Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 234
Filter
1.
Cell Rep ; 43(8): 114631, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39154342

ABSTRACT

Enzymatic modification of DNA nucleobases can coordinate gene expression, nuclease protection, or mutagenesis. We recently discovered a clade of phage-specific cytosine methyltransferase (MT) and 5-methylpyrimidine dioxygenase (5mYOX) enzymes that produce 5-hydroxymethylcytosine (5hmC) as a precursor for enzymatic hypermodifications on viral genomes. Here, we identify phage MT- and 5mYOX-associated glycosyltransferases (GTs) that catalyze linkage of diverse sugars to 5hmC nucleobase substrates. Metavirome mining revealed thousands of biosynthetic gene clusters containing enzymes with predicted roles in cytosine sugar hypermodification. We developed a platform for high-throughput screening of GT-containing pathways, relying on the Escherichia coli metabolome as a substrate pool. We successfully reconstituted several pathways and isolated diverse sugar modifications appended to cytosine, including mono-, di-, or tri-saccharides comprised of hexoses, N-acetylhexosamines, or heptose. These findings expand our knowledge of hypermodifications on nucleic acids and the origins of corresponding sugar-installing enzymes.


Subject(s)
Glycosyltransferases , Polysaccharides , Polysaccharides/metabolism , Glycosyltransferases/metabolism , Glycosyltransferases/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , 5-Methylcytosine/metabolism , 5-Methylcytosine/analogs & derivatives , DNA/metabolism
2.
Front Genet ; 15: 1429844, 2024.
Article in English | MEDLINE | ID: mdl-39015772

ABSTRACT

Mesenchymal stem cells (MSCs) have promising potential for bone tissue engineering in bone healing and regeneration. They are regarded as such due to their capacity for self-renewal, multiple differentiation, and their ability to modulate the immune response. However, changes in the molecular pathways and transcription factors of MSCs in osteogenesis can lead to bone defects and metabolic bone diseases. DNA methylation is an epigenetic process that plays an important role in the osteogenic differentiation of MSCs by regulating gene expression. An increasing number of studies have demonstrated the significance of DNA methyltransferases (DNMTs), Ten-eleven translocation family proteins (TETs), and MSCs signaling pathways about osteogenic differentiation in MSCs. This review focuses on the progress of research in these areas.

3.
Cell Biosci ; 14(1): 89, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965641

ABSTRACT

Allergic diseases, characterized by a broad spectrum of clinical manifestations and symptoms, encompass a significant category of IgE-mediated atopic disorders, including asthma, allergic rhinitis, atopic dermatitis, and food allergies. These complex conditions arise from the intricate interplay between genetic and environmental factors and are known to contribute to socioeconomic burdens globally. Recent advancements in the study of allergic diseases have illuminated the crucial role of DNA methylation (DNAm) in their pathogenesis. This review explores the factors influencing DNAm in allergic diseases and delves into their mechanisms, offering valuable perspectives for clinicians. Understanding these epigenetic modifications aims to lay the groundwork for improved early prevention strategies. Moreover, our analysis of DNAm mechanisms in these conditions seeks to enhance diagnostic and therapeutic approaches, paving the way for more effective management of allergic diseases in the future.

4.
Mol Immunol ; 173: 20-29, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39018744

ABSTRACT

SjÓ§gren's syndrome is a systemic autoimmune disease primarily targeting the salivary and lacrimal glands. Our previous investigations have shown that administration of interleukin-22 (IL-22), an IL-10 family cytokine known for its complex and context-dependent effects on tissues, either protective- or detrimental, to salivary glands leads to hypofunction and pathological changes of salivary glands in C57BL/6 mice and in non-obese diabetic (NOD) mice, the latter being a commonly used model of SjÓ§gren's syndrome. This study aims to delineate the pathophysiological roles of endogenously produced IL-22 in the development of salivary gland pathologies and dysfunction associated with SjÓ§gren's disease in the NOD mouse model. Our results reveal that neutralizing IL-22 offered a protective effect on salivary gland function without significantly affecting the immune cell infiltration of salivary glands or the autoantibody production. Blockade of IL-22 reduced the levels of phosphorylated STAT3 in salivary gland tissues of NOD mice, while its administration to salivary glands had the opposite effect. Correspondingly, the detrimental impact of exogenously applied IL-22 on salivary glands was almost completely abrogated by a specific STAT3 inhibitor. Moreover, IL-22 blockade led to a downregulation of protein amounts of Ten-Eleven-Translocation 2, a methylcytosine dioxygenase critical for mediating interferon-induced responses, in salivary gland epithelial cells. IL-22 neutralization also exerted a protective effect on the salivary gland epithelial cells that express high levels of surface EpCAM and bear the stem cell potential, and IL-22 treatment in vitro hampered the survival/expansion of these salivary gland stem cells, indicating a direct negative impact of IL-22 on these cells. In summary, this study has uncovered a critical pathogenic role of the endogenous IL-22 in the pathogenesis of Sjögren's disease-characteristic salivary gland dysfunction and provided initial evidence that this effect is dependent on STAT3 activation and potentially achieved through fostering Tet2-mediated interferon responses in salivary gland epithelial cells and negatively affecting the EpCAMhigh salivary gland stem cells.


Subject(s)
Interleukin-22 , Salivary Glands , Sjogren's Syndrome , Animals , Female , Humans , Mice , Disease Models, Animal , Interleukins/immunology , Interleukins/metabolism , Mice, Inbred C57BL , Mice, Inbred NOD , Salivary Glands/pathology , Salivary Glands/immunology , Salivary Glands/metabolism , Sjogren's Syndrome/immunology , STAT3 Transcription Factor/metabolism
5.
Antioxidants (Basel) ; 13(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38929174

ABSTRACT

Ten-eleven translocation 1 (TET1) is a methylcytosine dioxygenase involved in active DNA demethylation. In our previous study, we demonstrated that TET1 reprogrammed the ovarian cancer epigenome, increased stem properties, and activated various regulatory networks, including metabolic networks. However, the role of TET1 in cancer metabolism remains poorly understood. Herein, we uncovered a demethylated metabolic gene network, especially oxidative phosphorylation (OXPHOS). Contrary to the concept of the Warburg effect in cancer cells, TET1 increased energy production mainly using OXPHOS rather than using glycolysis. Notably, TET1 increased the mitochondrial mass and DNA copy number. TET1 also activated mitochondrial biogenesis genes and adenosine triphosphate production. However, the reactive oxygen species levels were surprisingly decreased. In addition, TET1 increased the basal and maximal respiratory capacities. In an analysis of tricarboxylic acid cycle metabolites, TET1 increased the levels of α-ketoglutarate, which is a coenzyme of TET1 dioxygenase and may provide a positive feedback loop to modify the epigenomic landscape. TET1 also increased the mitochondrial complex I activity. Moreover, the mitochondrial complex I inhibitor, which had synergistic effects with the casein kinase 2 inhibitor, affected ovarian cancer growth. Altogether, TET1-reprogrammed ovarian cancer stem cells shifted the energy source to OXPHOS, which suggested that metabolic intervention might be a novel strategy for ovarian cancer treatment.

6.
Front Cell Dev Biol ; 12: 1416325, 2024.
Article in English | MEDLINE | ID: mdl-38915445

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible interstitial lung disease with a prognosis worse than lung cancer. It is a fatal lung disease with largely unknown etiology and pathogenesis, and no effective therapeutic drugs render its treatment largely unsuccessful. With continuous in-depth research efforts, the epigenetic mechanisms in IPF pathogenesis have been further discovered and concerned. As a widely studied mechanism of epigenetic modification, DNA methylation is primarily facilitated by DNA methyltransferases (DNMTs), resulting in the addition of a methyl group to the fifth carbon position of the cytosine base, leading to the formation of 5-methylcytosine (5-mC). Dysregulation of DNA methylation is intricately associated with the advancement of respiratory disorders. Recently, the role of DNA methylation in IPF pathogenesis has also received considerable attention. DNA methylation patterns include methylation modification and demethylation modification and regulate a range of essential biological functions through gene expression regulation. The Ten-Eleven-Translocation (TET) family of DNA dioxygenases is crucial in facilitating active DNA demethylation through the enzymatic conversion of the modified genomic base 5-mC to 5-hydroxymethylcytosine (5-hmC). TET2, a member of TET proteins, is involved in lung inflammation, and its protein expression is downregulated in the lungs and alveolar epithelial type II cells of IPF patients. This review summarizes the current knowledge of pathologic features and DNA methylation mechanisms of pulmonary fibrosis, focusing on the critical roles of abnormal DNA methylation patterns, DNMTs, and TET proteins in impacting IPF pathogenesis. Researching DNA methylation will enchance comprehension of the fundamental mechanisms involved in IPF pathology and provide novel diagnostic biomarkers and therapeutic targets for pulmonary fibrosis based on the studies involving epigenetic mechanisms.

7.
Cell Mol Life Sci ; 81(1): 270, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886218

ABSTRACT

Early trophoblast differentiation is crucial for embryo implantation, placentation and fetal development. Dynamic changes in DNA methylation occur during preimplantation development and are critical for cell fate determination. However, the underlying regulatory mechanism remains unclear. Recently, we derived morula-like expanded potential stem cells from human preimplantation embryos (hEPSC-em), providing a valuable tool for studying early trophoblast differentiation. Data analysis on published datasets showed differential expressions of DNA methylation enzymes during early trophoblast differentiation in human embryos and hEPSC-em derived trophoblastic spheroids. We demonstrated downregulation of DNA methyltransferase 3 members (DNMT3s) and upregulation of ten-eleven translocation methylcytosine dioxygenases (TETs) during trophoblast differentiation. While DNMT inhibitor promoted trophoblast differentiation, TET inhibitor hindered the process and reduced implantation potential of trophoblastic spheroids. Further integrative analysis identified that glutamyl aminopeptidase (ENPEP), a trophectoderm progenitor marker, was hypomethylated and highly expressed in trophoblast lineages. Concordantly, progressive loss of DNA methylation in ENPEP promoter and increased ENPEP expression were detected in trophoblast differentiation. Knockout of ENPEP in hEPSC-em compromised trophoblast differentiation potency, reduced adhesion and invasion of trophoblastic spheroids, and impeded trophoblastic stem cell (TSC) derivation. Importantly, TET2 was involved in the loss of DNA methylation and activation of ENPEP expression during trophoblast differentiation. TET2-null hEPSC-em failed to produce TSC properly. Collectively, our results illustrated the crucial roles of ENPEP and TET2 in trophoblast fate commitments and the unprecedented TET2-mediated loss of DNA methylation in ENPEP promoter.


Subject(s)
Cell Differentiation , DNA Methylation , DNA-Binding Proteins , Dioxygenases , Proto-Oncogene Proteins , Trophoblasts , Female , Humans , Pregnancy , Blastocyst/metabolism , Blastocyst/cytology , Cell Lineage/genetics , Dioxygenases/metabolism , Dioxygenases/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Gene Expression Regulation, Developmental , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Trophoblasts/metabolism , Trophoblasts/cytology
8.
Front Immunol ; 15: 1380641, 2024.
Article in English | MEDLINE | ID: mdl-38601144

ABSTRACT

Recent studies have demonstrated a role for Ten-Eleven Translocation-2 (TET2), an epigenetic modulator, in regulating germinal center formation and plasma cell differentiation in B-2 cells, yet the role of TET2 in regulating B-1 cells is largely unknown. Here, B-1 cell subset numbers, IgM production, and gene expression were analyzed in mice with global knockout of TET2 compared to wildtype (WT) controls. Results revealed that TET2-KO mice had elevated numbers of B-1a and B-1b cells in their primary niche, the peritoneal cavity, as well as in the bone marrow (B-1a) and spleen (B-1b). Consistent with this finding, circulating IgM, but not IgG, was elevated in TET2-KO mice compared to WT. Analysis of bulk RNASeq of sort purified peritoneal B-1a and B-1b cells revealed reduced expression of heavy and light chain immunoglobulin genes, predominantly in B-1a cells from TET2-KO mice compared to WT controls. As expected, the expression of IgM transcripts was the most abundant isotype in B-1 cells. Yet, only in B-1a cells there was a significant increase in the proportion of IgM transcripts in TET2-KO mice compared to WT. Analysis of the CDR3 of the BCR revealed an increased abundance of replicated CDR3 sequences in B-1 cells from TET2-KO mice, which was more clearly pronounced in B-1a compared to B-1b cells. V-D-J usage and circos plot analysis of V-J combinations showed enhanced usage of VH11 and VH12 pairings. Taken together, our study is the first to demonstrate that global loss of TET2 increases B-1 cell number and IgM production and reduces CDR3 diversity, which could impact many biological processes and disease states that are regulated by IgM.


Subject(s)
B-Lymphocyte Subsets , Mice , Animals , B-Lymphocyte Subsets/metabolism , B-Lymphocytes , Immunoglobulin Light Chains/genetics , Translocation, Genetic , Immunoglobulin M , Cell Count
9.
Cancer Cell Int ; 24(1): 110, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528605

ABSTRACT

BACKGROUND: Resistance to targeted therapies represents a significant hurdle to successfully treating hepatocellular carcinoma (HCC). While epigenetic abnormalities are critical determinants of HCC relapse and therapeutic resistance, the underlying mechanisms are poorly understood. We aimed to address whether and how dysregulated epigenetic regulators have regulatory and functional communications in establishing and maintaining drug resistance. METHODS: HCC-resistant cells were characterized by CCK-8, IncuCyte Live-Cell analysis, flow cytometry and wound-healing assays. Target expression was assessed by qPCR and Western blotting. Global and promoter DNA methylation was measured by dotblotting, methylated-DNA immunoprecipitation and enzymatic digestion. Protein interaction and promoter binding of DNMT3a-TET2 were investigated by co-immunoprecipitation, ChIP-qPCR. The regulatory and functional roles of DNMT3a and TET2 were studied by lentivirus infection and puromycin selection. The association of DNMT and TET expression with drug response and survival of HCC patients was assessed by public datasets, spearman correlation coefficients and online tools. RESULTS: We identified the coordination of DNMT3a and TET2 as an actionable mechanism of drug resistance in HCC. The faster growth and migration of resistant HCC cells were attributed to DNMT3a and TET2 upregulation followed by increased 5mC and 5hmC production. HCC patients with higher DNMT3a and TET2 had a shorter survival time with a less favorable response to sorafenib therapy than those with lower expression. Cancer stem cell-like cells (CSCs) displayed DNMT3a and TET2 overexpression, which were insensitive to sorafenib. Either genetic or pharmacological suppression of DNMT3a or/and TET2 impaired resistant cell growth and oncosphere formation, and restored sorafenib sensitivity. Mechanistically, DNMT3a did not establish a regulatory circuit with TET2, but formed a complex with TET2 and HDAC2. This complex bound the promoters of oncogenes (i.e., CDK1, CCNA2, RASEF), and upregulated them without involving promoter DNA methylation. In contrast, DNMT3a-TET2 crosstalk silences tumor suppressors (i.e., P15, SOCS2) through a corepressor complex with HDAC2 along with increased promoter DNA methylation. CONCLUSIONS: We demonstrate that DNMT3a and TET2 act coordinately to regulate HCC cell fate in DNA methylation-dependent and -independent manners, representing strong predictors for drug resistance and poor prognosis, and thus are promising therapeutic targets for refractory HCC.

10.
EMBO J ; 43(8): 1445-1483, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38499786

ABSTRACT

Regulatory T (TREG) cells develop via a program orchestrated by the transcription factor forkhead box protein P3 (FOXP3). Maintenance of the TREG cell lineage relies on sustained FOXP3 transcription via a mechanism involving demethylation of cytosine-phosphate-guanine (CpG)-rich elements at conserved non-coding sequences (CNS) in the FOXP3 locus. This cytosine demethylation is catalyzed by the ten-eleven translocation (TET) family of dioxygenases, and it involves a redox reaction that uses iron (Fe) as an essential cofactor. Here, we establish that human and mouse TREG cells express Fe-regulatory genes, including that encoding ferritin heavy chain (FTH), at relatively high levels compared to conventional T helper cells. We show that FTH expression in TREG cells is essential for immune homeostasis. Mechanistically, FTH supports TET-catalyzed demethylation of CpG-rich sequences CNS1 and 2 in the FOXP3 locus, thereby promoting FOXP3 transcription and TREG cell stability. This process, which is essential for TREG lineage stability and function, limits the severity of autoimmune neuroinflammation and infectious diseases, and favors tumor progression. These findings suggest that the regulation of intracellular iron by FTH is a stable property of TREG cells that supports immune homeostasis and limits the pathological outcomes of immune-mediated inflammation.


Subject(s)
Apoferritins , T-Lymphocytes, Regulatory , Animals , Humans , Mice , Apoferritins/genetics , Apoferritins/metabolism , Cell Lineage/genetics , Cytosine/metabolism , Forkhead Transcription Factors , Iron/metabolism
11.
Epilepsy Behav Rep ; 25: 100642, 2024.
Article in English | MEDLINE | ID: mdl-38323091

ABSTRACT

The therapeutic potential of aerobic exercise in mitigating seizures and cognitive issues in temporal lobe epilepsy (TLE) is recognized, yet the underlying mechanisms are not well understood. Using a rodent TLE model induced by Kainic acid (KA), we investigated the impact of a single bout of exercise (i.e., acute) or 4 weeks of aerobic exercise (i.e., chronic). Blood was processed for epilepsy-associated serum markers, and DNA methylation (DNAme), and hippocampal area CA3 was assessed for gene expression levels for DNAme-associated enzymes. While acute aerobic exercise did not alter serum Brain-Derived Neurotrophic Factor (BDNF) or Interleukin-6 (IL-6), chronic exercise resulted in an exercise-specific decrease in serum BDNF and an increase in serum IL-6 levels in epileptic rats. Additionally, whole blood DNAme levels, specifically 5-hydroxymethylcytosine (5-hmC), decreased in epileptic animals following chronic exercise. Hippocampal CA3 5-hmC levels and ten-eleven translocation protein (TET1) expression mirrored these changes. Furthermore, immunohistochemistry analysis revealed that most 5-hmC changes in response to chronic exercise were neuron-specific within area CA3 of the hippocampus. Together, these findings suggest that DNAme mechanisms in the rodent model of TLE are responsive to chronic aerobic exercise, with emphasis on neuronal 5-hmC DNAme in the epileptic hippocampus.

12.
J Virol ; 98(2): e0172123, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38179947

ABSTRACT

Liver-specific ten-eleven translocation (Tet) methylcytosine dioxygenases 2 and 3 (Tet2 plus Tet3)-deficient hepatitis B virus (HBV) transgenic mice fail to support viral biosynthesis. The levels of viral transcription and replication intermediates are dramatically reduced. Hepatitis B core antigen is only observed in a very limited number of pericentral hepatocytes in a pattern that is similar to glutamate-ammonia ligase (Glul), a ß-catenin target gene. HBV transcript abundance in adult Tet-deficient mice resembles that observed in wild-type neonatal mice. Furthermore, the RNA levels of several ß-catenin target genes including Glul, Lhpp, Notun, Oat, Slc1a2, and Tbx3 in Tet-deficient mice were also similar to that observed in wild-type neonatal mice. As HBV transcription is regulated by ß-catenin, these findings support the suggestion that neonatal Tet deficiency might limit ß-catenin target gene expression, limiting viral biosynthesis. Additionally, HBV transgene DNA displays increased 5-methylcytosine (5mC) frequency at CpG sequences consistent with neonatal Tet deficiency being responsible for decreased developmental viral DNA demethylation mediated by 5mC oxidation to 5-hydroxymethylcytosine, a process that might be responsible for the reduction in cellular ß-catenin target gene expression and viral transcription and replication.IMPORTANCEChronic hepatitis B virus (HBV) infection causes significant worldwide morbidity and mortality. There are no curative therapies available to resolve chronic HBV infections, and the small viral genome limits molecular targets for drug development. An alternative approach to drug development is to target cellular genes essential for HBV biosynthesis. In the liver, ten-eleven translocation (Tet) genes encode cellular enzymes that are not essential for postnatal mouse development but represent essential activities for viral DNA demethylation and transcription. Consequently, Tet inhibitors may potentially be developed into therapeutic agents capable of inducing and/or maintaining HBV covalently closed circular DNA methylation, resulting in transcriptional silencing and the resolution of chronic viral infection.


Subject(s)
DNA-Binding Proteins , Dioxygenases , Hepatitis B virus , Animals , Mice , beta Catenin/genetics , Dioxygenases/genetics , Dioxygenases/metabolism , DNA Demethylation , DNA Methylation , DNA, Viral/genetics , DNA, Viral/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Hepatitis B virus/metabolism , Mice, Transgenic
13.
J Hazard Mater ; 465: 133405, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38185084

ABSTRACT

Exposure to arsenic during gestation has lasting health-related effects on the developing fetus, including an increase in the risk of metabolic disease later in life. Epigenetics is a potential mechanism involved in this process. Ten-eleven translocation 2 (TET2) has been widely considered as a transferase of 5-hydroxymethylcytosine (5hmC). Here, mice were exposed, via drinking water, to arsenic or arsenic combined with ascorbic acid (AA) during gestation. For adult offspring, intrauterine arsenic exposure exhibited disorders of glucose metabolism, which are associated with DNA hydroxymethylation reprogramming of hepatic nuclear factor 4 alpha (HNF4α). Further molecular structure analysis, by SEC-UV-DAD, SEC-ICP-MS, verified that arsenic binds to the cysteine domain of TET2. Mechanistically, arsenic reduces the stability of TET2 by binding to it, resulting in the decrease of 5hmC levels in Hnf4α and subsequently inhibiting its expression. This leads to the disorders of expression of its downstream key glucose metabolism genes. Supplementation with AA blocked the reduction of TET2 and normalized the 5hmC levels of Hnf4α, thus alleviating the glucose metabolism disorders. Our study provides targets and methods for the prevention of offspring glucose metabolism abnormalities caused by intrauterine arsenic exposure.


Subject(s)
Arsenic , Ascorbic Acid , Dioxygenases , Glucose Metabolism Disorders , Animals , Mice , Arsenic/toxicity , Ascorbic Acid/therapeutic use , Dioxygenases/metabolism , DNA , DNA Methylation , DNA-Binding Proteins , Glucose/metabolism , Glucose Metabolism Disorders/chemically induced , Glucose Metabolism Disorders/genetics , Glucose Metabolism Disorders/metabolism , Liver/metabolism
14.
Anim Biosci ; 37(3): 471-480, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38271970

ABSTRACT

OBJECTIVE: The objective of this study was to investigate the regulation relationship of Teneleven translocation 1 (Tet1) in DNA demethylation and the proliferation of primordial germ cells (PGCs) in chickens. METHODS: siRNA targeting Tet1 was used to transiently knockdown the expression of Tet1 in chicken PGCs, and the genomic DNA methylation status was measured. The proliferation of chicken PGCs was detected by flow cytometry analysis and cell counting kit-8 assay when activation or inhibition of Wnt4/ß-catenin signaling pathway. And the level of DNA methylation and hisotne methylation was also tested. RESULTS: Results revealed that knockdown of Tet1 inhibited the proliferation of chicken PGCs and downregulated the mRNA expression of Cyclin D1 and cyclin-dependent kinase 6 (CDK6), as well as pluripotency-associated genes (Nanog, PouV, and Sox2). Flow cytometry analysis confirmed that the population of PGCs in Tet1 knockdown group displayed a significant decrease in the proportion of S and G2 phase cells, which meant that there were less PGCs entered the mitosis process than that of control. Furthermore, Tet1 knockdown delayed the entrance to G1/S phase and this inhibition was rescued by treated with BIO. Consistent with these findings, Wnt/ß-catenin signaling was inactivated in Tet1 knockdown PGCs, leading to aberrant proliferation. Further analysis showed that the methylation of the whole genome increased significantly after Tet1 downregulation, while hydroxymethylation obviously declined. Meanwhile, the level of H3K27me3 was upregulated and H3K9me2 was downregulated in Tet1 knockdown PGCs, which was achieved by regulating Wnt/ß-catenin signaling pathway. CONCLUSION: These results suggested that the self-renewal of chicken PGCs and the maintenance of their characteristics were regulated by Tet1 mediating DNA demethylation through the activation of Wnt4/ß-catenin signaling pathway.

15.
J Ovarian Res ; 17(1): 15, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38216951

ABSTRACT

BACKGROUND: Ovarian cancer (OVCA) is the most lethal gynecologic cancer and chemoresistance remains a major hurdle to successful therapy and survival of OVCA patients. Plasma gelsolin (pGSN) is highly expressed in chemoresistant OVCA compared with their chemosensitive counterparts, although the mechanism underlying the differential expression is not known. Also, its overexpression significantly correlates with shortened survival of OVCA patients. In this study, we investigated the methylation role of Ten eleven translocation isoform-1 (TET1) in the regulation of differential pGSN expression and chemosensitivity in OVCA cells. METHODS: Chemosensitive and resistant OVCA cell lines of different histological subtypes were used in this study to measure pGSN and TET1 mRNA abundance (qPCR) as well as protein contents (Western blotting). To investigate the role of DNA methylation specifically in pGSN regulation and pGSN-induced chemoresistance, DNMTs and TETs were pharmacologically inhibited in sensitive and resistant OVCA cells using specific inhibitors. DNA methylation was quantified using EpiTYPER MassARRAY system. Gain-and-loss-of-function assays were used to investigate the relationship between TET1 and pGSN in OVCA chemoresponsiveness. RESULTS: We observed differential protein and mRNA expressions of pGSN and TET1 between sensitive and resistant OVCA cells and cisplatin reduced their expression in sensitive but not in resistant cells. We observed hypomethylation at pGSN promoter upstream region in resistant cells compared to sensitive cells. Pharmacological inhibition of DNMTs increased pGSN protein levels in sensitive OVCA cells and decreased their responsiveness to cisplatin, however we did not observe any difference in methylation level at pGSN promoter region. TETs inhibition resulted in hypermethylation at multiple CpG sites and decreased pGSN protein level in resistant OVCA cells which was also associated with enhanced response to cisplatin, findings that suggested the methylation role of TETs in the regulation of pGSN expression in OVCA cells. Further, we found that TET1 is inversely related to pGSN but positively related to chemoresponsiveness of OVCA cells. CONCLUSION: Our findings broaden our knowledge about the epigenetic regulation of pGSN in OVCA chemoresistance and reveal a novel potential target to re-sensitize resistant OVCA cells. This may provide a future therapeutic strategy to improve the overall OVCA patient survival.


Subject(s)
Cisplatin , Ovarian Neoplasms , Humans , Female , Cisplatin/pharmacology , Cisplatin/therapeutic use , Gelsolin/genetics , Gelsolin/metabolism , DNA Methylation , Epigenesis, Genetic , Drug Resistance, Neoplasm/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , RNA, Messenger/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/therapeutic use , Proto-Oncogene Proteins/metabolism
16.
Chem Asian J ; 19(3): e202301005, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38206202

ABSTRACT

Chemical modifications to Cytosine bases are among the most studied epigenetic markers and their detection in the human genome plays a crucial role in gaining more insights about gene regulation, prognosis of genetic disorders and unraveling genetic inheritance patterns. The Cytosine methylated at the 5th position and oxidized derivatives thereof generated in the demethylation pathways, perform separate and unique epigenetic functions in an organism. As the presence of various Cytosine modifications is associated with diverse diseases, including cancer, there has been a strong focus on developing methods, both chemical and alternative approaches, capable of detecting these modifications at a single-base resolution across the entire genome. In this comprehensive review, we aim to consolidate the various chemical methods and understanding their chemistry that have been established to date for the detection of various Cytosine modifications.


Subject(s)
Cytosine , Neoplasms , Humans , Cytosine/metabolism , DNA Methylation , Epigenesis, Genetic
17.
Life Sci ; 336: 122283, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37993094

ABSTRACT

Chronic temporomandibular joint (TMJ) pain profoundly affects patients' quality of life. Trigeminal tumor necrosis factor-α (TNFα) plays a pivotal role in mediating TMJ pain in mice, yet the underlying epigenetic mechanisms remain enigmatic. To unravel these epigenetic intricacies, we employed a multifaceted approach. Hydroxymethylated DNA immunoprecipitation (hMeDIP) and chromatin immunoprecipitation (ChIP) followed by qPCR were employed to investigate the demethylation of TNFα gene (Tnfa) and its regulation by ten-eleven translocation methylcytosine dioxygenase 1 (TET1) in a chronic TMJ pain mouse model. The global levels of 5-hydroxymethylcytosine (5hmc) and percentage of 5hmc at the Tnfa promoter region were measured in the trigeminal ganglia (TG) and spinal trigeminal nucleus caudalis (Sp5C) following complete Freund's adjuvant (CFA) or saline treatment. TET1 knockdown and pain behavioral testing were conducted to ascertain the role of TET1-mediated epigenetic regulation of TNFα in the pathogenesis of chronic TMJ pain. Our finding revealed an increase in 5hmc at the Tnfa promoter region in both TG and Sp5C of CFA-treated mice. TET1 was upregulated in the mouse TG, and the ChIP result showed TET1 direct binding to the Tnfa promoter, with higher efficiency in the CFA-treated group. Immunofluorescence revealed the predominant expression of TET1 in trigeminal neurons. TET1 knockdown in the TG significantly reversed CFA-induced TNFα upregulation and alleviated chronic TMJ pain. In conclusion, our study implicates TET1 as a vital epigenetic regulator contributing to chronic inflammatory TMJ pain via trigeminal TNFα signaling. Targeting TET1 holds promise for epigenetic interventions in TMJ pain management.


Subject(s)
Arthralgia , DNA-Binding Proteins , Temporomandibular Joint , Trigeminal Ganglion , Tumor Necrosis Factor-alpha , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Epigenesis, Genetic/genetics , DNA-Binding Proteins/metabolism , Trigeminal Ganglion/physiopathology , Arthralgia/chemically induced , Arthralgia/physiopathology , Temporomandibular Joint/physiopathology , Male , Animals , Mice , Mice, Inbred C57BL , Freund's Adjuvant/pharmacology , Up-Regulation/drug effects , Neurons/metabolism , Gene Knockdown Techniques , Promoter Regions, Genetic , Protein Binding/drug effects
18.
Biochem Genet ; 62(2): 718-740, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37410307

ABSTRACT

To investigate the function of ten-eleven translocation 1 (TET1) and its underlying mechanism in papillary thyroid cancer (PTC). Using the RNA-Seq data based on GDC TCGA, we analyzed the gene expression pattern of TET1 in PTC. Immunohistochemistry was carried out to assess the TET1 protein level. Then, its diagnostic and prognostic functions were determined by various bioinformatics approaches. Enrichment analysis was performed to explore the potential pathways in which TET1 is mainly involved. Finally, the immune cell infiltration analysis was conducted and the association of TET1 mRNA expression with the expression levels of immune checkpoints, tumor mutation burden (TMB) score, microsatellite instability (MSI) score, and cancer stem cells (CSC) score was examined. TET1 expression was lower in PTC tissues compared with that in normal tissues (P < 0.01). Besides, TET1 had a certain value in diagnosing PTC, and low-TET1 mRNA expression led to favorable disease-specific survival (DSS) (P < 0.01). The enrichment analysis revealed autoimmune thyroid disease and cytokine-cytokine receptor interaction were the consistent pathways in which TET1 participated. TET1 was negatively correlated with the Stromal score and Immune score. The different proportions of immune cell subtypes were observed between high- and low-TET1 expression groups. Interestingly, TET1 mRNA expression was inversely related to the expression levels of immune checkpoints, and TMB, MSI, and CSC scores. TET1 might be a robust diagnostic and prognostic biomarker for PTC. TET1 affected the DSS of PTC patients possibly through the regulation of immune-related pathways and tumor immunity.

19.
Ann Hepatol ; 29(2): 101183, 2024.
Article in English | MEDLINE | ID: mdl-38043702

ABSTRACT

INTRODUCTION AND OBJECTIVES: MicroRNA-326 is abnormally expressed in autoimmune diseases, but its roles in autoimmune hepatitis (AIH) are unknown. In this study, we aimed to investigate the effect of miR-326 on AIH and the underlying mechanism. MATERIALS AND METHODS: Concanavalin A was administrated to induce AIH in mice and the expression levels of miR-326 and TET2 was evaluated by qRT-PCR and western blot, respectively. The percentages of Th17 and Treg cells were evaluated by flow cytometry and their marker proteins were determined by western blot and ELISA. The mitochondrial membrane potential (MMP) and ROS level were tested with the JC-1 kit and DCFH-DA assay. The binding relationships between miR-326 and TET2 were verified by dual-luciferase reporter assay. The liver tissues were stained by the HE staining. In vitro, AML12 cells were cocultured with mouse CD4+T cells. The expression levels of pyroptosis-related proteins were assessed by western blot. RESULTS: Concanavalin A triggered AIH and enhanced the expression level of miR-326 in mice. It increased both Th17/Treg ratio and the levels of their marker proteins. The expression of TET2 was decreased in AIH mice. Knockdown of miR-326 could decrease the levels of pyroptosis-related proteins, the ROS level and increase MMP. In mouse CD4+T cells, miR-326 sponged TET2 to release IL-17A. Coculture of AML12 cells with isolated CD4+T cells from miR-326 knockdown AIH mice could relieve pyroptosis. CONCLUSIONS: Knockdown of miR-326 exerted anti-pyroptosis effects via suppressing TET2 and downstream NF-κB signaling to dampen AIH. We highlighted a therapeutic target in AIH.


Subject(s)
Hepatitis A , Hepatitis, Autoimmune , MicroRNAs , Animals , Mice , Concanavalin A/pharmacology , Concanavalin A/metabolism , Hepatitis, Autoimmune/genetics , Hepatocytes/metabolism , MicroRNAs/metabolism , Pyroptosis , Reactive Oxygen Species/metabolism , T-Lymphocytes, Regulatory/metabolism
20.
J Biol Chem ; 300(2): 105597, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38160798

ABSTRACT

Increased expression of angiotensin II AT1A receptor (encoded by Agtr1a) and Na+-K+-Cl- cotransporter-1 (NKCC1, encoded by Slc12a2) in the hypothalamic paraventricular nucleus (PVN) contributes to hypertension development. However, little is known about their transcriptional control in the PVN in hypertension. DNA methylation is a critical epigenetic mechanism that regulates gene expression. Here, we determined whether transcriptional activation of Agtr1a and Slc12a2 results from altered DNA methylation in spontaneously hypertensive rats (SHR). Methylated DNA immunoprecipitation and bisulfite sequencing-PCR showed that CpG methylation at Agtr1a and Slc12a2 promoters in the PVN was progressively diminished in SHR compared with normotensive Wistar-Kyoto rats (WKY). Chromatin immunoprecipitation-quantitative PCR revealed that enrichment of DNA methyltransferases (DNMT1 and DNMT3A) and methyl-CpG binding protein 2, a DNA methylation reader protein, at Agtr1a and Slc12a2 promoters in the PVN was profoundly reduced in SHR compared with WKY. By contrast, the abundance of ten-eleven translocation enzymes (TET1-3) at Agtr1a and Slc12a2 promoters in the PVN was much greater in SHR than in WKY. Furthermore, microinjecting of RG108, a selective DNMT inhibitor, into the PVN of WKY increased arterial blood pressure and correspondingly potentiated Agtr1a and Slc12a2 mRNA levels in the PVN. Conversely, microinjection of C35, a specific TET inhibitor, into the PVN of SHR markedly reduced arterial blood pressure, accompanied by a decrease in Agtr1a and Slc12a2 mRNA levels in the PVN. Collectively, our findings suggest that DNA hypomethylation resulting from the DNMT/TET switch at gene promoters in the PVN promotes transcription of Agtr1a and Slc12a2 and hypertension development.


Subject(s)
DNA Demethylation , Hypothalamus , Receptor, Angiotensin, Type 1 , Solute Carrier Family 12, Member 2 , Animals , Rats , Blood Pressure , DNA/metabolism , Hypertension/metabolism , Hypothalamus/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Rats, Inbred SHR , Rats, Inbred WKY , Receptor, Angiotensin, Type 1/metabolism , RNA, Messenger/genetics , Sympathetic Nervous System/metabolism , Solute Carrier Family 12, Member 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL