Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Orthop Surg ; 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39243174

ABSTRACT

OBJECTIVE: The clinical management of patients with chronic limb-threatening ischemia (CLTI) faces great challenges. Enhancing wound healing and limb preservation rates in this cohort is a critical objective. This study investigates the effectiveness of combining tibial cortex transverse transport (TTT) and endovascular therapy (EVT) for the treatment of patients with severe CLTI. We aim to evaluate the therapeutic results of this combined approach on the specified patient group. METHODS: We conducted a retrospective study to compare EVT with the combination of TTT and EVT in patients (Rutherford category 5 and above) with CLTI at Guangxi Medical University's First Affiliated Hospital from June 2017 to June 2023. This cohort was subjected to a follow-up period ranging from a minimum of 6 months to a maximum of 12 months. The primary outcome measures included amputation-free survival (AFS) (avoidance of above-ankle amputation or death from any cause), overall mortality, limb salvage rates, wound healing efficiency, and the technical efficacy of the applied treatments. A variety of statistical analyses including chi-square tests, Fisher's exact tests, and Pearson's and Spearman's correlation analyses. RESULTS: In this study, 131 patients with CLTI were included: 76 in the control group receiving only EVT treatment and 55 in the TTT + EVT group. The two groups were matched on demographic and clinical characteristics. In the TTT + EVT group, after more than 6 months of follow-up, 85.5% of patients achieved AFS, and wound healing was observed in 54.5% (30 of 55 patients). After more than 12 months of follow-up, 81.9% achieved AFS, with wound healing in 32 patients. Furthermore, after more than 24 months, 74.2% of patients remained amputation-free, with wound healing in all surviving patients. In the control group, after more than 6 months of follow-up, 72.4% of patients achieved AFS, and wound healing was observed in 51.3% (39 of 96 patients). After more than 12 months, 48.9% achieved AFS, with wound healing in 21 patients. CONCLUSION: We found that combining therapy of TTT and EVT is safe and can be successfully administered in patients with CLTI and it enhances wound healing and AFS.

2.
Diabetol Metab Syndr ; 16(1): 154, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982536

ABSTRACT

OBJECTIVE: Diabetic foot ulcer (DFU) is a common and debilitating complication of diabetes that is associated with an increased risk of lower-limb amputation and a reduced life expectancy. Tibial cortex transverse transport (TTT) has become a newly alternative surgical method to facilitate ulcer healing and prevent lower limb amputation. Herein, we investigated the efficacy of TTT in treating DFU and changes of serum omentin-1 and irisin levels. METHODS: This study prospectively recruited 52 consecutive patients with DFU who were treated with TTT. The follow-up was performed weekly during the first 12 weeks postoperatively and every 3 months until 1 year after TTT. The serum levels of vascular endothelial growth factor (VEGF), omentin-1, and irisin in DFU patients undergoing TTT were determined by ELISA methods on the preoperative 1st day, postoperative 2nd week and 4th week. RESULTS: The wound healing rate was 92.3% (48/52) at the 1-year follow-up. The visual analog scale (VAS) pain scores of patients showed a significant reduction at the 4th week after TTT (p < 0.001). The dorsal foot skin temperature, ankle brachial index, and dorsal foot blood flow of patients were significantly increased at the 4th week after TTT (p < 0.001). Results of ELISA methods showed the serum levels of VEGF, omentin-1, and irisin on the 2nd week and 4th week after TTT were notably elevated compared to the levels determined on the preoperative 1st day (p < 0.001). The serum levels of VEGF, omentin-1, and irisin on the 4th week after TTT were also significantly higher than the levels determined on the 2nd week after TTT (p < 0.001). CONCLUSION: TTT could promote the wound healing and reduce the risk of lower limb amputation, demonstrating promising clinical benefits in the treatment of DFU. Increased expressions of serum proangiogenic factors including VEGF, omentin-1, and irisin were noted in the early stage after TTT, which may provide a new mechanism of TTT promoting wound heal.

3.
J Inflamm Res ; 17: 2681-2696, 2024.
Article in English | MEDLINE | ID: mdl-38707956

ABSTRACT

Purpose: Management of severe diabetic foot ulcers (DFUs) remains challenging. Tibial cortex transverse transport (TTT) facilitates healing and limb salvage in patients with recalcitrant DFUs. However, the underlying mechanism is largely unknown, necessitating the establishment of an animal model and mechanism exploration. Methods: Severe DFUs were induced in rats, then assigned to TTT, sham, or control groups (n=16/group). The TTT group underwent a tibial corticotomy, with 6 days each of medial and lateral transport; the sham group had a corticotomy without transport. Ulcer healing was assessed through Laser Doppler, CT angiography, histology, and immunohistochemistry. Serum HIF-1α, PDGF-BB, SDF-1, and VEGF levels were measured by ELISA. Results: The TTT group showed lower percentages of wound area, higher dermis thickness (all p < 0.001 expect for p = 0.001 for TTT vs Sham at day 6) and percentage of collagen content (all p < 0.001) than the other two groups. The TTT group had higher perfusion and vessel volume in the hindlimb (all p < 0.001). The number of CD31+ cells (all p < 0.001) and VEGFR2+ cells (at day 6, TTT vs Control, p = 0.001, TTT vs Sham, p = 0.006; at day 12, TTT vs Control, p = 0.003, TTT vs Sham, p = 0.01) were higher in the TTT group. The activity of HIF-1α, PDGF-BB, and SDF-1 was increased in the TTT group (all p < 0.001 except for SDF-1 at day 12, TTT vs Sham, p = 0.005). The TTT group had higher levels of HIF-1α, PDGF-BB, SDF-1, and VEGF in serum than the other groups (all p < 0.001). Conclusion: TTT enhanced neovascularization and perfusion at the hindlimb and accelerated healing of the severe DFUs. The underlying mechanism is related to HIF-1α-induced angiogenesis.

4.
J Orthop Translat ; 45: 107-119, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38524870

ABSTRACT

Background: Diabetic foot is a major complication of diabetes. The bone transverse transport method could be applied in clinics for treatment, which could improve the metabolism of the tissues via lasting distraction forces. However, the process' specific regulating mechanism is still unknown. Methods: Based on the notion that the healing of bones involves the recruitment of calcium ions, in this study, we established the model of tibial cortex transverse transport (TTT) on rats and then used tissue immunologic detection, such as the double fluorescent staining to explore the expression of the calcium channels' calcium release-activated calcium modulator 1 (Orai1)/stromal interaction molecule 1 (STIM1), which belong to the store-operated calcium entry (SOCE) signaling pathways on the tissues around the bone transport area. By using the laser capture microdissection (LCM) tool, we acquired samples of tissues around the bone and endeavored to identify pivotal protein molecules. Subsequently, we validated the functions of key protein molecules through in vitro and in vivo experiments. Results: After protein profile analysis, we found the differentially expressed key protein osteopontin (OPN). The in vitro experiments verified that, being stimulated by OPN, the migration, proliferation, and angiogenesis of human umbilical vein endothelial cells (HUVEC) were observed to be enhanced. The activation of Orai1/STIM1 might increase the activity of endothelial nitric oxide synthase (eNOS) and its effect on releasing nitric oxide (NO). Subsequently, the migration and proliferation of the HUVECs are improved, which ultimately accelerates wound healing. These signaling pathway was also observed in the OPN-stimulated healing process of the skin wound surface of diabetic mice. Conclusion: This study identifies the molecular biological mechanism of OPN-benefited the migration and proliferation of the HUVECs and provides ideas for searching for new therapeutic targets for drugs that repair diabetes-induced wounds to replace invasive treatment methods. The translational potential of this article: The OPN is highly expressed in the tissues surrounding the TTT bone transfer area, which may possibly stimulate the activation of eNOS to increase NO release through the SOCE pathway mediated by Orai1/STIM1. This mechanism may play a significant role in the angiogenesis of diabetic foot's wounds promoted by TTT, providing new therapeutic strategies for the non-surgical treatment for this disease.

5.
Front Endocrinol (Lausanne) ; 15: 1334414, 2024.
Article in English | MEDLINE | ID: mdl-38318295

ABSTRACT

Background: Diabetic foot ulcers constitute a substantial healthcare burden on a global scale and present challenges in achieving healing. Our objective was to assess the efficacy of modified tibial cortex transverse transport surgery in managing refractory diabetic foot ulcers. Methods: We retrospectively analyzed clinical data from 98 patients suffering from diabetic foot ulcers classified as Wagner grade ≥II who were admitted to our medical facility between January 2020 and June 2022. All the patients were treated by modified tibial cortex transverse transport surgery, wherein the osteotomy scope was reduced to two rectangular bone windows measuring 1.5cm × 1.5cm each. Record the patient's general information and ulcer healing time; ulcer area, ankle-brachial index, WIFi classification, and visual analogue scale before and 3 months following the surgical intervention. Results: The average duration of diabetes of 98 patients with diabetic foot ulcer was 20.22 ± 8.02 years, 52 patients had more than one toe gangrene on admission. The postoperative wound healing rate was 95.83% and the average healing time was 53.18 ± 20.18 days. The patients showed significant improvement in ankle-brachial index, WIFi classification, and visual analogue scale at 3 months postoperatively compared to preoperatively, with statistically significant differences (P< 0.05). Eight patients experienced complications, and the incidence of complications was 8.16%. Throughout the follow-up period, there were no instances of ulcer recurrence noted. Conclusion: Modified tibial cortex transverse transport surgery demonstrates effectiveness in the management of diabetic foot ulcers by enhancing lower limb microcirculation and facilitating the process of wound healing.


Subject(s)
Diabetes Mellitus , Diabetic Foot , Humans , Diabetic Foot/surgery , Retrospective Studies , Tibia/surgery , Lower Extremity , Wound Healing
6.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1021892

ABSTRACT

BACKGROUND:Diabetic foot patients with wound infections constitute a large patient population,and there is currently no satisfactory treatment approach. OBJECTIVE:To investigate the clinical efficacy of a modified tibial cortex transverse transport combined with antibiotic-loaded bone cement for treating refractory diabetic foot ulcers. METHODS:A total of 46 diabetic foot ulcers patients,27 males and 19 females,with an average age of 64.37 years,were selected from Beijing Chaoyang Hospital,Capital Medical University and Beijing Chaoyang Integrative Medicine Rescue and First Aid Hospital from January 2020 to January 2023.All of them underwent the modified tibial cortex transverse transport combined with antibiotic-loaded bone cement treatment.Ankle-brachial index,WIFi(Wound/Ischemia/Foot infection)classification,pain visual analog scale score,and ulcer area were recorded before and 3 months after surgery. RESULTS AND CONCLUSION:(1)The mean ulcer healing time for the 46 patients was(58.07±24.82)days.At 3 months postoperatively,there were significant improvements in ankle-brachial index,pain visual analog scale score,ulcer area,and WIFi classification in 46 patients,as compared to the preoperative values,with statistically significant differences(P<0.05).Two patients experienced pin-tract infections,without infection or ulcer recurrence during the follow-up period.(2)These findings indicate that the modified tibial cortex transverse transport combined with antibiotic-loaded bone cement effectively alleviates patients'pain,improves lower limb circulation,controls infections,and promotes ulcer healing.

7.
J Orthop Translat ; 42: 137-146, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37736148

ABSTRACT

Background: Tibial Cortex Transverse Transport (TTT) has been demonstrated to be an effective treatment for unilateral diabetic foot ulcers (UDFUs). However, this retrospective study was designed to compare the efficacy and safety of unilateral TTT on bilateral diabetic foot ulcers (BDFUs). Methods: This retrospective study included a review of patients with TTT treated from January 2017 to August 2019, Propensity Score Matching (PSM) was performed to compare patients with BDFUs to those with UDFUs. Ulcer healing, recurrence, and major amputation rates were evaluated at 1-year follow-up. Changes in foot vessels were assessed in the BDFUs group using computed tomography angiography (CTA). Results: A total of 140 patients with DFUs (106 UDFUs and 34 BDFUs) were included in the study. UDFUs and BDFUs were matched in a 1:1 ratio (34 in each group) using PSM. No significant difference was observed at 1-year-follow-up [91.2% (31/34) vs. 76.5% (26/34), OR 0.315 (95% CI 0.08 to 1.31), P â€‹= â€‹0.10] and 6-month-follow-up [70.6% (24/34) vs. 50.0% (17/34), OR 0.85 (95% CI 0.15 to 1.13), P â€‹= â€‹0.08] in two groups. Significant differences in rates of major amputation and recurrence between the groups (P â€‹> â€‹0.05) were not observed. The BDFUs group appeared more angiogenesis of the foot by CTA after 8 weeks of operation. Conclusion: Results of this study suggest that severe BDFUs can be effectively treated by unilateral TTT. TTT is easy to operate and effective, which may be a good alternative for treating severe BDFUs. The translational potential of this article: In previous retrospective clinical studies, TTT has demonstrated promising clinical outcomes in the management of diabetic foot ulcers. In this current study, we aim to investigate the potential use of TTT in treating distant tissue defects by evaluating the limited availability and safety of TTT for the management of bilateral diabetic foot. While additional basic and clinical research is necessary to fully elucidate the underlying mechanisms, our study offers insight into the potential therapeutic use of TTT for this condition.

8.
J Orthop Surg Res ; 18(1): 650, 2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37658426

ABSTRACT

OBJECTIVE: This study aimed to describe the learning curve of surgeons performing tibial cortex transverse transport (TTT) and explore its safety and effectiveness during the initial stages of surgeon's learning. METHODS: The clinical data of patients with diabetic foot ulcers classified as Wagner grade ≥ 2, who underwent TTT at our hospital from January 2020 to July 2021, were included in this retrospective analysis. The same physician performed all procedures. Patients were numbered according to the chronological order of their surgery dates. The cumulative sum and piecewise linear regression were used to evaluate the surgeon's learning curve, identify the cut-off point, and divide the patients into learning and mastery groups. A minimum follow-up period of 3 months was ensured for all patients. Baseline data, perioperative parameters, complications, and efficacy evaluation indicators were recorded and compared between the two groups. RESULTS: Sixty patients were included in this study based on the inclusion and exclusion criteria. After completing 20 TTT surgeries, the surgeon reached the cut-off point of the learning curve. Compared to the learning group, the mastery group demonstrated a significant reduction in the average duration of the surgical procedure (34.88 min vs. 54.20 min, P < 0.05) along with a notable decrease in intraoperative fluoroscopy (9.75 times vs. 16.9 times, P < 0.05) frequency, while no significant difference was found regarding intraoperative blood loss (P = 0.318). Of the patients, seven (11.7%) experienced complications, with three (15%) and four cases (10%) occurring during the learning phase and the mastery phase, respectively. The postoperative ulcer area was significantly reduced, and the overall healing rate was 94.8%. Significant improvements were observed in postoperative VAS, ABI, and WIFI classification (P < 0.05). There were no significant differences in the occurrence of complications or efficacy indicators between the learning and mastery groups (P > 0.05). CONCLUSION: Surgeons can master TTT after completing approximately 20 procedures. TTT is easy, secure, and highly efficient for treating foot ulcers. Furthermore, TTT's application by surgeons can achieve almost consistent clinical outcomes in the initial implementation stages, comparable to the mastery phase.


Subject(s)
Learning Curve , Surgeons , Humans , Retrospective Studies , Blood Loss, Surgical , Cerebral Cortex
9.
J Orthop Translat ; 36: 194-204, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36263383

ABSTRACT

Background: Management of recalcitrant diabetic foot ulcer (DFU) remains difficult. Distraction osteogenesis mediates new bone formation and angiogenesis in the bone itself and the surrounding tissues. Recently it was reported that tibial cortex transverse transport (TTT) was associated with neovascularization and increased perfusion at the foot in patients with recalcitrant DFUs and facilitated healing and limb salvage. However, the findings were from several single-center studies with relatively small populations, which need to be confirmed in multicenter cohort studies with relatively large populations. Furthermore, the effect of this technique on patient's health-related quality of life is still unclear. Methods: We treated patients with recalcitrant (University of Texas wound grading system 2-C to 3-D and not responding to prior routine conservative and surgical treatments for at least 8 weeks) DFUs from seven centers using TTT (a 5 â€‹cm â€‹× â€‹1.5 â€‹cm corticotomy followed by 4 weeks of medial and lateral distraction) between July 2016 and June 2019. We analyzed ulcer healing, major amputation, recurrence, health-related quality of life (physical and mental component summary scores), and complications in the 2-year follow-up. Foot arterial and perfusion changes were evaluated using computed tomography angiography and perfusion imaging 12 weeks postoperatively. Results: A total of 1175 patients were enrolled. Patients who died (85, 7.2%) or lost to follow-up (18, 1.7%) were excluded, leaving 1072 patients for evaluation. Most of the patients were male (752, 70.1%) and with a mean age of 60.4 â€‹± â€‹9.1 years. The mean ulcer size was 41.0 â€‹± â€‹8.5 â€‹cm2 and 187 (16.6%) ulcers extended above the ankle. During the follow-up, 1019 (94.9%) patients healed in a mean time of 12.4 â€‹± â€‹5.6 weeks, 53 (4.9%) had major amputations, and 33 (3.1%) experienced recurrences. Compared to preoperatively, the patients had higher physical (26.2 â€‹± â€‹8.3 versus 41.3 â€‹± â€‹10.6, p â€‹= â€‹0.008) and mental (33.6 â€‹± â€‹10.7 versus 45.4 â€‹± â€‹11.3, p â€‹= â€‹0.031) component summary scores at the 2-year follow-up. Closed tibial fracture at the corticotomy site was found in 8 (0.7%) patients and was treated using external fixation and healed uneventfully. There were 23 (2.1%) patients who had pin site infections and were treated successfully with dressing changes. Compared to preoperatively, the patients had more small arteries and higher foot blood flow (8.1 â€‹± â€‹2.2 versus 28.3 â€‹± â€‹3.9 ml/100 â€‹g/min, p â€‹= â€‹0.003) and volume (1.5 â€‹± â€‹0.3 versus 2.7 â€‹± â€‹0.4 ml/100 â€‹g, p â€‹= â€‹0.037) 12 weeks postoperatively. Conclusion: TTT promotes healing, limb salvage, and health-related quality of life in patients with recalcitrant DFUs as demonstrated in this multicenter cohort study. The surgical procedure was simple and straightforward and the complications were few and minor. The effect of this technique was associated with neovascularization and improved perfusion at the foot mediated by the cortex distraction. The findings are required to confirm in randomized controlled trials.The Translational Potential of this Article: TTT can be used as an effective treatment in patients with recalcitrant DFUs. The mechanism is associated with neovascularization and consequently increased perfusion in the foot after operation.

10.
Orthop Surg ; 14(6): 1034-1048, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35524654

ABSTRACT

Tibial cortex transverse transport (TTT) surgery is an extension of the Ilizarov technique. Based on the law of tension-stress, its primary function is to rebuild microcirculation which can relieve ischemic symptoms and promote wound healing. It has received more and more scholars' attention and has experienced a series of changes for 20 years since it entered PR China. The mechanisms involved have gradually become clear, such as the reconstruction of the polarization balance of macrophages, the promotion of vascular tissue regeneration, and the mobilization and regulation of bone marrow-derived stem cells. TTT technique is mainly used in the treatment of chronic ischemic diseases of the lower extremities. It has recently been successfully used in the treatment of primary lymphedema of the lower extremities. A series of improvements have been made in the external fixator's style, the size of skin incision and osteotomy, and distraction method. For example, the annular external fixator has been redesigned as a unilateral external fixator, and accordion technology has been introduced. For distraction methods after surgery, there was no uniform standard in the past. The technique can also be used in combination with other treatments to achieve better effects, such as interventional therapy, negative pressure sealed drainage, 3D printing technology, traditional Chinese medicine. Nevertheless, the surgery may bring some complications, such as secondary fracture, nail infection, skin necrosis at the surgical site, etc. Reports of complications and doubts about the technique have made the TTT technique controversial. In 2020, the relevant expert consensus was published with treatment and management principles, which might guide the better application and development of this technique.


Subject(s)
Ilizarov Technique , Tibial Fractures , External Fixators , Humans , Lower Extremity , Tibia/surgery , Tibial Fractures/surgery , Treatment Outcome , Wound Healing
11.
Bone Joint Res ; 11(4): 189-199, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35358393

ABSTRACT

AIMS: Treatment for delayed wound healing resulting from peripheral vascular diseases and diabetic foot ulcers remains a challenge. A novel surgical technique named 'tibial cortex transverse transport' (TTT) has been developed for treating peripheral ischaemia, with encouraging clinical effects. However, its underlying mechanisms remain unclear. In the present study, we explored the potential biological mechanisms of TTT surgery using various techniques in a rat TTT animal model. METHODS: A novel rat model of TTT was established with a designed external fixator, and effects on wound healing were investigated. Laser speckle perfusion imaging, vessel perfusion, histology, and immunohistochemistry were used to evaluate the wound healing processes. RESULTS: Gross and histological examinations showed that TTT technique accelerated wound closure and enhanced the quality of the newly formed skin tissues. In the TTT group, haematoxylin and eosin (H&E) staining demonstrated a better epidermis and dermis recovery, while immunohistochemical staining showed that TTT technique promoted local collagen deposition. The TTT technique also benefited to angiogenesis and immunomodulation. In the TTT group, blood flow in the wound area was higher than that of other groups according to laser speckle imaging with more blood vessels observed. Enhanced neovascularization was seen in the TTT group with double immune-labelling of CD31 and α-Smooth Muscle Actin (α-SMA). The number of M2 macrophages at the wound site in the TTT group was also increased. CONCLUSION: The TTT technique accelerated wound healing through enhanced angiogenesis and immunomodulation. Cite this article: Bone Joint Res 2022;11(4):189-199.

SELECTION OF CITATIONS
SEARCH DETAIL