ABSTRACT
Pentylenetetrazole (PTZ), a tetrazole derivative, is commonly used as a chemical agent to induce neurological disorders and replicate the characteristics of human epileptic seizures in animal models. This review offers a comprehensive analysis of the behavioral, neurophysiological, and neurochemical changes induced by PTZ. The epileptogenic and neurotoxic mechanisms of PTZ are associated with an imbalance between the GABAergic and glutamatergic systems. At doses exceeding 60 mg/kg, PTZ exerts its epileptic effects by non-competitively antagonizing GABAA receptors and activating NMDA receptors, resulting in an increased influx of cations such as Na+ and Ca2+. Additionally, PTZ promotes oxidative stress, microglial activation, and the synthesis of pro-inflammatory mediators, all of which are features characteristic of glutamatergic excitotoxicity. These mechanisms ultimately lead to epileptic seizures and neuronal cell death, which depend on the dosage and method of administration. The behavioral, electroencephalographic, and histological changes associated with PTZ further establish it as a valuable preclinical model for the study of epileptic seizures, owing to its simplicity, cost-effectiveness, and reproducibility.
Subject(s)
Pentylenetetrazole , Pentylenetetrazole/toxicity , Animals , Humans , Seizures/chemically induced , Seizures/metabolism , Epilepsy/drug therapy , Epilepsy/metabolism , Epilepsy/chemically induced , Convulsants/toxicity , Oxidative Stress/drug effects , Oxidative Stress/physiologyABSTRACT
The anticarcinogenic potential of a series of 1,5-disubstituted tetrazole-1,2,3-triazole hybrids (T-THs) was evaluated in the breast cancer (BC)-derived cell lines MCF-7 (ER+, PR+, and HER2-), CAMA-1 (ER+, PR+/-, and HER2-), SKBR-3 (ER+, PR+, and HER2+), and HCC1954 (ER+, PR+, and HER2+). The T-THs 7f, 7l, and 7g inhibited the proliferation of MCF-7 and CAMA-1, HCC1954, and SKBR-3 cells, respectively. The compounds with stronger effect in terms of migration and invasion inhibition were 7o, 7b, 7n, and 7k for the CAMA-1, MCF-7, HCC1954, and SKBR-3 cells respectively. Interestingly, these T-THs were the compounds with a fluorine present in their structures. To discover a possible target protein, a molecular docking analysis was performed for p53, p38, p58, and JNK1. The T-THs presented a higher affinity for p53, followed by JNK1, p58, and lastly p38. The best-predicted affinity for p53 showed interactions between the T-THs and both the DNA fragment and the protein. These results provide an opportunity for these compounds to be studied as potential drug candidates for breast cancer treatment.
Subject(s)
Breast Neoplasms , Humans , Female , MCF-7 Cells , Breast Neoplasms/metabolism , Tumor Suppressor Protein p53 , Molecular Docking Simulation , Cell Line, Tumor , Triazoles/chemistry , Cell ProliferationABSTRACT
A high-order multicomponent reaction involving a six-component reaction to obtain the novel linked 1,5-disubstituted tetrazole-1,2,3-triazole hybrids in low to moderate yield is described. This one-pot reaction is carried out under a cascade process consisting of three sequential reactions: Ugi-azide, bimolecular nucleophilic substitution (SN2), and copper-catalyzed alkyne-azide reaction (CuAAC), with high atom and step-economy due the formation of six new bonds (one C-C, four C-N, and one N-N). Thus, the protocol developed offers operational simplicity, mild reaction conditions, and structural diversity. Finally, to evaluate the antitumoral potential of the synthetized molecules, a proliferation study was performed in the breast cancer (BC) derived cell line MCF-7. The hybrid compounds showed several degrees of cell proliferation inhibition with a remarkable effect in those compounds with cyclohexane and halogens in their structures. These compounds represent potential drug candidates for breast cancer treatment. However, additionally assays are needed to elucidate their complete effect over the cellular hallmarks of cancer.
Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Tetrazoles/chemical synthesis , Triazoles/chemical synthesis , Antineoplastic Agents/chemical synthesis , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation , Female , Humans , MCF-7 Cells , Tetrazoles/pharmacology , Triazoles/pharmacologyABSTRACT
Diabetes is an important chronic disease affecting about 10% of the adult population in the US and over 420 million people worldwide, resulting in 1.6 million deaths every year, according to the World Health Organization. The most common type of the disease, type 2 diabetes, can be pharmacologically managed using oral hypoglycemic agents or thiazolidinediones (TZDs), such as pioglitazone, which act by activating the Peroxisome Proliferated-Activated Receptor γ. Despite their beneficial effects in diabetes treatment, TZDs like rosiglitazone and troglitazone were withdrawn due to safety reasons, creating a void in the pharmacological options for the treatment of this important disease. Here, we explored a structure-based approach in the screening for new chemical probes for a deeper investigation of the effects of PPARγ activation. A class of tetrazole compounds was identified and the compounds named T1, T2 and T3 were purchased and evaluated for their ability to interact with the PPARγ ligand binding domain (LBD). The compounds were binders with micromolar range affinity, as determined by their IC50 values. A Monte Carlo simulation of the compound T2 revealed that the tetrazole ring makes favorable interaction with the polar arm of the receptor binding pocket. Finally, the crystal structure of the PPARγ-LBD-T2 complex was solved at 2.3 Å, confirming the binding mode for this compound. The structure also revealed that, when the helix H12 is mispositioned, an alternative binding conformation is observed for the ligand suggesting an H12-dependent binding conformation for the tetrazole compound.
Subject(s)
Diabetes Mellitus, Type 2 , Thiazolidinediones , Humans , Hypoglycemic Agents , Ligands , PPAR gamma , TetrazolesABSTRACT
Herein, we report the synthesis and characterization of fluorophores containing a 2,1,3-benzoxadiazole unit associated with a π-conjugated system (D-π-A-π-D). These new fluorophores in solution exhibited an absorption maximum at around ~419 nm (visible region), as expected for electronic transitions of the π-π* type (ε ~2.7 × 107 L mol-1 cm-1), and strong solvent-dependent fluorescence emission (ΦFL ~0.5) located in the bluish-green region. The Stokes' shift of these compounds is ca. 3,779 cm-1, which was attributed to an intramolecular charge transfer (ICT) state. In CHCl3 solution, the compounds exhibited longer and shorter lifetimes, which was attributed to the emission of monomeric and aggregated molecules, respectively. Density functional theory was used to model the electronic structure of the compounds 9a-d in their excited and ground electronic states. The simulated emission spectra are consistent with the experimental results, with different solvents leading to a shift in the emission peak and the attribution of a π-π* state with the characteristics of a charge transfer excitation. The thermal properties were analyzed by thermogravimetric analysis, and a high maximum degradation rate occurred at around 300°C. Electrochemical studies were also performed in order to determine the band gaps of the molecules. The electrochemical band gaps (2.48-2.70 eV) showed strong correlations with the optical band gaps (2.64-2.67 eV).
ABSTRACT
An efficient synthesis methodology for a series of tetrazolo[1,5-a]pyrimidines substituted at the 5- and 7-positions from the cyclocondensation reaction [CCC + NCN] was developed. The NCN corresponds to 5-aminotetrazole and CCC to ß-enaminone. Two distinct products were observed in accordance with the ß-enaminone substituent. When observed in solution, the compounds can be divided into two groups: (a) precursor compounds with R = CF3 or CCl3, which leads to tetrazolo[1,5-a]pyrimidines in high regioselectivity with R at the 7-position of the heterocyclic ring; and (b) precursor compounds with R = aryl or methyl, which leads to a mixture of compounds, tetrazolo[1,5-a] pyrimidines (R in the 5-position of the ring) and 2-azidopyrimidines (R in the 4-position of the ring), which was attributed to an equilibrium of azide-tetrazole. In the solid state, all compounds were found as 2-azidopyrimidines. The regiochemistry of the reaction and the stability of the products are discussed on the basis of the data obtained by density functional theory (DFT) for energetic and molecular orbital (MO) calculations.
ABSTRACT
In the current investigation, the physicochemical, biopharmaceutical and pharmacokinetic characterization of a new clofibric acid analog (Compound 1) was evaluated. Compound 1 showed affinity by lipophilic phase in 1 to 5 pH interval, indicating that this compound would be absorbed favorably in duodenum or jejunum. Also, Compound 1 possess two ionic species, first above of pH 4.43 and, the second one is present over pH 6.08. The apparent permeability in everted sac rat intestine model was 8.73 × 10-6 cm/s in duodenum and 1.62 × 10-5 cm/s in jejunum, suggesting that Compound 1 has low permeability. Elimination constant after an oral administration of 50 µg/kg in Wistar rat was 1.81 h-1, absorption constant was 3.05 h-1, Cmax was 3.57 µg/mL at 0.33 h, AUC0-α was 956.54 µ/mL·h and distribution volume was 419.4 mL. To IV administration at the same dose, ke was 1.21 h-1, Vd was 399.6 mL and AUC0-α was 747.81 µ/mL·h. No significant differences were observed between pharmacokinetic parameters at every administration route. Bioavailability evaluated was 10.4%. Compound 1 is metabolized to Compound 2 probably by enzymatic hydrolysis, and it showed a half-life of 9.24 h. With these properties, Compound 1 would be considered as a prodrug of Compound 2 with potential as an antidiabetic and anti dyslipidemic agent.
Subject(s)
Clofibric Acid/analogs & derivatives , Tetrazoles/chemistry , Tetrazoles/pharmacokinetics , Administration, Intravenous , Administration, Oral , Animals , Biological Availability , Chromatography, High Pressure Liquid , Clofibric Acid/pharmacokinetics , Duodenum/metabolism , Half-Life , Hydrolysis , Hypoglycemic Agents/pharmacokinetics , Hypolipidemic Agents/pharmacokinetics , Intestinal Absorption , Jejunum/metabolism , Male , Permeability , Rats , Rats, WistarABSTRACT
In this research, a series of substituted 5-(5-amino-1-aryl-1H-pyrazol-4-yl)-1H-tetrazoles were synthesized and evaluated for in vitro antileishmanial activity. Among the derivatives, examined compounds 3b and 3l exhibited promising activity against promastigotes and amastigotes forms of Leishmania amazonensis. The cytotoxicity of these compounds was evaluated on murine cells, giving access to the corresponding selectivity index (SI).
Subject(s)
Antiprotozoal Agents/pharmacology , Leishmania/drug effects , Tetrazoles/chemistry , Tetrazoles/pharmacology , Animals , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Cell Line , Cell Survival/drug effects , Mice , Mice, Inbred BALB C , Tetrazoles/chemical synthesisABSTRACT
A new series of 5-(1-aryl-3-methyl-1H-pyrazol-4-yl)-1H-tetrazole derivatives (4a-m) and their precursor 1-aryl-3-methyl-1H-pyrazole-4-carbonitriles (3a-m) were synthesized and evaluated as antileishmanials against Leishmania braziliensis and Leishmania amazonensis promastigotes in vitro. In parallel, the cytotoxicity of these compounds was evaluated on the RAW 264.7 cell line. The results showed that among the assayed compounds the substituted 3-chlorophenyl (4a) (IC50/24h=15±0.14 µM) and 3,4-dichlorophenyl tetrazoles (4d) (IC50/24h=26±0.09 µM) were the most potent against L. braziliensis promastigotes, as compared the reference drug pentamidine, which presented IC50=13±0.04 µM. In addition, 4a and 4d derivatives were less cytotoxic than pentamidine. However, these tetrazole derivatives (4) and pyrazole-4-carbonitriles precursors (3) differ against each of the tested species and were more effective against L.braziliensis than on L. amazonensis.