Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.224
Filter
1.
J Control Release ; 374: 28-38, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39097193

ABSTRACT

Self-amplifying RNA (saRNA) is a next-generation RNA platform derived from an alphavirus that enables replication in host cytosol, offering a promising shift from traditional messenger RNA (mRNA) therapies by enabling sustained protein production from minimal dosages. The approval of saRNA-based vaccines, such as the ARCT-154 for COVID-19 in Japan, underscores its potential for diverse therapeutic applications, including vaccine development, cancer immunotherapy, and gene therapy. This study investigates the role of delivery vehicle and administration route on saRNA expression kinetics and reactogenicity. Employing ionizable lipid-based nanoparticles (LNPs) and polymeric nanoparticles, we administered saRNA encoding firefly luciferase to BALB/c mice through six routes (intramuscular (IM), intradermal (ID), intraperitoneal (IP), intranasal (IN), intravenous (IV), and subcutaneous (SC)), and observed persistent saRNA expression over a month. Our findings reveal that while LNPs enable broad route applicability and stability, pABOL (poly (cystamine bisacrylamide-co-4-amino-1-butanol)) formulations significantly amplify protein expression via intramuscular delivery. Notably, the disparity between RNA biodistribution and protein expression highlight the nuanced interplay between administration routes, delivery vehicles, and therapeutic outcomes. Additionally, our research unveiled distinct biodistribution profiles and inflammatory responses contingent upon the chosen delivery formulation and route. This research illuminates the intricate dynamics governing saRNA delivery, biodistribution and reactogenicity, offering essential insights for optimizing therapeutic strategies and advancing the clinical and commercial viability of saRNA technologies.

2.
Int J Mol Sci ; 25(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125923

ABSTRACT

Adipose tissue dysfunction, which is associated with an increased risk of colorectal cancer (CRC), is a significant factor in the pathophysiology of obesity. Obesity-related inflammation and extracellular matrix (ECM) remodeling promote colorectal cancer metastasis (CRCM) by shaping the tumor microenvironment (TME). When CRC occurs, the metabolic symbiosis of tumor cells recruits adjacent adipocytes into the TME to supply energy. Meanwhile, abundant immune cells, from adipose tissue and blood, are recruited into the TME, which is stimulated by pro-inflammatory factors and triggers a chronic local pro-inflammatory TME. Dysregulated ECM proteins and cell surface adhesion molecules enhance ECM remodeling and further increase contractibility between tumor and stromal cells, which promotes epithelial-mesenchymal transition (EMT). EMT increases tumor migration and invasion into surrounding tissues or vessels and accelerates CRCM. Colorectal symbiotic microbiota also plays an important role in the promotion of CRCM. In this review, we provide adipose tissue and its contributions to CRC, with a special emphasis on the role of adipocytes, macrophages, neutrophils, T cells, ECM, and symbiotic gut microbiota in the progression of CRC and their contributions to the CRC microenvironment. We highlight the interactions between adipocytes and tumor cells, and potential therapeutic approaches to target these interactions.


Subject(s)
Adipocytes , Colorectal Neoplasms , Epithelial-Mesenchymal Transition , Tumor Microenvironment , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Adipocytes/metabolism , Adipocytes/pathology , Animals , Neoplasm Metastasis , Extracellular Matrix/metabolism , Adipose Tissue/metabolism , Adipose Tissue/pathology , Gastrointestinal Microbiome
3.
JCI Insight ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115939

ABSTRACT

Progress in cytokine engineering is driving therapeutic translation by overcoming these proteins' limitations as drugs. The interleukin-2 (IL-2) cytokine is a promising immune stimulant for cancer treatment but is limited by its concurrent activation of both pro-inflammatory immune effector cells and anti-inflammatory regulatory T cells, toxicity at high doses, and short serum half-life. One approach to improve the selectivity, safety, and longevity of IL-2 is complexation with anti-IL-2 antibodies that bias the cytokine towards immune effector cell activation. Although this strategy shows potential in preclinical models, clinical translation of a cytokine/antibody complex is complicated by challenges in formulating a multi-protein drug and concerns regarding complex stability. Here, we introduced a versatile approach to designing intramolecularly assembled single-agent fusion proteins (immunocytokines, ICs) comprising IL-2 and a biasing anti-IL-2 antibody that directs the cytokine towards immune effector cells. We optimized IC construction and engineered the cytokine/antibody affinity to improve immune bias. We demonstrated that our IC preferentially activates and expands immune effector cells, leading to superior antitumor activity compared to natural IL-2, both alone and combined with immune checkpoint inhibitors. Moreover, therapeutic efficacy was observed without inducing toxicity. This work presents a roadmap for the design and translation of cytokine/antibody fusion proteins.

4.
Cell Chem Biol ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39116881

ABSTRACT

We describe a protein proximity inducing therapeutic modality called Regulated Induced Proximity Targeting Chimeras or RIPTACs: heterobifunctional small molecules that elicit a stable ternary complex between a target protein (TP) selectively expressed in tumor cells and a pan-expressed protein essential for cell survival. The resulting co-operative protein-protein interaction (PPI) abrogates the function of the essential protein, thus leading to death selectively in cells expressing the TP. This approach leverages differentially expressed intracellular proteins as novel cancer targets, with the advantage of not requiring the target to be a disease driver. In this chemical biology study, we design RIPTACs that incorporate a ligand against a model TP connected via a linker to effector ligands such as JQ1 (BRD4) or BI2536 (PLK1) or CDK inhibitors such as TMX3013 or dinaciclib. RIPTACs accumulate selectively in cells expressing the HaloTag-FKBP target, form co-operative intracellular ternary complexes, and induce an anti-proliferative response in target-expressing cells.

5.
Int J Infect Dis ; : 107200, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39117175

ABSTRACT

Mycoplasma pneumoniae (M. pneumoniae) continues to pose a significant disease burden on global public health as a respiratory pathogen. The antimicrobial resistance among M. pneumoniae strains has complicated the outbreak control efforts, emphasizing the need for robust surveillance systems and effective antimicrobial stewardship programs. This review comprehensively investigates studies stemming from previous outbreaks to emphasize the multifaceted nature of M. pneumoniae infections, encompassing epidemiological dynamics, diagnostic innovations, antibiotic resistance, and therapeutic challenges. We explored the spectrum of clinical manifestations associated with M. pneumoniae infections, emphasizing the continuum of disease severity and the challenges in gradating it accurately. Artificial Intelligence and Machine Learning have emerged as promising tools in M. pneumoniae diagnostics, offering enhanced accuracy and efficiency in identifying infections. However, their integration into clinical practice presents hurdles that need to be addressed. Further, we elucidate the pivotal role of pharmacological interventions in controlling and treating M. pneumoniae infections as the efficacy of existing therapies is jeopardized by evolving resistance mechanisms. Lessons learned from previous outbreaks underscore the importance of adaptive treatment strategies and proactive management approaches. Addressing these complexities demands a holistic approach integrating advanced technologies, genomic surveillance, and adaptive clinical strategies to effectively combat this pathogen.

6.
Health Informatics J ; 30(3): 14604582241275816, 2024.
Article in English | MEDLINE | ID: mdl-39126642

ABSTRACT

OBJECTIVE: This study aimed to evaluate the current situation of Chinese mobile apps for hypertension management and explore patients' real requirements for app use, providing a theoretical basis for the future improvement of hypertension apps. METHODS: We reviewed hypertension management apps from mobile app platforms, and summarized their functional characteristics. In addition, we conducted an online survey among 1000 hypertensive patients, collected valid responses, and analyzed the feedback data. RESULTS: Forty hypertension management apps were analyzed, with 72.5% offering no more than six functions, indicating limited coverage of advanced and comprehensive functionalities. Among the 934 valid survey responses, patients emphasized four main functions in apps for hypertension management: long-term dynamic blood pressure monitoring, scientific lifestyle management, strict medication management and systematic health knowledge delivering. CONCLUSION: The existing hypertension management apps mainly serve as "Digital Health" tools with unclear clinical efficacy. The future development of these apps lies in how they transition to "Digital Therapeutics" solutions to better meet patients' needs and provide clear clinical advantages.


Subject(s)
Hypertension , Mobile Applications , Humans , Mobile Applications/trends , Mobile Applications/statistics & numerical data , Hypertension/therapy , China , Surveys and Questionnaires , Telemedicine/trends , Male , Female , Middle Aged , Adult , Disease Management , East Asian People
7.
Biochem Pharmacol ; : 116470, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39127153

ABSTRACT

Cyclin-dependent kinase 9 (CDK9) regulates mRNA transcription by promoting RNA Pol II elongation. CDK9 is now emerging as a potential therapeutic target for cancer, since its overexpression has been found to correlate with cancer development and worse clinical outcomes. While much work on CDK9 inhibition has focused on hematologic malignancies, the role of this cancer driver in solid tumors is starting to come into focus. Many solid cancers also overexpress CDK9 and depend on its activity to promote downstream oncogenic signaling pathways. In this review, we summarize the latest knowledge of CDK9 biology in solid tumors and the studies of small molecule CDK9 inhibitors. We discuss the results of the latest clinical trials of CDK9 inhibitors in solid tumors, with a focus on key issues to consider for improving the therapeutic impact of this drug class.

8.
J Pediatr (Rio J) ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39127460

ABSTRACT

OBJECTIVE: To describe the reported cases of newborns subjected to tuberculosis preventive treatment (TPT) in the state of Paraná, Brazil, and to evaluate the safety and effectiveness in preventing the progression of TB disease in this population. METHOD: Observational, descriptive case series, with secondary data. The characteristics of the participants were analyzed from the information systems of preventive treatment of TB (of Paraná), between 2009 and 2016. To evaluate which children had developed tuberculosis later or died, we used the data from the information systems of TB (in Brazil), and mortality (in Paraná), covering the years 2009 to 2018. RESULTS: A total of 24 children underwent TPT with the age at treatment onset ranging from 0 to 87 days (median: 23 days). In 95.8 %, the exposure occurred at home, and in 33.3 % of cases, the mother was the source of the infection. A total of 20.8 % of the children tested positive for tuberculosis test at 3 months of age, 83.3 % completed treatment, and 2 experienced adverse events (gastrointestinal issues). No children developed TB or died during the minimum of a 2-year evaluation period through the official databases. CONCLUSIONS: In this case series, the adherence to the plan was high, with few adverse events and 100 % protection against infection.

9.
J Dermatol Sci ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39127591

ABSTRACT

BACKGROUND: Dysregulation of melanogenesis contributes to the development of skin hyperpigmentation diseases, which poses a treatment challenge. Following the establishment of CRTC3 screening methods to explore small molecules inhibiting melanogenesis for the topical treatment of hyperpigmentation diseases, we identified a candidate molecule, semaxanib. OBJECTIVE: To explore the antimelanogenic effects of semaxanib, a vascular endothelial growth factor receptor (VEGFR) 2 inhibitor, for potential applications in hyperpigmentation management and to unravel the role of VEGF signaling in melanocyte biology by investigating mechanism of action of semaxanib. METHODS: Mouse-derived spontaneously immortalized melanocytes, B16F10, and normal human primary epidermal melanocytes cells were treated with semaxanib, and cellular responses were assessed using cell viability assays and melanin content measurements. Molecular mechanisms were investigated using transcriptional activity assays, reverse-transcription polymerase chain reaction, and immunoblotting analysis. In vivo studies were conducted using an epidermis-humanized transgenic mouse model and ex vivo human skin tissues. RESULTS: Semaxanib ameliorated melanin content in cultured melanocytes by downregulating the expression of melanogenesis-associated genes by suppressing the CRTC3/microphthalmia-associated transcription factors. Topical application of semaxanib reduced melanin accumulation in the ultraviolet B-stimulated ex vivo human epidermis and tail of K14-stem cell factor transgenic mice. Mechanistically, the antimelanogenic effect induced by semaxanib was associated with SIK2-CRTC3-MITF rather than VEGF signaling in melanocytes. CONCLUSION: Semaxanib emerges as a promising candidate for the development of therapeutics for hyperpigmentation, potentially working independently of VEGF signaling in human melanocytes.

10.
J Bone Miner Res ; 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39127916

ABSTRACT

There is a strong association between total hip bone mineral density (THBMD) changes after 24 months of treatment and reduced fracture risk. We examined whether changes in THBMD after 12- and 18 months of treatment are also associated with fracture risk reduction. We used individual patient data (n = 122 235 participants) from 22 randomised, placebo-controlled, double-blind trials of osteoporosis medications. We calculated the difference in mean percent change in THBMD (active-placebo) at 12, 18, and 24 months using data available for each trial. We determined the treatment-related fracture reductions for the entire follow-up period, using logistic regression for radiologic vertebral fractures and Cox regression for hip, non-vertebral, "all" (combination of non-vertebral, clinical vertebral, and radiologic vertebral) fractures, and all clinical fractures (combination of non-vertebral and clinical vertebral). We performed meta-regression to estimate the study-level association (r2 and 95% confidence interval) between treatment-related differences in THBMD changes for each BMD measurement interval and fracture risk reduction. The meta-regression revealed that for vertebral fractures, the r2 (95% confidence interval) was 0.59 (0.19, 0.75), 0.69 (0.32, 0.82), and 0.73 (0.33, 0.84) for 12, 18 and 24 months, respectively. Similar patterns were observed for hip: r2 = 0.27 (0.00, 0.54), 0.39 (0.02, 0.63), and 0.41 (0.02, 0.65); non-vertebral: r2 = 0.27 (0.01, 0.52), 0.49 (0.10, 0.69), and 0.53 (0.11, 0.72); all fractures: r2 = 0.44 (0.10, 0.64), 0.63 (0.24, 0.77), and 0.66 (0.25, 0.80); and all clinical fractures: r2 = 0.46 (0.11, 0.65), 0.64 (0.26, 0.78), and 0.71 (0.32, 0.83), for 12-, 18- and 24-month changes in THBMD, respectively. These findings demonstrate that treatment-related THBMD changes at 12, 18 and 24 months are associated with fracture risk reductions across trials. We conclude that BMD measurement intervals as short as 12 months could be used to assess fracture efficacy, but the association is stronger with longer BMD measurement intervals.


In this study, we looked at how changes in hip bone density over time relate to the risk of fractures in people taking osteoporosis medications. We analysed data from over 122 000 participants across 22 different clinical trials. We found that the increase in bone density measured after 12, 18, and 24 months of treatment was linked to the risk of fractures. Specifically, greater improvements in bone density were associated with fewer fractures in the spine, hips, and other bones. Using statistical methods, we calculated the strength of this association. We discovered that the later we measured bone mineral density in people taking the medication, the stronger the link between improved bone density and reduced fracture risk became. Our findings suggest that bone density measurements after 12 months of treatment could help predict how well a medication will prevent fractures. However, the best predictions came from bone density changes measured over longer periods.

12.
Article in English | MEDLINE | ID: mdl-39099390

ABSTRACT

Treatment patterns and preferences for patients with Graves' disease (GD) vary across countries. In this study, we assessed the initial therapies and subsequent treatment modalities employed for GD in real-world clinical practice in Korea. We analyzed 452,001 patients with GD from 2004 to 2020, obtained from the Korean National Health Insurance Service database. Initial treatments included antithyroid drug (ATD) therapy (98% of cases), thyroidectomy (1.3%), and radioactive iodine (RAI) therapy (0.7%). The rates of initial treatment failure were 58.5% for ATDs, 21.3% for RAI, and 2.1% for thyroidectomy. Even among cases of ATD treatment failure or recurrence, the rates of RAI therapy remained low. Regarding initial treatment, the 5-year remission rate was 46.8% among patients administered ATDs versus 91.0% among recipients of RAI therapy; at 10 years, these rates were 59.2% and 94.0%, respectively. Our findings highlight a marked disparity in the use of RAI therapy in Korea compared to Western countries. Further research is required to understand the reasons for these differences in treatment patterns.

13.
Eur J Immunol ; : e2350817, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101294

ABSTRACT

We describe initial, current, and future aspects of complement activation and inhibition in the rare hematological disease paroxysmal nocturnal hemoglobinuria (PNH). PNH is a rare but severe hematological disorder characterized by complement-mediated intravascular hemolysis resulting in anemia and severe thrombosis. Insights into the complement-mediated pathophysiology ultimately led to regulatory approval of the first-in-class complement inhibitor, eculizumab, in 2007. This anti-complement C5 therapy resulted in the stabilization of many hematologic parameters and dramatically reduced the often fatal, coagulant-resistant thrombotic events. Despite the remarkable clinical success, a substantial proportion of PNH patients experience suboptimal clinical responses during anti-C5 therapy. We describe the identification and mechanistic dissection of four unexpected processes responsible for such suboptimal clinical responses: (1) pharmacokinetic and (2) pharmacodynamic intravascular breakthrough hemolysis, (3) continuing low-level residual intravascular hemolysis, and (4) extravascular hemolysis. Novel complement therapeutics mainly targeting different complement proteins proximal in the cascade attempt to address these remaining problems. With five approved complement inhibitors in the clinic and many more being evaluated in clinical trials, PNH remains one of the complement diseases with the highest intensity of clinical research. Mechanistically unexpected breakthrough events occur not only with C5 inhibitors but also with proximal pathway inhibitors, which require further mechanistic elaboration.

14.
Biomedica ; 44(2): 182-190, 2024 05 30.
Article in English, Spanish | MEDLINE | ID: mdl-39088528

ABSTRACT

Introduction: The Mycobacterium chelonae species and the M. avium and M. abscessus complexes are emerging pathogens that cause mycobacteriosis. Treatment depends on the species and subspecies identified. The drugs of choice are macrolides and aminoglycosides. However, due to the resistance identified to these drugs, determining the microbe's sensitivity profile will allow clinicians to improve the understanding of the prognosis and evolution of these pathologies. Objective: To describe the macrolide and aminoglycoside susceptibility profile of cultures identified by Colombia's Laboratorio Nacional de Referencia de Mycobacteria from 2018 to 2022, as Mycobacterium avium complex, M. abscessus complex, and M. chelonae. Materials and methods. This descriptive study exposes the susceptibility profile to macrolides and aminoglycosides of cultures identified as M. avium complex, M. abscessus complex, and M. chelonae using the GenoType® NTM-DR method. Materials and methods: This descriptive study exposes the susceptibility profile to macrolides and aminoglycosides of cultures identified as M. avium complex, M. abscessus complex, and M. chelonae using the GenoType® NTM-DR method. Results: We identified 159 (47.3 %) cultures as M. avium complex, of which 154 (96.9 %) were sensitive to macrolides, and 5 (3.1 %) were resistant; all were sensitive to aminoglycosides. From the 125 (37.2 %) cultures identified as M. abscessus complex, 68 (54.4 %) were sensitive to macrolides, 57 (45.6 %) were resistant to aminoglycosides, and just one (0.8 %) showed resistance to aminoglycosides. The 52 cultures (15.5 %) identified as M. chelonae were sensitive to macrolides and aminoglycosides. Conclusions: The three studied species of mycobacteria have the least resistance to Amikacin. Subspecies identification and their susceptibility profiles allow the establishment of appropriate treatment schemes, especially against M. abscessus.


Introducción. Mycobacterium chelonae y los complejos Mycobacterium avium y M. abscessus, son agentes patógenos emergentes causantes de micobacteriosis. El tratamiento de esta infección depende de la especie y la subespecie identificadas. Los fármacos de elección son los macrólidos y aminoglucósidos, contra los cuales se ha reportado resistencia; por esta razón, el determinar el perfil de sensibilidad le permite al médico tratante comprender mejor el pronóstico y la evolución de estas infecciones. Objetivo. Describir los perfiles de sensibilidad ante macrólidos y aminoglucósidos, de los cultivos identificados como complejo Mycobacterium avium, complejo M. abscessus o especie M. chelonae, en el Laboratorio Nacional de Referencia de Micobacterias durante los años 2018 a 2022. Materiales y métodos. Se llevó a cabo un estudio descriptivo del perfil de sensibilidad a macrólidos y aminoglucósidos, de los cultivos identificados como complejo M. avium, complejo M. abscessus o M. chelonae, mediante la metodología GenoType® NTM-DR. Resultados. Los cultivos del complejo M. avium fueron 159 (47,3 %), de los cuales, 154 (96,9 %) fueron sensibles y 5 (3,1 %) resistentes a los macrólidos; todos fueron sensibles a los aminoglucósidos. Del complejo M. abscessus se estudiaron 125 (37,2 %) cultivos, 68 (54,4 %) resultaron sensibles y 57 (45,6 %) resistentes a los macrólidos; solo un cultivo (0,8 %) fue resistente a los aminoglucósidos. De M. chelonae se analizaron 52 cultivos (15,5 %), todos sensibles a los macrólidos y aminoglucósidos. Conclusiones. En las tres especies de micobacterias estudiadas, la resistencia contra la amikacina fue la menos frecuente. La identificación de las subespecies y los perfiles de sensibilidad permiten instaurar esquemas de tratamiento adecuados, especialmente en las micobacteriosis causadas por M. abscessus.


Subject(s)
Aminoglycosides , Macrolides , Microbial Sensitivity Tests , Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Mycobacterium avium Complex , Mycobacterium chelonae , Macrolides/pharmacology , Mycobacterium abscessus/drug effects , Mycobacterium abscessus/genetics , Mycobacterium abscessus/isolation & purification , Colombia/epidemiology , Mycobacterium chelonae/drug effects , Mycobacterium chelonae/genetics , Mycobacterium chelonae/isolation & purification , Aminoglycosides/pharmacology , Humans , Mycobacterium avium Complex/drug effects , Mycobacterium avium Complex/genetics , Mycobacterium avium Complex/isolation & purification , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium Infections, Nontuberculous/epidemiology , Mycobacterium Infections, Nontuberculous/drug therapy , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Prevalence , Drug Resistance, Multiple, Bacterial
15.
Neuro Oncol ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093629

ABSTRACT

BACKGROUND: Advances in our understanding of the molecular biology of meningiomas have led to significant gains in the ability to predict patient prognosis and tumor recurrence and to identify novel targets for therapeutic design. Specifically, classification of meningiomas based on DNA methylation has greatly improved our ability to risk stratify patients, however new questions have arisen in terms of the underlying impact these DNA methylation signatures have on meningioma biology. METHODS: This study utilizes RNA-seq data from 486 meningioma samples corresponding to three meningioma DNA methylation groups (Merlin-intact, Immune-enriched, and Hypermitotic), followed by in vitro experiments utilizing human meningioma cell lines. RESULTS: We identify alterations in RNA splicing between meningioma DNA methylation groups including individual splicing events that correlate with Hypermitotic meningiomas and predict tumor recurrence and overall patient prognosis and compile a set of splicing events that can accurately predict DNA methylation classification based on RNA-seq data. Furthermore, we validate these events using RT-PCR in patient samples and meningioma cell lines. Additionally, we identify alterations in RNA binding proteins and splicing factors that lie upstream of RNA splicing events, including upregulation of SRSF1 in Hypermitotic meningiomas which we show drives alternative RNA splicing changes. Finally, we design splice switching antisense oligonucleotides to target RNA splicing changes in NASP and MFF observed in Hypermitotic meningiomas, providing a rationale for RNA-based therapeutic design. CONCLUSIONS: RNA splicing is an important driver of meningioma phenotypes that can be useful in prognosticating patients and as a potential exploit for therapeutic vulnerabilities.

16.
Biochem Biophys Res Commun ; 735: 150445, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39094234

ABSTRACT

Sepsis, broadly described as a systemic infection, is one of the leading causes of death and long-term disability worldwide. There are limited therapeutic options available that either improve survival and/or improve the quality of life in survivors. Ilofotase alfa, also known as recombinant alkaline phosphatase (recAP), has been associated with reduced mortality in a subset of patients with sepsis-associated acute kidney injury. However, whether recAP exhibits any therapeutic benefits in other organ systems beyond the kidney is less clear. The objective of this study was to evaluate the effects of recAP on survival, behavior, and intestinal inflammation in a mouse model of sepsis, cecal ligation and puncture (CLP). Following CLP, either recAP or saline vehicle was administered via daily intraperitoneal injections to determine its treatment efficacy from early through late sepsis. We found that administration of recAP suppressed indices of inflammation in the gut and liver but did not improve survival or behavioral outcomes. These results demonstrate that recAP's therapeutic efficacy in the gut and liver may provide a valuable treatment to improve long-term outcomes in sepsis survivors.

17.
Mol Aspects Med ; 99: 101302, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39094449

ABSTRACT

Modern methods of molecular diagnostics and therapy have revolutionized the field of medicine in recent years by providing more precise and effective tools for detecting and treating diseases. This progress includes a growing exploration of the body's secreted vesicles, known as extracellular vesicles (EVs), for both diagnostic and therapeutic purposes. EVs are a heterogeneous population of lipid bilayer vesicles secreted by almost every cell type studied so far. They are detected in body fluids and conditioned culture media from living cells. EVs play a crucial role in communication between cells and organs, both locally and over long distances. They are recognized for their ability to transport endogenous RNA and proteins between cells, including messenger RNA (mRNA), microRNA (miRNA), misfolded neurodegenerative proteins, and several other biomolecules. This review explores the dual utilization of EVs, serving not only for diagnostic purposes but also as a platform for delivering therapeutic molecules to cells and tissues. Through an exploration of their composition, biogenesis, and selective cargo packaging, we elucidate the intricate mechanisms behind RNA transport between cells via EVs, highlighting their potential use for both diagnostic and therapeutic applications. Finally, it addresses challenges and outlines prospective directions for the clinical utilization of EVs.

18.
Article in English | MEDLINE | ID: mdl-39088356

ABSTRACT

Virtual reality (VR) has emerged as a nonpharmacological adjuvant to manage acute and chronic pain symptoms. The goal of this survey study was to determine the acceptability of VR among chronic pain participants hailing from distressed and prosperous neighborhoods in the state of Maryland. We hypothesized that pain severity and interference vary in groups experiencing health disparities, potentially influencing VR's acceptability. From March 11 to March 15, 2020, we surveyed a cohort of clinically phenotyped participants suffering from chronic orofacial pain. Participants were asked to express their willingness to participate in a longitudinal VR study and their expectation of pain relief from using VR. Seventy out of 350 participants with chronic pain completed the survey (response rate: 20%). There was no difference in the likelihood of responding to the survey based on their neighborhood distress. Among survey respondents and nonrespondents, similar proportions of participants were from distressed neighborhoods. Among the respondents, 63 (90%) and 59 (84.3%) were willing to participate and expected to experience pain relief from the VR intervention, respectively. Age, sex, race, neighborhood distress, severity of pain, and prior VR experience did not influence willingness to participate in the VR trial or the expectations of VR-induced improvement. These findings suggest that VR as an adjuvant intervention is potentially accepted by chronic pain participants, irrespective of neighborhood-level social determinants of health.

19.
J Neuroimmunol ; 394: 578421, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39088907

ABSTRACT

Niacin was found in the lysolecithin model of multiple sclerosis (MS) to promote the phagocytic clearance of debris and enhance remyelination. Lysolecithin lesions have prominent microglia/macrophages but lack lymphocytes that populate plaques of MS or its experimental autoimmune encephalomyelitis (EAE) model. Thus, the current study assessed the efficacy of niacin in EAE. We found that niacin inconsistently affects EAE clinical score, and largely does not ameliorate neuropathology. In culture, niacin enhances phagocytosis by macrophages, but does not reduce T cell proliferation. We suggest that studies of niacin for potential remyelination in MS should include a therapeutic that targets adaptive immunity.

20.
Article in English | MEDLINE | ID: mdl-39090822

ABSTRACT

INTRODUCTION: Due to their faithful recapitulation of human disease, nonhumanprimates (NHPs) are considered the gold standard for evaluating drugs against Ebolavirus and other filoviruses. The long-term goal is to reduce the reliance on NHPswith more ethical alternatives. In silico simulations and organoidmodels have the potential to revolutionize drug testing by providing accurate,human-based systems that mimic disease processes and drug responses without theethical concerns associated with animal testing. However, as these emergingtechnologies are still in their developmental infancy, NHP models are presentlyneeded for late-stage evaluation of filovirus vaccines and drugs, as theyprovide critical insights into the efficacy and safety of new medicalcountermeasures. AREAS COVERED: In this review, the authors introduce available NHP models andexamine the existing literature on drug discovery for all medically significantfiloviruses in corresponding models. EXPERT OPINION: A deliberate shift towards animal-free models is desired to alignwith the 3Rs of animal research. In the short term, the use of NHP models canbe refined and reduced by enhancing replicability and publishingnegative data. Replacement involves a gradual transition, beginning withthe selection and optimization of better small animal models; advancingorganoid systems, and using in silico models to accurately predictimmunological outcomes.

SELECTION OF CITATIONS
SEARCH DETAIL