Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39000035

ABSTRACT

Alternative splicing dysregulation is an emerging cancer hallmark, potentially serving as a source of novel diagnostic, prognostic, or therapeutic tools. Inhibitors of the activity of the splicing machinery can exert antitumoral effects in cancer cells. We aimed to characterize the splicing machinery (SM) components in oral squamous cell carcinoma (OSCC) and to evaluate the direct impact of the inhibition of SM-activity on OSCC-cells. The expression of 59 SM-components was assessed using a prospective case-control study of tumor and healthy samples from 37 OSCC patients, and the relationship with clinical and histopathological features was assessed. The direct effect of pladienolide-B (SM-inhibitor) on the proliferation rate of primary OSCC cell cultures was evaluated. A significant dysregulation in several SM components was found in OSCC vs. adjacent-healthy tissues [i.e., 12 out of 59 (20%)], and their expression was associated with clinical and histopathological features of less aggressiveness and overall survival. Pladienolide-B treatment significantly decreased OSCC-cell proliferation. Our data reveal a significantly altered expression of several SM-components and link it to pathophysiological features, reinforcing a potential clinical and pathophysiological relevance of the SM dysregulation in OSCC. The inhibition of SM-activity might be a therapeutic avenue in OSCC, offering a clinically relevant opportunity to be explored.


Subject(s)
Carcinoma, Squamous Cell , Cell Proliferation , Mouth Neoplasms , Humans , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Male , Female , Middle Aged , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Aged , Gene Expression Regulation, Neoplastic , Macrolides/pharmacology , Alternative Splicing , Epoxy Compounds/pharmacology , Case-Control Studies , Cell Line, Tumor , RNA Splicing , Adult , Prospective Studies
2.
Heliyon ; 10(7): e28148, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560136

ABSTRACT

Oral squamous cell carcinoma (OSCC) is a prevalent cancer that needs new therapeutic targets due to the poor postoperative prognosis in patients. Exosomes are currently one of important research areas owing to their unique properties. Exosomes are capable of acting as drug transporters, as well as facilitating interactions between OSCC and normal cells. Exosomes can be detected in body fluids such as blood, urine, cerebrospinal fluid, and bile. When exosomes are released from donor cells, they can carry various bioactive molecules to recipient cells, where these molecules participate in biological processes. This review highlights the mechanisms of exosome transfer between normal and OSCC cells. Exosomes isolated from donor OSCC cells can carry circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and microRNAs (miRNAs) and play a role in signaling processes in the recipient OSCC cells, human umbilical vein endothelial cells, and macrophages. Exosomes secreted by carcinoma-associated fibroblasts, macrophages, and stem cells can also enter the recipient OSCC cells and modulate signaling events in these cells. Exosomes isolated from OSCC plasma, serum, and saliva are also associated with OSCC prognosis. Furthermore, while exosomes were shown to be associated with chemotherapy resistance in OSCC, they can also be used for drug delivery during OSCC treatment. In this paper, we reviewed the molecular mechanisms and functions of exosomes from different cell sources in OSCC cells, providing a basis for diagnosis and prognosis prediction in OSCC patients, and offering guidance for the design of molecular targets carried by exosomes in OSCC.

3.
Adv Genet (Hoboken) ; 5(1): 2300201, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38465225

ABSTRACT

Cancer is one of the foremost causes of mortality. The human genome remains stable over time. However, human activities and environmental factors have the power to influence the prevalence of certain types of mutations. This goes to the excessive progress of xenobiotics and industrial development that is expanding the territory for cancers to develop. The mechanisms involved in immune responses against cancer are widely studied. Genome editing has changed the genome-based immunotherapy process in the human body and has opened a new era for cancer treatment. In this review, recent cancer immunotherapies and the use of genome engineering technology are largely focused on.

4.
Pediatr Nephrol ; 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37775581

ABSTRACT

Extracellular vesicles (EVs) are membranous cargo particles that mediate intercellular communication. They are heterogeneous in size and mechanism of release, and found in all biological fluids. Since EV content is in relation to the originating cell type and to its physiopathological conditions, EVs are under study to understand organ physiology and pathology. In addition, EV surface cargo, or corona, can be influenced by the microenvironment, leading to the concept that EV-associated molecules can represent useful biomarkers for diseases. Recent studies also focus on the use of natural, engineered, or synthetic EVs for therapeutic purposes. This review highlights the role of EVs in kidney development, pediatric kidney diseases, including inherited disorders, and kidney transplantation. Although few studies exist, they have promising results and may guide researchers in this field. Main limitations, including the influence of age on EV analyses, are also discussed.

5.
Article in English | MEDLINE | ID: mdl-36900882

ABSTRACT

Myofascial pain syndrome (MPS) is thought to stem from masticatory muscle hypersensitivity. Masticatory myofascial pain syndrome (MMPS) is characterized by multiple trigger points (MTrPs), also known as hyperirritable points, in taut bands of affected muscles, regional muscle pain, or referred pain to nearby maxillofacial areas like teeth, masticatory muscles or the temporomandibular joint (TMJ). Muscle stiffness, reduced range of motion, muscle weakening without atrophy, and autonomic symptoms may accompany regional discomfort. Multiple treatments have been utilized to reduce trigger points and mandibular function restrictions. As a result of these incapacitating symptoms, MMPS can significantly impair many elements of quality of life. The application of Kinesio tape (KT) is a non-invasive method of treating dormant myofascial trigger points. Utilizing the body's innate capacity for self-repair, this technique entails taping specific regions of the skin. KT alleviates discomfort, decreases swelling and inflammation, enhances or suppresses motor function in the muscles, stimulates proprioception, promotes lymphatic drainage, stimulates blood flow, and expedites tissue recovery. However, studies conducted to assess its effects have frequently yielded contradictory results. To the best of our knowledge, just a few research has looked into the therapeutic effects of KT on MMPS. The purpose of this review is to determine the efficacy of KT as a therapeutic tool for regular treatment or as an adjunct to existing therapy for MMPS based on the evidence presented in this review. To establish KT as a reliable independent treatment option, additional research is necessary to confirm the efficacy of KT techniques and applications, specifically randomized clinical trials.


Subject(s)
Athletic Tape , Fibromyalgia , Myofascial Pain Syndromes , Humans , Quality of Life , Myofascial Pain Syndromes/therapy , Trigger Points , Muscle, Skeletal
6.
Int J Mol Sci ; 23(21)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36361790

ABSTRACT

Somatostatin (SST), cortistatin (CORT), and their receptors (SSTR1-5/sst5TMD4-TMD5) comprise a multifactorial hormonal system involved in the regulation of numerous pathophysiological processes. Certain components of this system are dysregulated and play critical roles in the development/progression of different endocrine-related cancers. However, the presence and therapeutic role of this regulatory system in prostate cancer (PCa) remain poorly explored. Accordingly, we performed functional (proliferation/migration/colonies-formation) and mechanistic (Western-blot/qPCR/microfluidic-based qPCR-array) assays in response to SST and CORT treatments and CORT-silencing (using specific siRNA) in different PCa cell models [androgen-dependent (AD): LNCaP; androgen-independent (AI)/castration-resistant PCa (CRPC): 22Rv1 and PC-3], and/or in the normal-like prostate cell-line RWPE-1. Moreover, the expression of SST/CORT system components was analyzed in PCa samples from two different patient cohorts [internal (n = 69); external (Grasso, n = 88)]. SST and CORT treatment inhibited key functional/aggressiveness parameters only in AI-PCa cells. Mechanistically, antitumor capacity of SST/CORT was associated with the modulation of oncogenic signaling pathways (AKT/JNK), and with the significant down-regulation of critical genes involved in proliferation/migration and PCa-aggressiveness (e.g., MKI67/MMP9/EGF). Interestingly, CORT was highly expressed, while SST was not detected, in all prostate cell-lines analyzed. Consistently, endogenous CORT was overexpressed in PCa samples (compared with benign-prostatic-hyperplasia) and correlated with key clinical (i.e., metastasis) and molecular (i.e., SSTR2/SSTR5 expression) parameters. Remarkably, CORT-silencing drastically enhanced proliferation rate and blunted the antitumor activity of SST-analogues (octreotide/pasireotide) in AI-PCa cells. Altogether, we provide evidence that SST/CORT system and SST-analogues could represent a potential therapeutic option for PCa, especially for CRPC, and that endogenous CORT could act as an autocrine/paracrine regulator of PCa progression.


Subject(s)
Neuropeptides , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Androgens , Receptors, Somatostatin/genetics , Somatostatin/metabolism , Neuropeptides/metabolism , Cell Line, Tumor , Cell Proliferation
7.
Fish Shellfish Immunol ; 130: 53-60, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36084888

ABSTRACT

Zebrafish is a useful model for understanding human genetics and diseases and has evolved into a prominent scientific research model. The genetic structure of zebrafish is 70% identical to that of humans. Its small size, low cost, and transparent embryo make it a valuable tool in experimentation. Zebrafish and mammals possess the same molecular mechanism of thyroid organogenesis and development. Thus, thyroid hormone signaling, embryonic development, thyroid-related disorders, and novel genes involved in early thyroid development can all be studied using zebrafish as a model. Here in this review, we emphasize the evolving role of zebrafish as a possible tool for studying the thyroid gland in the context of physiology and pathology. The transcription factors nkx2.1a, pax2a, and hhex which contribute a pivotal role in the differentiation of thyroid primordium are discussed. Further, we have described the role of zebrafish as a model for thyroid cancer, evaluation of defects in thyroid hormone transport, thyroid hormone (TH) metabolism, and as a screening tool to study thyrotoxins. Hence, the present review highlights the role of zebrafish as a novel approach to understand thyroid development and organogenesis.


Subject(s)
Drug Discovery , Thyroid Diseases , Zebrafish , Animals , Disease Models, Animal , Gene Expression Regulation, Developmental , Humans , Thyroid Diseases/drug therapy , Thyroid Diseases/genetics , Thyroid Hormones/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Zebrafish/metabolism
8.
Neurochem Res ; 47(9): 2446-2453, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35986835

ABSTRACT

"Neurochemistry" in Japan was established by intensive cooperation between psychiatrists and their collaborators, biochemists, who have sought to investigate the etiology of mental illness to establish treatments. It was a completely different direction from the flow of modern biochemistry that was born using microorganisms or eukaryotic cells as research materials. Neurochemists aimed to elucidate the physiological or pathological functions of the brain through chemical analysis of the morphologically and functionally unique complexity and characteristics of brain. I here describe some of the origin and history of neurochemistry in Japan how researchers estabIished Japanese Society for Neurochemistry in1958 Yasuzo Tsukada as a president in collaboration with Isamu Sano, Genkichiro Takagaki and Masanori Kurokawa. The formation of research groups with the support of MEXT played a major role in promoting neurochemistry. Many international conferences held in Japan promoted the activity of neurochemistry: The International Society of Physiology (Tokyo) in 1965, and the Japan-US Neurochemistry Conference (Oiso) in 1965, and in 1967 the International Conference on Biochemistry (Tokyo). These meetings offered excitements to younger researchers by close interaction with the world top class researchers. Government established Brain Research Institutes in several national universities. The Asia-Pacific Society for Neurochemistry (APSN) was established in 1991 subsequent to an initiative by JSN. APSN presidents: Yasuzo Tsukada, Kazuhiro Ikenaka, and Akio Wanaka contributed to promote neurochemistry. The 4th ISN meeting was organized at Tokyo (Yasuzo Tsukada, president) in 1973 and the 15th ISN meeting at Kyoto (Kinya Kuriyama, president) in 1995. Kunihiko Suzuki and Kazuhiro Ikenaka as ISN Presidents greatly contributed in promoting the activity of ISN.


Subject(s)
Dementia , Neurochemistry , Humans , International Cooperation , Japan , Societies, Scientific
9.
Recent Adv Drug Deliv Formul ; 16(2): 84-89, 2022.
Article in English | MEDLINE | ID: mdl-35524662

ABSTRACT

The term "reactive oxygen species" (ROS) refers to a family of extremely reactive molecules. They are crucial as secondary messengers in both physiological functioning and the development of cancer. Tumors have developed the ability to survive at elevated ROS levels with significantly higher H2O2 levels than normal tissues. Chemodynamic therapy is a novel approach to cancer treatment that generates highly toxic hydroxyl radicals via a Fenton/Fenton-like reaction between metals and peroxides. Inorganic nanoparticles cause cytotoxicity by releasing ROS. Inorganic nanoparticles can alter redox homoeostasis by generating ROS or diminishing scavenging mechanisms. Internalized nanoparticles generate ROS in biological systems independent of the route of internalisation. This method of producing ROS could be employed to kill cancer cells as a therapeutic strategy. ROS also play a role in regulating the development of normal stem cells, as excessive ROS disturb the stem cells' regular biological cycles. ROS treatment has a significant effect on normal cellular function. Mitochondrial ROS are at the centre of metabolic changes and control a variety of other cellular processes, which can lead to medication resistance in cancer patients. As a result, utilising ROS in therapeutic applications can be a double-edged sword that requires better understanding.


Subject(s)
Nanoparticles , Neoplasms , Humans , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/metabolism , Neoplasms/drug therapy , Nanoparticles/therapeutic use , Oxygen/therapeutic use
10.
Methods Mol Biol ; 2434: 63-87, 2022.
Article in English | MEDLINE | ID: mdl-35213010

ABSTRACT

SINEUP is a new class of long non-coding RNAs (lncRNAs) which contain an inverted Short Interspersed Nuclear Element (SINE) B2 element (invSINEB2) necessary to specifically upregulate target gene translation. Originally identified in the mouse AS-Uchl1 (antisense Ubiquitin carboxyl-terminal esterase L1) locus, natural SINEUP molecules are oriented head to head to their sense protein coding, target gene (Uchl1, in this example). Peculiarly, SINEUP is able to augment, in a specific and controlled way, the expression of the target protein, with no alteration of target mRNA levels. SINEUP is characterized by a modular structure with the Binding Domain (BD) providing specificity to the target transcript and an effector domain (ED)-containing the invSINEB2 element-able to promote the loading to the heavy polysomes of the target mRNA. Since the understanding of its modular structure in the endogenous AS-Uchl1 ncRNA, synthetic SINEUP molecules have been developed by creating a specific BD for the gene of interest and placing it upstream the invSINEB2 ED. Synthetic SINEUP is thus a novel molecular tool that potentially may be used for any industrial or biomedical application to enhance protein production, also as possible therapeutic strategy in haploinsufficiency-driven disorders.Here, we describe a detailed protocol to (1) design a specific BD directed to a gene of interest and (2) assemble and clone it with the ED to obtain a functional SINEUP molecule. Then, we provide guidelines to efficiently deliver SINEUP into mammalian cells and evaluate its ability to effectively upregulate target protein translation.


Subject(s)
Protein Biosynthesis , RNA, Long Noncoding , Animals , Mice , RNA, Antisense/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Short Interspersed Nucleotide Elements
11.
Front Mol Biosci ; 9: 821146, 2022.
Article in English | MEDLINE | ID: mdl-35211511

ABSTRACT

Multidrug-resistant pathogens are of significant concern in recent years. Hence new antifungal and anti-bacterial drug targets are urgently needed before the situation goes beyond control. Inteins are polypeptides that self-splice from exteins without the need for cofactors or external energy, resulting in joining of extein fragments. Inteins are present in many organisms, including human pathogens such as Mycobacterium tuberculosis, Cryptococcus neoformans, C. gattii, and Aspergillus fumigatus. Because intein elements are not present in human genes, they are attractive drug targets to develop antifungals and antibiotics. Thus far, a few inhibitors of intein splicing have been reported. Metal-ions such as Zn2+ and Cu2+, and platinum-containing compound cisplatin inhibit intein splicing in M. tuberculosis and C. neoformans by binding to the active site cysteines. A small-molecule inhibitor 6G-318S and its derivative 6G-319S are found to inhibit intein splicing in C. neoformans and C. gattii with a MIC in nanomolar concentrations. Inteins have also been used in many other applications. Intein can be used in activating a protein inside a cell using small molecules. Moreover, split intein can be used to deliver large genes in experimental gene therapy and to kill selected species in a mixed population of microbes by taking advantage of the toxin-antitoxin system. Furthermore, split inteins are used in synthesizing cyclic peptides and in developing cell culture model to study infectious viruses including SARS-CoV-2 in the biosafety level (BSL) 2 facility. This mini-review discusses the recent research developments of inteins in drug discovery and therapeutic research.

12.
Cancers (Basel) ; 13(19)2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34638313

ABSTRACT

Oral squamous cell carcinoma (OSCC) incidence has increased by 50% over the last decade. Unfortunately, surgery and adjuvant radiotherapy and chemotherapy are still the mainstream modality of treatment, underscoring the need for alternative therapies. Somatostatin-analogues (SSA) are efficacious and safe treatments for a variety of tumors, but the presence of somatostatin-receptors (SSTs) and pharmacological effects of SSA on OSCC are poorly known. In this study, we demonstrated that SST2 and SST3 levels were significantly higher in OSCC, compared to adjacent healthy control tissues. SST2 expression was associated with less regional metastasis and a lower recurrence rate. Moreover, SST2 was elevated in OSCC and associated with histopathological good prognosis factors, such as high peritumoral inflammation, smaller depth of invasion, and expansive vs. infiltrative front of tumor invasion. Importantly, treatment with different SSA (octreotide, lanreotide, and pasireotide) significantly reduced cell-proliferation in OSCC primary cell cultures. Altogether, this study demonstrated that SST2 is overexpressed in OSCC vs. healthy tissues and could represent a novel prognostic biomarker, since its expression is associated with tumors that show better prognostic factors and less recurrent rate. Moreover, our data unveil clear antitumoral effects of SSAs on OSCC, opening new avenues to explore their potential as targeting therapy to OSCC.

13.
Front Immunol ; 12: 635166, 2021.
Article in English | MEDLINE | ID: mdl-33790905

ABSTRACT

The extracellular matrix (ECM) molecule Tenascin-C (TNC) is well-known to promote tumor progression by multiple mechanisms. However, reliable TNC detection in tissues of tumor banks remains limited. Therefore, we generated dromedary single-domain nanobodies Nb3 and Nb4 highly specific for human TNC (hTNC) and characterized the interaction with TNC by several approaches including ELISA, western blot, isothermal fluorescence titration and negative electron microscopic imaging. Our results revealed binding of both nanobodies to distinct sequences within fibronectin type III repeats of hTNC. By immunofluroescence and immunohistochemical imaging we observed that both nanobodies detected TNC expression in PFA and paraffin embedded human tissue from ulcerative colitis, solid tumors and liver metastasis. As TNC impairs cell adhesion to fibronectin we determined whether the nanobodies abolished this TNC function. Indeed, Nb3 and Nb4 restored adhesion of tumor and mesangial cells on a fibronectin/TNC substratum. We recently showed that TNC orchestrates the immune-suppressive tumor microenvironment involving chemoretention, causing tethering of CD11c+ myeloid/dendritic cells in the stroma. Here, we document that immobilization of DC2.4 dendritic cells by a CCL21 adsorbed TNC substratum was blocked by both nanobodies. Altogether, our novel TNC specific nanobodies could offer valuable tools for detection of TNC in the clinical practice and may be useful to inhibit the immune-suppressive and other functions of TNC in cancer and other diseases.


Subject(s)
Antibodies, Neutralizing/immunology , Camelus/immunology , Single-Domain Antibodies/immunology , Tenascin/antagonists & inhibitors , Animals , Antibodies, Neutralizing/pharmacology , Antibody Specificity , Binding Sites, Antibody , Cell Adhesion/drug effects , Cell Line, Tumor , Colitis, Ulcerative/immunology , Colon/immunology , Enzyme-Linked Immunosorbent Assay , HEK293 Cells , Humans , Immunohistochemistry , Liver Neoplasms/immunology , Liver Neoplasms/secondary , Protein Binding , Single-Domain Antibodies/pharmacology , Tenascin/administration & dosage , Tenascin/immunology
14.
Soins ; 65(850): 31-34, 2020 Nov.
Article in French | MEDLINE | ID: mdl-33357736

ABSTRACT

Cross-cultural consultation often uses metaphors. These promote narration, facilitate the therapeutic alliance, and allow psychic elaborations that release our patients' pains. The terms and conditions of their use, as well as their purposes, are more and more determined. They draw from imagination and therapists' lived experiences, in classical stories, in tales and fables from various cultures. This gives them real therapeutic potential, which must be learned to use.


Subject(s)
Metaphor , Narration , Pain , Humans
15.
Neurol Ther ; 9(2): 419-434, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33089409

ABSTRACT

Alzheimer's disease (AD) is a chronic and irreversible neurodegenerative disorder characterized by cognitive deficiency and development of amyloid-ß (Aß) plaques and neurofibrillary tangles, comprising hyperphosphorylated tau. The number of patients with AD is alarmingly increasing worldwide; currently, at least 50 million people are thought to be living with AD. The mutations or alterations in amyloid-ß precursor protein (APP), presenilin-1 (PSEN1), or presenilin-2 (PSEN2) genes are known to be associated with the pathophysiology of AD. Effective medication for AD is still elusive and many gene-targeted clinical trials have failed to meet the expected efficiency standards. The genome editing tool clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 has been emerging as a powerful technology to correct anomalous genetic functions and is now widely applied to the study of AD. This simple yet powerful tool for editing genes showed the huge potential to correct the unwanted mutations in AD-associated genes such as APP, PSEN1, and PSEN2. So, it has opened a new door for the development of empirical AD models, diagnostic approaches, and therapeutic lines in studying the complexity of the nervous system ranging from different cell types (in vitro) to animals (in vivo). This review was undertaken to study the related mechanisms and likely applications of CRISPR-Cas9 as an effective therapeutic tool in treating AD.

16.
Mol Pain ; 16: 1744806920957800, 2020.
Article in English | MEDLINE | ID: mdl-32909507

ABSTRACT

Exosomes are extracellular microvesicles implicated in intercellular communication with ability to transfer cargo molecules, including protein, lipids, and nucleic acids, at both close and distant target sites. It has been shown that exosomes are implicated in physiological and pathological processes. In recent years, the interest on exosomes' role in many pain states has increased. Their involvements in pain processes have been demonstrated by studies on different chronic pain diseases, both inflammatory and neuropathic, such as osteoarthritis, rheumatoid arthritis, inflammatory bowel diseases, neurodegenerative pathologies, complex regional pain syndrome, and peripheral nerve injury. Animal and clinical studies investigated exosomes-based treatments, showing their ability to improve painful symptoms with fewer side effects, with potential immunoprotective and anti-inflammatory effect. Specific molecular patterns characterize exosomes' cargo according to the cellular origin, epigenetic modifications, environmental state, and stressor factors. Therefore, the identification of specific cargo's profile associated to pain states may lead to recognize specific pathological states and to consider the use of exosomes as biomarkers of diseases. Furthermore, exosomes' ability to transfer information and their presence in many accessible biological fluids suggest a potential use as novel non-invasive therapeutic tools in pain field.


Subject(s)
Exosomes/metabolism , Exosomes/pathology , Pain/metabolism , Peripheral Nerve Injuries/metabolism , Animals , Biomarkers/metabolism , Humans , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/therapy , Neuralgia/drug therapy , Neuralgia/metabolism , Neuralgia/therapy , Pain/drug therapy , Peripheral Nerve Injuries/drug therapy , Peripheral Nerve Injuries/therapy
17.
Protein Pept Lett ; 27(10): 931-944, 2020.
Article in English | MEDLINE | ID: mdl-32264803

ABSTRACT

Cancer is one of the most leading causes of mortality all over the world and remains a foremost social and economic burden. Mutations in the genome of individuals are taking place more frequently due to the excessive progress of xenobiotics and industrialization in the present world. With the progress in the field of molecular biology, it is possible to alter the genome and to observe the functional changes derived from genetic modulation using gene-editing technologies. Several therapies have been applied for the treatment of malignancy which affect the normal body cells; however, more effort is required to develop vsome latest therapeutic approaches for cancer biology and oncology exploiting these molecular biology advances. Recently, the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated protein 9 (Cas9) system has emerged as a powerful technology for cancer therapy because of its great accuracy and efficiency. Genome editing technologies have demonstrated a plethora of benefits to the biological sciences. CRISPR- Cas9, a versatile gene editing tool, has become a robust strategy for making alterations to the genome of organisms and a potent weapon in the arsenal of tumor treatment. It has revealed an excellent clinical potential for cancer therapy by discovering novel targets and has provided the researchers with the perception about how tumors respond to drug therapy. Stern efforts are in progress to enhance its efficiency of sequence specific targeting and consequently repressing offtarget effects. CRISPR-Cas9 uses specific proteins to convalesce mutations at genetic level. In CRISPR-Cas9 system, RNA-guided Cas9 endonuclease harnesses gene mutation, DNA deletion or insertion, transcriptional activation or repression, multiplex targeting only by manipulating 20-nucleotide components of RNA. Originally, CRISPR-Cas9 system was used by bacteria for their defense against different bacteriophages, and recently this system is receiving noteworthy appreciation due to its emerging role in the treatment of genetic disorders and carcinogenesis. CRISPR-Cas9 can be employed to promptly engineer oncolytic viruses and immune cells for cancer therapeutic applications. More notably, it has the ability to precisely edit genes not only in model organisms but also in human being that permits its use in therapeutic analysis. It also plays a significant role in the development of complete genomic libraries for cancer patients. In this review, we have highlighted the involvement of CRISPR-Cas9 system in cancer therapy accompanied by its prospective applications in various types of malignancy and cancer biology. In addition, some other conspicuous functions of this unique system have also been discussed beyond genome editing.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Genetic Therapy , Neoplasms , Humans , Neoplasms/genetics , Neoplasms/therapy
18.
Theranostics ; 10(1): 50-61, 2020.
Article in English | MEDLINE | ID: mdl-31903105

ABSTRACT

Human epidermal growth factor receptor 2 (HER2) is overexpressed/amplified in one third of breast cancers (BCs), and is associated with the poorer prognosis and the higher metastatic potential in BC. Emerging evidences highlight the role of microRNAs (miRNAs) in the regulation of several cellular processes, including BC. METHODS: Here we identified, by in silico approach, a group of three miRNAs with central biological role (high degree centrality) in HER2+ BC. We validated their dysregulation in HER2+ BC and we analysed their functional role by in vitro approaches on selected cell lines and by in vivo experiments in an animal model. RESULTS: We found that their expression is dysregulated in both HER2+ BC cell lines and human samples. Focusing our study on the only upregulated miRNA, miR-429, we discovered that it acts as an oncogene and its upregulation is required for HER2+ cell proliferation. It controls the metastatic potential of HER2+ BC subtype by regulating migration and invasion of the cell. CONCLUSIONS: In HER2+ BC oncogenic miR-429 is able to regulate HIF1α pathway by directly targeting VHL mRNA, a molecule important for the degradation of HIF1α. The overexpression of miR-429, observed in HER2+ BC, causes increased proliferation and migration of the BC cells. More important, silencing miR-429 succeeds in delaying tumor growth, thus miR-429 could be proposed as a therapeutic probe in HER2+ BC tumors.


Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , MicroRNAs/metabolism , Receptor, ErbB-2/metabolism , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Nude , Theranostic Nanomedicine
19.
J Funct Morphol Kinesiol ; 5(4)2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33467289

ABSTRACT

We are glad to introduce the Journal Club of Volume Five, fourth Issue. This edition is focused on relevant studies published in the last few years in the field of corrective exercise, chosen by our Editorial Board members and their colleagues. We hope to stimulate your curiosity in this field and to share a passion for sport with you, seen also from the scientific point of view. The Editorial Board members wish you an inspiring lecture.

20.
Ann Transl Med ; 7(22): 693, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31930094

ABSTRACT

Extracellular vesicles (EVs) of mesenchymal stem cells (MSCs) are secreted by live cells and possess the same regenerative potential and immunomodulatory ability as their parental cells. Clinical applications of MSC-EVs could overcome the shortage of MSCs for treatment of cancer and other diseases and impact the field of regenerative medicine from cellular to acellular therapy. For use of MSC-EVs as a clinical agent, various engineered EVs have been manufactured and their therapeutic effects on various diseases demonstrated in preclinical studies and clinical trials. However, MSC-EVs are heterogeneous, and many of their characteristics are still unknown. Many barriers still need to be surmounted before MSC-EVs can be used as biomedical agents.

SELECTION OF CITATIONS
SEARCH DETAIL