, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38678884

ABSTRACT

Metal-phenolic networks (MPNs) have emerged as a versatile and multifunctional platform applied in bioimaging, disease treatment, electrocatalysis, and water purification. The synthesis of MPNs with mesoporous frameworks and ultra-small diameters (<200 nm), crucial for post-modification, cargo loading, and mass transport, remains a formidable challenge. Inspired by mussel chemistry, mesoporous metal-phenolic nanospheres (MMPNs) are facilely prepared by direct deposition of the metal-polyphenol complex on the interface of oil nano-droplets composed of block copolymers/1,3,5-trimethylbenzene followed by a spontaneous template-removal process. Due to the penetrable and stable networks, the oil nano-droplets gradually leak from the networks driven by shear stress during the stirring process. As a result, MMPNs are obtained without additional template removal procedures such as solvent extraction or high-temperature calcination. The materials have a large pore size (∼12.1 nm), uniform spherical morphology with a small particle size (∼99 nm), and a large specific surface area (49.8 m2 g-1). Due to the abundant phenolic hydroxyl groups, the MMPNs show excellent antioxidative property. The MMPNs also have excellent photothermal property, whose photothermal conversion efficiency was 40.9 %. Moreover, the phenolic hydroxyl groups can reduce Ag+ in situ to prepare Ag nanoparticles loaded MMPNs composites, which have excellent inhibition performance of drug-resistant bacteria biofilm.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Nanospheres , Particle Size , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Nanospheres/chemistry , Porosity , Animals , Microbial Sensitivity Tests , Bivalvia/chemistry , Phenols/chemistry , Phenols/pharmacology , Surface Properties , Escherichia coli/drug effects , Staphylococcus aureus/drug effects
3.
Molecules ; 29(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38542899

ABSTRACT

Porous α-Fe2O3 hollow rods/reduced graphene oxide (α-Fe2O3 HR/RGO) composites with unique morphological characteristics and a high surface area are prepared through a template strategy, which was systematically studied and found to have outstanding supercapacitive properties. When served as active material in a three-electrode setup, the optimized α-Fe2O3 HR/RGO-30, comprised 76.5 wt% α-Fe2O3 and 23.2 wt% RGO, was able to offer the largest specific capacitance of 426.3 F g-1, an excellent rate capability as well as satisfactory cycle life with capacitance retention of 87.7% and Coulombic efficiency of 98.9% after continuously charging/discharging at 10 A g-1 for beyond 10,000 cycles. Such electrochemical behaviors of the α-Fe2O3 HR/RGO-30 electrode can rival or even surpass those of many Fe2O3-based electrodes documented in the previous literature. Later, a symmetric supercapacitor cell of α-Fe2O3 HR/RGO-30//α-Fe2O3 HR/RGO-30 was fabricated. The assembled device offers the maximum energy density of 18.7 Wh kg-1, and also exhibits commendable rate capability, and features stable cycling durability (with capacitance retention of 83.2% together with a Coulombic efficiency of 99.3% after 10,000-cycle charge/discharge at 5 A g-1). These notable electrochemical performances enable the α-Fe2O3 HR/RGO-30 composite to be a high-potential material for advanced energy storage systems.

4.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 1): 25-28, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38312161

ABSTRACT

The synthetic availability of mol-ecular water oxidation catalysts containing high-valent ions of 3d metals in the active site is a prerequisite to enabling photo- and electrochemical water splitting on a large scale. Herein, the synthesis and crystal structure of di-ammonium {µ-1,3,4,7,8,10,12,13,16,17,19,22-dodeca-aza-tetra-cyclo-[8.8.4.13,17.18,12]tetra-cosane-5,6,14,15,20,21-hexa-onato}ferrate(IV) acetic acid tris-olvate, (NH4)2[FeIV(C12H12N12O6)]·3CH3COOH or (NH4)2[FeIV(L-6H)]·3CH3COOH is reported. The FeIV ion is encapsulated by the macropolycyclic ligand, which can be described as a dodeca-aza-quadricyclic cage with two capping tri-aza-cyclo-hexane fragments making three five- and six six-membered alternating chelate rings with the central FeIV ion. The local coord-ination environment of FeIV is formed by six deprotonated hydrazide nitro-gen atoms, which stabilize the unusual oxidation state. The FeIV ion lies on a twofold rotation axis (multiplicity 4, Wyckoff letter e) of the space group C2/c. Its coordination geometry is inter-mediate between a trigonal prism (distortion angle φ = 0°) and an anti-prism (φ = 60°) with φ = 31.1°. The Fe-N bond lengths lie in the range 1.9376 (13)-1.9617 (13) Å, as expected for tetra-valent iron. Structure analysis revealed that three acetic acid mol-ecules additionally co-crystallize per one iron(IV) complex, and one of them is positionally disordered over four positions. In the crystal structure, the ammonium cations, complex dianions and acetic acid mol-ecules are inter-connected by an intricate system of hydrogen bonds, mainly via the oxamide oxygen atoms acting as acceptors.

5.
Chemistry ; 30(11): e202301948, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38081801

ABSTRACT

The application of supramolecular templates in aligning atomically precise heterometal arrays is important for pursuing functional materials. Herein, we report that a bilayered supramolecular tri-deprotonated melamine dimer functions as an effective template in the construction of a heterometallic gold(I)-silver(I) macrocyclic cluster [µ6 -(C3 N6 H3 )3- ]2 -AuI 6 AgI 6 . X-ray single crystal structural analysis showed that a crown-like AuI 6 AgI 6 macrocycle is aligned around two parallelly stacked µ6 -(C3 N6 H3 )3- moieties hold together with π-π interactions. Theoretical calculations revealed that the [µ6 -(C3 N6 H3 )3- ]2 motif dominantly contributes to the near-occupied orbitals in the electronic structure, which is closely related to its luminescence properties. This work demonstrates that the supramolecular templates containing multiple symmetric binding sites may present a facile approach in the construction of functional metal clusters.

6.
Nanotechnology ; 35(3)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37820633

ABSTRACT

This study presents a method for fabricating a film-based heating element using a polymer material with an array of intersecting conductive elements embedded within it. Track-etched membranes (TM) with a thickness of 10µm were used as the template, and their pores were filled with metal, forming a three-dimensional grid. Due to the unique manufacturing process of TM, the pores inside intersect with each other, allowing for contacts between individual nanowires (NWs) when filled with metal. Experimental results demonstrated that filling the TM pores with silver allows for heating temperatures up to 78 degrees without deformation or damage to the heating element. The resulting flexible heating element can be utilized in medical devices for heating purposes or as a thermal barrier coating.

7.
Chem Asian J ; 18(20): e202300706, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37655885

ABSTRACT

Fragile hemiaminal ether linkages present in the backbone of koneramines (LR OR'), tridentate ligands, bound to copper(II) in stereoselectively self-assembled syn-[Cu(LR OR')X2 ] complexes were transformed into sturdy methylene linkages to make corresponding rac-[Cu(LR H)Cl2 ] complexes by late-stage ligand modification after coordination with the retention of coordination sphere. The generality of stereoselective self-assembly of koneramine complexes is shown by utilising a number of metal ions, anions, amines, alcohols and thiols with complete characterisations.

8.
Chemistry ; 29(53): e202301717, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37401251

ABSTRACT

Since the development of the first method for porphyrin synthesis by Rothemund in 1935, porphyrin derivatives have been widely investigated and have played an essential role in chemical sciences. Most synthetic routes of porphyrins involve oxidative aromatization. Herein, we present a synthetic method to produce ABCD-porphyrins, including chiral ones, through a one-pot reaction involving "coordination, cyclization, and dehydrative aromatization" using a mono-dipyrrinatoPt(II)Cl(COE) (COE=cyclooctene) complex as a platinum template.

9.
Chempluschem ; 88(10): e202300255, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37469138

ABSTRACT

Nanostructured materials with high aspect ratios have been widely studied for their unique properties. In particular, nanosheets have safety, dispersibility, and nanosized effects, and nanosheets with exceptionally small thicknesses exhibit unique properties. For non-exfoliable materials, the bottom-up nanosheet growth using various interfaces as templates have been investigated. This review article presents the synthesis of nanosheets at the interfaces and layered structure; it explains the features of each interface type, its advantages, and its uniqueness. The interfaces work as templates for nanosheet synthesis. We can easily use the liquid-liquid and gas-liquid interfaces as the templates; however, the thickness of nanosheets usually becomes thick because it allows materials to grow in thickness. The solid-gas and solid-liquid interfaces can prevent nanosheets from growing in thickness. However, the removal of template solids is required after the synthesis. The layered structures of various materials provide two-dimensional reaction fields between the layers. These methods have high versatility, and the nanosheets synthesized by these methods are thin. Finally, this review examines the key challenges and opportunities associated with scalable nanosheet synthesis methods for industrial production.

10.
Angew Chem Int Ed Engl ; 62(30): e202306431, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37259239

ABSTRACT

Proximity-induced chemical reactions are site-specific and rapid by taking advantage of their high affinity and highly selective interactions with the template. However, reactions induced solely by antibody-antigen interactions have not been developed. Herein, we propose a biepitopic antigen-templated chemical reaction (BATER) as a novel template reaction. In BATER, reactive functional groups are conjugated to two antibodies that interact with two epitopes of the same antigen to accelerate the reaction. We developed a method for visualizing the progress of BATER using fluorogenic click chemistry for optimal antibody selection and linker design. The reaction is accelerated in the presence of a specific antigen in a linker length-dependent manner. The choice of the antibody epitope is important for a rapid reaction. This design will lead to various applications of BATER in living systems.


Subject(s)
Epitopes , Epitopes/chemistry , Epitopes/immunology , Antibodies/chemistry , Antibodies/immunology , Antigens/chemistry , Antigens/immunology , Fluorescent Dyes/chemistry
11.
Small ; 19(40): e2301473, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37312658

ABSTRACT

Multivariate metal-organic framework (MOF) is an ideal electrocatalytic material due to the synergistic effect of multiple metal active sites. In this study, a series of ternary M-NiMOF (M = Co, Cu) through a simple self-templated strategy that the Co/Cu MOF isomorphically grows in situ on the surface of NiMOF is designed. Owing to the electron rearrange of adjacent metals, the ternary CoCu-NiMOFs demonstrate the improved intrinsic electrocatalytic activity. At optimized conditions, the ternary Co3 Cu-Ni2 MOFs nanosheets give the excellent oxygen evolution reaction (OER) performance of current density of 10 mA cm-2 at low overpotential of 288 mV with a Tafel slope of 87 mV dec-1 , which is superior to that of bimetallic nanosheet and ternary microflowers. The low free energy change of potential-determining step identifies that the OER process is favorable at Cu-Co concerted sites along with strong synergistic effect of Ni nodes. Partially oxidized metal sites also reduce the electron density, thus accelerating the OER catalytic rate. The self-templated strategy provides a universal tool to design multivariate MOF electrocatalysts for highly efficient energy transduction.

12.
Molecules ; 28(11)2023 May 27.
Article in English | MEDLINE | ID: mdl-37298859

ABSTRACT

Using density functional theory (DFT) B3PW91/TZVP, M06/TZVP, and OPBE/TZVP chemistry models and the Gaussian09 program, a quantum-chemical calculation of geometric and thermodynamic parameters of Ni(II), Cu(II), and Zn(II) macrotetracyclic chelates, with (NNNN)-coordination of ligand donor centers arising during template synthesis between the indicated ions of 3d elements, thiocarbohydrazide H2N-HN-C(=S)-NH-NH2 and diacetyl Me-C(=O)-C(=O)-Me, in gelatin-immobilized matrix implants was performed. The key bond lengths and bond angles in these coordination compounds are provided, and it is noted that in all these complexes the MN4 chelate sites, the grouping of N4 atoms bonded to the M atom, and the five-membered and six-membered metal chelate rings are practically coplanar. NBO analysis of these compounds was carried out, on the basis of which it was shown that all these complexes, in full accordance with theoretical expectations, are low-spin complexes. The standard thermodynamic characteristics of the template reactions for the formation of the above complexes are also presented. Good agreement between the data obtained using the above DFT levels is noted.


Subject(s)
Diacetyl , Macrocyclic Compounds , Hydrazines , Chelating Agents , Macrocyclic Compounds/chemistry , Ligands
13.
Membranes (Basel) ; 13(5)2023 May 07.
Article in English | MEDLINE | ID: mdl-37233556

ABSTRACT

This paper reports the synthesis of composite track-etched membranes (TeMs) modified with electrolessly deposited copper microtubules using copper deposition baths based on environmentally friendly and non-toxic reducing agents (ascorbic acid (Asc), glyoxylic acid (Gly), and dimethylamine borane (DMAB)), and comparative testing of their lead(II) ion removal capacity via batch adsorption experiments. The structure and composition of the composites were investigated by X-ray diffraction technique and scanning electron and atomic force microscopies. The optimal conditions for copper electroless plating were determined. The adsorption kinetics followed a pseudo-second-order kinetic model, which indicates that adsorption is controlled by the chemisorption process. A comparative study was conducted on the applicability of the Langmuir, Freundlich, and Dubinin-Radushkevich adsorption models to define the equilibrium isotherms and the isotherm constants for the prepared composite TeMs. Based on the regression coefficients R2, it has been shown that the Freundlich model better describes the experimental data of the composite TeMs on the adsorption of lead(II) ions.

14.
Small ; 19(34): e2300801, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37072877

ABSTRACT

Sub-10 nm nanoparticles are known to exhibit extraordinary size-dependent properties for wide applications. Many approaches have been developed for synthesizing sub-10 nm inorganic nanoparticles, but the fabrication of sub-10 nm polymeric nanoparticles is still challenging. Here, a scalable, spontaneous confined nanoemulsification strategy that produces uniform sub-10 nm nanodroplets for template synthesis of sub-10 nm polymeric nanoparticles is proposed. This strategy introduces a high-concentration interfacial reaction to create overpopulated surfactants that are insoluble at the droplet surface. These overpopulated surfactants act as barriers, resulting in highly accumulated surfactants inside the droplet via a confined reaction. These surfactants exhibit significantly changed packing geometry, solubility, and interfacial activity to enhance the molecular-level impact on interfacial instability for creating sub-10 nm nanoemulsions via self-burst nanoemulsification. Using the nanodroplets as templates, the fabrication of uniform sub-10 nm polymeric nanoparticles, as small as 3.5 nm, made from biocompatible polymers and capable of efficient drug encapsulation is demonstrated. This work opens up brand-new opportunities to easily create sub-10 nm nanoemulsions and advanced ultrasmall functional nanoparticles.

15.
Molecules ; 28(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37049850

ABSTRACT

Nanotechnology (NT) is now firmly established in both the private home and commercial markets. Due to its unique properties, NT has been fully applied within multiple sectors like pharmacy and medicine, as well as industries like chemical, electrical, food manufacturing, and military, besides other economic sectors. With the growing demand for environmental resources from an ever-growing world population, NT application is a very advanced new area in the environmental sector and offers several advantages. A novel template synthesis approach is being used for the promising metal oxide nanostructures preparation. Synthesis of template-assisted nanomaterials promotes a greener and more promising protocol compared to traditional synthesis methods such as sol-gel and hydrothermal synthesis, and endows products with desirable properties and applications. It provides a comprehensive general view of current developments in the areas of drinking water treatment, wastewater treatment, agriculture, and remediation. In the field of wastewater treatment, we focus on the adsorption of heavy metals and persistent substances and the improved photocatalytic decomposition of the most common wastewater pollutants. The drinking water treatment section covers enhanced pathogen disinfection and heavy metal removal, point-of-use treatment, and organic removal applications, including the latest advances in pesticide removal.


Subject(s)
Drinking Water , Metal Nanoparticles , Metals, Heavy , Pesticides , Water Pollutants, Chemical , Water Purification , Water Purification/methods , Water Pollutants, Chemical/chemistry , Adsorption
16.
Article in English | MEDLINE | ID: mdl-36763985

ABSTRACT

A common approach for the photoelectrochemical (PEC) splitting of water relies on the application of WO3 porous electrodes sensitized with BiVO4 acting as a visible photoanode semiconductor. In this work, we propose a new architecture of photoelectrodes consisting of supported multishell nanotubes (NTs) fabricated by a soft-template approach. These NTs are formed by a concentric layered structure of indium tin oxide (ITO), WO3, and BiVO4, together with a final thin layer of cobalt phosphate (CoPi) co-catalyst. The photoelectrode manufacturing procedure is easily implementable at a large scale and successively combines the thermal evaporation of single crystalline organic nanowires (ONWs), the magnetron sputtering deposition of ITO and WO3, and the solution dripping and electrochemical deposition of, respectively, BiVO4 and CoPi, plus the annealing in air under mild conditions. The obtained NT electrodes depict a large electrochemically active surface and outperform the efficiency of equivalent planar-layered electrodes by more than one order of magnitude. A thorough electrochemical analysis of the electrodes illuminated with blue and solar lights demonstrates that the characteristics of the WO3/BiVO4 Schottky barrier heterojunction control the NT electrode efficiency, which depended on the BiVO4 outer layer thickness and the incorporation of the CoPi electrocatalyst. These results support the high potential of the proposed soft-template methodology for the large-area fabrication of highly efficient multishell ITO/WO3/BiVO4/CoPi NT electrodes for the PEC splitting of water.

17.
Molecules ; 28(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36677647

ABSTRACT

In this work, the ability of several bis-viologen axles to thread a series of heteroditopic tris(N-phenylureido)calix[6]arene wheels to give interwoven supramolecular complexes to the [3]pseudorotaxane type was studied. The unidirectionality of the threading process inside these nonsymmetric wheels allows the formation of highly preorganised [3]pseudorotaxane and [3]rotaxane species in which the macrocycles phenylureido moieties, functionalised with either ester, carboxylic, or hydroxymethyl groups, are facing each other. As verified by NMR and semiempirical computational studies, these latter compounds possess the correct spatial arrangement of their subcomponents, which could lead, in principle, upon proper bridging reaction, to the realisation of upper-to-upper molecular capsules that are based on calix[6]arene derivatives.

18.
Nano Lett ; 23(1): 243-251, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36537828

ABSTRACT

Electrophysiology is a unique biomarker of the electrogenic cells that can perform a disease investigation or drug assessment. In the recent decade, vertical nanoelectrode arrays can successfully achieve a high-quality intracellular electrophysiological study in electrogenic cells and their networks. However, a high success rate and high-quality and long-term intracellular recording using low-cost nanostructures is still a considerable challenge. Herein, we develop a scalable and robust hollow nanopillar electrode to achieve enhanced intracellular recording of cardiomyocytes. The template-based synthesis of vertical hollow nanopillars is compatible with large-scale and efficient microfabrication processes and is convenient to regulate the geometry of hollow nanopillars. Compared with the conventional same-size planar electrode, the regulating height of a hollow nanopillar can achieve high-quality and prolonged intracellular recordings, which can improve the cell-electrode interface for tight coupling and effective electroporation. It is demonstrated that the geometry regulation of a nanostructure is a powerful strategy to enhance intracellular recording.


Subject(s)
Nanostructures , Action Potentials/physiology , Electrodes , Nanostructures/chemistry , Electroporation , Myocytes, Cardiac/physiology
19.
Small ; 19(12): e2205725, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36585360

ABSTRACT

1D carbon nanotubes have been widely applied in many fields, such as catalysis, sensing and energy storage. However, the long tunnel-like pores and relatively low specific surface area of carbon nanotubes often restrict their performance in certain applications. Herein, a dual-silica template-mediated method to prepare nitrogen-doped mesoporous carbon nanotubes (NMCTs) through co-depositing polydopamine (both carbon and nitrogen precursors) and silica nanoparticles (the porogen for mesopore formation) on a silica nanowire template is proposed. The obtained NMCTs have a hierarchical pore structure of large open mesopores and tubular macropores, a high specific surface area (1037 m2 g-1 ), and homogeneous nitrogen doping. The NMCT-45 (prepared at an interval time of 45 min) shows excellent performance in supercapacitor applications with a high capacitance (373.6 F g-1 at 1.0 A g-1 ), excellent rate capability, high energy density (11.6 W h kg-1 at a power density of 313 W kg-1 ), and outstanding cycling stability (98.2% capacity retention after 10 000 cycles at 10 A g-1 ). Owing to the unique tubular morphology, hierarchical porosity and homogeneous N-doping, the NMCT also has tremendous potential in electrochemical catalysis and sensing applications.

20.
Proc Natl Acad Sci U S A ; 120(1): e2210211120, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36574649

ABSTRACT

Controllable in situ formation of nanoclusters with discrete active sites is highly desirable in heterogeneous catalysis. Herein, a titanium oxide-based Fenton-like catalyst is constructed using exfoliated Ti3C2 MXene as a template. Theoretical calculations reveal that a redox reaction between the surface Ti-deficit vacancies of the exfoliated Ti3C2 MXene and H2O2 molecules facilitates the in situ conversion of surface defects into titanium oxide nanoclusters anchoring on amorphous carbon (TiOx@C). The presence of mixed-valence Tiδ+ (δ = 0, 2, 3, and 4) within TiOx@C is confirmed by X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS) characterizations. The abundant surface defects within TiOx@C effectively promote the generation of reactive oxygen species (ROS) leading to superior and stable Fenton-like catalytic degradation of atrazine, a typical agricultural herbicide. Such an in situ construction of Fenton-like catalysts through defect engineering also applies to other MXene family materials, such as V2C and Nb2C.


Subject(s)
Hydrogen Peroxide , Titanium , Hydrogen Peroxide/chemistry , Titanium/chemistry , Catalytic Domain , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL