Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Insects ; 14(2)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36835703

ABSTRACT

Artificial parthenogenetic induction via thermal stimuli in silkworm is an important technique that has been used in sericultural production. However, the molecular mechanism underlying it remains largely unknown. We have created a fully parthenogenetic line (PL) with more than 85% occurrence and 80% hatching rate via hot water treatment and genetic selection, while the parent amphigenetic line (AL) has less than 30% pigmentation rate and less than 1% hatching rate when undergoing the same treatment. Here, isobaric tags for relative and absolute quantitation (iTRAQ)-based analysis were used to investigate the key proteins and pathways associated with silkworm parthenogenesis. We uncovered the unique proteomic features of unfertilized eggs in PL. In total, 274 increased abundance proteins and 211 decreased abundance proteins were identified relative to AL before thermal induction. Function analysis displayed an increased level of translation and metabolism in PL. After thermal induction, 97 increased abundance proteins and 187 decreased abundance proteins were identified. An increase in stress response-related proteins and decrease in energy metabolism suggested that PL has a more effective response to buffer the thermal stress than AL. Cell cycle-related proteins, including histones, and spindle-related proteins were decreased in PL, indicating an important role of this decrease in the process of ameiotic parthenogenesis.

2.
Polymers (Basel) ; 15(23)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38231920

ABSTRACT

The aim of this investigation was to scrutinize the effects of a thermal treatment on the electrostatic complex formed between gum arabic (GA) and ε-polylysine (ε-PL), with the goal of improving the antibacterial properties and reducing the hygroscopicity of ε-PL. The heated complex with a ratio of 1:4 exhibited an encapsulation efficiency of 93.3%. Additionally, it had an average particle size of 350.3 nm, a polydispersity index of 0.255, and a zeta potential of 18.9 mV. The formation of the electrostatic complex between GA and ε-PL was confirmed through multispectral analysis, which demonstrated the participation of hydrogen bonding and hydrophobic and electrostatic interactions, as well as the enhanced effect of heat treatment on these forces within the complex. The complex displayed a core-shell structure, with a regular distribution and a shape that was approximately spherical, as observed in the transmission electron microscopy images. Additionally, the heated GA-ε-PL electrostatic composite exhibited favorable antibacterial effects on Salmonella enterica and Listeria monocytogenes, with reduced minimum inhibitory concentrations (15.6 µg/mL and 62.5 µg/mL, respectively) and minimum bactericidal concentrations (31.3 µg/mL and 156.3 µg/mL, respectively) compared to free ε-PL or the unheated electrostatic composite. Moreover, the moisture absorption of ε-PL reduced from 92.6% to 15.0% in just 48 h after being incorporated with GA and subsequently subjected to heat. This research showed a way to improve the antibacterial efficiency and antihygroscopicity of ε-PL, reducing its application limitations as an antimicrobial substance to some extent.

3.
Food Chem ; 365: 130540, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34256229

ABSTRACT

This work investigated the effects of deacetylated konjac glucomannan (DKGM) on heat-induced structural changes and flavor binding in bighead carp myosin. DKGM could cross-link with fish myosin to form a thermostable complex and improve the gel strength of myosin. The incorporation of DKGM increased the surface hydrophobicity and total sulfhydryl content of heat-induced myosin. Increasing DKGM concentrations resulted in a decrease in the absolute zeta potential and a continuous increase in particle size. DKGM addition significantly reduced the α-helical content of myosin with a concomitant increase in ß-sheet, ß-turn, and random coil content. The binding abilities of myosin to flavors were significantly enhanced by increasing amounts of DKGM, attributing to the accelerative unfolding of myosin secondary structures and the exposure of additional hydrophobic and thiol binding sites. Increased numbers of available hydroxyl groups after DKGM treatment could also cause an increase of flavor adsorption by hydrogen bonding.


Subject(s)
Fish Proteins/chemistry , Hot Temperature , Mannans , Myosins , Animals , Fishes , Hydrophobic and Hydrophilic Interactions , Myosins/chemistry
4.
J Sci Food Agric ; 100(12): 4457-4463, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32399966

ABSTRACT

BACKGROUND: Interactions between flavor compounds and proteins during food processing are critical to flavor perception of the final product. Here, we investigated the effect of the duration of heat treatment on the interaction between bighead carp myosin and selected flavor compounds including hexanal, heptanal, octanal, nonanal, (E)-2-heptenal, and 1-octen-3-ol. RESULTS: The binding of flavor compounds to native myosin was strong and decreased in the order nonanal > octanal > (E)-2-heptenal > heptanal > hexanal >1-octen-3-ol. The aldehydes, especially trans-2-undecenal, were more conducive to hydrophobic binding to myosin than alcohols. Within the initial 5 min of heating, the surface hydrophobicity and total sulfhydryl exposure increased, while α-helix turned into ß-sheets, ß-turns, and random coils. However, upon further heating, the hydrophobicity and sulfhydryl contents declined, ß-sheets, ß-turns and random coils shifted to α-helix. Throughout the heating process, the particle size increased, and the absolute zeta potential decreased continuously, indicating that thermal aggregation of myosin occurred simultaneously. Changes in binding capacities of flavor compounds to myosin were consistent with changes in hydrophobicity and sulfhydryl contents. CONCLUSION: The initial enhancement of the flavor-binding capacity of myosin was attributed to the unfolding of secondary structures by exposing more hydrophobic bonding sites and hydrogen bonding sites. The rebuilding and aggregating of myosin was enhanced upon prolonged heating, thus favoring hydrophobic protein-protein interactions and weakening the resultant flavor binding capacity of myosin.


Subject(s)
Cooking/methods , Fish Proteins/chemistry , Flavoring Agents/chemistry , Myosins/chemistry , Aldehydes/chemistry , Animals , Fishes , Hot Temperature , Hydrophobic and Hydrophilic Interactions , Protein Structure, Secondary
5.
Biotechnol J ; 14(1): e1800483, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30417965

ABSTRACT

The higher intracellular ATP levels of genome-edited strains of P. putida that result from deleting various energy-consuming functions has been exploited for expanding the window of thermal tolerance of this bacterium. Unlike instant growth halt and eventual death of the naturally occurring strain P. putida KT2440 at 42 °C, the EM42 variant maintained growth and viability of most of the population at the higher temperature for at least 6 h. The authors took advantage of this quality for implementing a robust thermo-inducible heterologous expression device in this species. To this end, the cI857/PL pair of the lambda phage of Escherichia coli was reshaped as a functional cargo that followed the SEVA (Standard European Vector Architecture) format. Quantitation of the transcriptional output of the resulting expression device with GFP reporter technology in various gene dosages identified conditions of unprecedented induced/uninduced ratios (>300 folds) and very high total transcriptional capacity in this bacterial host. The broad-host range nature of the cognate replication origins makes expression vectors pSEVA2214 (low plasmid copy number), pSEVA2314 (medium), and pSEVA2514 (high) to cover a wide range of heterologous expression needs in P. putida and possibly other Gram-negative species.


Subject(s)
Plasmids/genetics , Pseudomonas putida/genetics , Thermotolerance/physiology , Escherichia coli/genetics , Escherichia coli/physiology , Genetic Vectors/genetics , Pseudomonas putida/physiology , Thermotolerance/genetics
7.
Protein Expr Purif ; 90(2): 96-103, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23727254

ABSTRACT

Thermostable microbial lipases are potential candidates for industrial applications such as specialty organic syntheses as well as hydrolysis of fats and oils. In this work, basic biochemical engineering tools were applied to enhance the production of BTL2 lipase cloned in Escherichia coli BL321 under control of the strong temperature-inducible λP(L) promoter. Initially, surface response analysis was used to assess the influence of growth and induction temperatures on enzyme production, in flask experiments. The results showed that temperatures of 30 and 45°C were the most suitable for growth and induction, respectively, and led to an enzyme specific activity of 706,000 U/gDCW. The most promising induction conditions previously identified were validated in fed-batch cultivation, carried out in a 2L bioreactor. Specific enzyme activity reached 770,000 U/gDCW, corresponding to 13,000 U/L of culture medium and a lipase protein concentration of 10.8 g/L. This superior performance on enzyme production was a consequence of the improved response of λP(L) promoter triggered by the high induction temperature applied (45°C). These results point out to the importance of taking into account protein structure and stability to adequately design the recombinant protein production strategy for thermally induced promoters.


Subject(s)
Escherichia coli/genetics , Hot Temperature , Lipase/biosynthesis , Bacterial Proteins , Bioreactors , Cloning, Molecular , Enzyme Stability , Escherichia coli/metabolism , Lipase/genetics , Lipase/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL