Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Biomed Phys Eng Express ; 10(5)2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39142303

ABSTRACT

Radiation therapy plays a pivotal role in modern cancer treatment, demanding precise and accurate dose delivery to tumor sites while minimizing harm to surrounding healthy tissues. Monte Carlo simulations have emerged as indispensable tools for achieving this precision, offering detailed insights into radiation transport and interaction at the subatomic level. As the use of scintillation and luminescence dosimetry becomes increasingly prevalent in radiation therapy, there arises a need for validated Monte Carlo tools tailored to optical photon transport applications. In this paper, an evaluation process of the TOPAS (TOol for PArticle Simulation) Monte Carlo tool for Cerenkov light generation, optical photon transport and radioluminescence based dosimetry is presented. Three distinct sources of validation data are utilized: one from a published set of experimental results and two others from simulations performed with the Geant4 code. The methodology employed for evaluation includes the selection of benchmark experiments, making use of opt3 and opt4 Geant4 physics models and simulation setup, with observed slight discrepancies within the calculation uncertainties. Additionally, the complexities and challenges associated with modeling optical photons generation through luminescence or Cerenkov radiation and their transport are discussed. The results of our evaluation suggests that TOPAS can be used to reliably predict Cerenkov generation, luminescence phenomenon and the behavior of optical photons in common dosimetry scenarios.


Subject(s)
Computer Simulation , Monte Carlo Method , Photons , Radiometry , Radiometry/methods , Humans , Luminescence , Luminescent Measurements/methods , Algorithms , Software
2.
Phys Med ; 125: 104506, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39197264

ABSTRACT

PURPOSE: Accurate simulation of organ doses in C-arm CBCT is critical for estimating personalised patient dosimetry. However, system complexities such as automatic exposure control (AEC) and the incorporation of DICOM images into simulations are challenging. The aim of this study was to develop a model for mimicking the operation of an AEC system, which maintains a constant dose to the detector through mA modulation in order to facilitate more accurate MC dosimetry models for C-arm CBCT. METHODS: A Siemens Artis Q Interventional Radiology (IR) C-arm system [Siemens, Erlangen, Germany] was modelled in TOol for PArticle Simulation (TOPAS) by incorporating system specifications such as rotational speed, number of projections and exam protocol parameters. A novel threshold scorer, AECScorer, was developed to model the AEC functionality. MC simulations were performed using a variety of imaged volumes including a CTDI phantom, an anthropomorphic phantom and a patient DICOM dataset. RESULTS: The AECScorer extension provides a framework for a conditional scoring function within TOPAS which allows for the simulation of an AEC system. The AECScorer successfully equalises the dose to the detector for simple phantoms and DICOM imaging datasets by adjusting the number of histories simulated at each CBCT projection. This AECSCorer tool is applicable to other medical imaging systems requiring AEC simulation. CONCLUSIONS: We demonstrate a novel threshold scorer in TOPAS for a C-arm CBCT setup. The presented AECScorer is the first step towards providing a system-, patient- and protocol-specific dose estimates from CBCT dosimetry applications.


Subject(s)
Cone-Beam Computed Tomography , Monte Carlo Method , Phantoms, Imaging , Cone-Beam Computed Tomography/methods , Cone-Beam Computed Tomography/instrumentation , Humans , Automation , Radiometry , Radiation Dosage , Computer Simulation
3.
J Appl Clin Med Phys ; 25(7): e14377, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38695845

ABSTRACT

PURPOSE: A computational method based on Monte-Carlo calculations is presented and used to calculate isodose curves for a new upright and tilting CT scanner useful for radiation protection purposes. METHODS: The TOPAS code platform with imported CAD files for key components was used to construct a calculation space for the scanner. A sphere of water acts as the patient would by creating scatter out of the bore. Maximum intensity dose maps are calculated for various possible tilt angles to make sure radiation protection for site planning uses the maximum possible dose everywhere. RESULTS: The resulting maximum intensity isodose lines are more rounded than ones for just a single tilt angle and so closer to isotropic. These maximum intensity curves are closer to the isotropic assumption used in CTDI or DLP based methods of site planning and radiation protection. The isodose lines are similar to those of a standard CT scanner, just tilted upwards. There is more metal above the beam that lessens the dose above versus below isocenter. CONCLUSION: Aside from the orientation, this upright scanner is very similar to a typical CT scanner, and nothing different for shielding needs to be done for this new upright tilting CT scanner, because an isotropic scatter source is often assumed for any CT scanner.


Subject(s)
Monte Carlo Method , Tomography Scanners, X-Ray Computed , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Tomography, X-Ray Computed/instrumentation , Radiation Protection/instrumentation , Radiation Protection/methods , Phantoms, Imaging , Radiation Dosage , Algorithms , Radiotherapy Planning, Computer-Assisted/methods , Image Processing, Computer-Assisted/methods
4.
Phys Med Biol ; 69(11)2024 May 14.
Article in English | MEDLINE | ID: mdl-38657630

ABSTRACT

Objective. We provide optimal particle split numbers for speeding up TOPAS Monte Carlo simulations of linear accelerator (linac) treatment heads while maintaining accuracy. In addition, we provide a new TOPAS physics module for simulating photoneutron production and transport.Approach.TOPAS simulation of a Siemens Oncor linac was used to determine the optimal number of splits for directional bremsstrahlung splitting as a function of the field size for 6 MV and 18 MV x-ray beams. The linac simulation was validated against published data of lateral dose profiles and percentage depth-dose curves (PDD) for the largest square field (40 cm side). In separate simulations, neutron particle split and the custom TOPAS physics module was used to generate and transport photoneutrons, called 'TsPhotoNeutron'. Verification of accuracy was performed by comparing simulations with published measurements of: (1) neutron yields as a function of beam energy for thick targets of Al, Cu, Ta, W, Pb and concrete; and (2) photoneutron energy spectrum at 40 cm laterally from the isocenter of the Oncor linac from an 18 MV beam with closed jaws and MLC.Main results.The optimal number of splits obtained for directional bremsstrahlung splitting enhanced the computational efficiency by two orders of magnitude. The efficiency decreased with increasing beam energy and field size. Calculated lateral profiles in the central region agreed within 1 mm/2% from measured data, PDD curves within 1 mm/1%. For the TOPAS physics module, at a split number of 146, the efficiency of computing photoneutron yields was enhanced by a factor of 27.6, whereas it improved the accuracy over existing Geant4 physics modules.Significance.This work provides simulation parameters and a new TOPAS physics module to improve the efficiency and accuracy of TOPAS simulations that involve photonuclear processes occurring in high-Zmaterials found in linac components, patient devices, and treatment rooms, as well as to explore new therapeutic modalities such as very-high energy electron therapy.


Subject(s)
Monte Carlo Method , Neutrons , Particle Accelerators , Photons , Photons/therapeutic use , Time Factors , Radiotherapy Dosage , Reproducibility of Results , Computer Simulation , Humans , Radiotherapy/methods
5.
Med Phys ; 51(5): 3796-3805, 2024 May.
Article in English | MEDLINE | ID: mdl-38588477

ABSTRACT

BACKGROUND: The Relative Biological Effectiveness (RBE) of kilovoltage photon beams has been previously investigated in vitro and in silico using analytical methods. The estimated values range from 1.03 to 1.82 depending on the methodology and beam energies examined. PURPOSE: The focus of this work was to independently estimate RBE values for a range of clinically used kilovoltage beams (70-200 kVp) while investigating the suitability of using TOPAS-nBio for this task. METHODS: Previously validated spectra of clinical beams were used to generate secondary electron spectra at several depths in a water tank phantom via TOPAS Monte Carlo (MC) simulations. Cell geometry was irradiated with the secondary electrons in TOPAS-nBio MC simulations. The deposited dose and the calculated number of DNA strand breaks were used to estimate RBE values. RESULTS: Monoenergetic secondary electron simulations revealed the highest direct and indirect double strand break yield at approximately 20 keV. The average RBE value for the kilovoltage beams was calculated to be 1.14. CONCLUSIONS: TOPAS-nBio was successfully used to estimate the RBE values for a range of clinical radiotherapy beams. The calculated value was in agreement with previous estimates, providing confidence in its clinical use in the future.


Subject(s)
DNA Breaks, Double-Stranded , Monte Carlo Method , Relative Biological Effectiveness , DNA Breaks, Double-Stranded/radiation effects , Humans , Electrons , Radiotherapy Dosage , Photons , Computer Simulation , Phantoms, Imaging
6.
Biomed Phys Eng Express ; 10(3)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38377599

ABSTRACT

Objective.This study aims to investigate the biological effectiveness of Spread-Out Bragg-Peak (SOBP) proton beams with initial kinetic energies 50-250 MeV at different depths in water using TOPAS Monte Carlo code.Approach.The study modelled SOBP proton beams using TOPAS time feature. Various LET-based models and Repair-Misrepair-Fixation model were employed to calculate Relative Biological Effectiveness (RBE) for V79 cell lines at different on-axis depths based on TOPAS. Microdosimetric Kinetic Model and biological weighting function-based models, which utilize microdosimetric distributions, were also used to estimate the RBE. A phase-space-based method was adopted for calculating microdosimetric distributions.Main results.The trend of variation of RBE with depth is similar in all the RBE models, but the absolute RBE values vary based on the calculation models. RBE sharply increases at the distal edge of SOBP proton beams. In the entrance region of all the proton beams, RBE values at 4 Gy i.e. RBE(4 Gy) resulting from different models are in the range of 1.04-1.07, comparable to clinically used generic RBE of 1.1. Moving from the proximal to distal end of the SOBP, RBE(4 Gy) is in the range of 1.15-1.33, 1.13-1.21, 1.11-1.17, 1.13-1.18 and 1.17-1.21, respectively for 50, 100, 150, 200 and 250 MeV SOBP beams, whereas at the distal dose fall-off region, these values are 1.68, 1.53, 1.44, 1.42 and 1.40, respectively.Significance.The study emphasises application of depth-, dose- and energy- dependent RBE values in clinical application of proton beams.


Subject(s)
Proton Therapy , Radioactivity , Protons , Cell Line , Models, Biological
7.
Phys Med Biol ; 69(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38286017

ABSTRACT

Objective. Gold nanorods (GNRs) have emerged as versatile nanoparticles with unique properties, holding promise in various modalities of cancer treatment through drug delivery and photothermal therapy. In the rapidly evolving field of nanoparticle radiosensitization (NPRS) for cancer therapy, this study assessed the potential of gold nanorods as radiosensitizing agents by quantifying the key features of NPRS, such as secondary electron emission and dose enhancement, using Monte Carlo simulations.Approach. Employing the TOPAS track structure code, we conducted a comprehensive evaluation of the radiosensitization behavior of spherical gold nanoparticles and gold nanorods. We systematically explored the impact of nanorod geometry (in particular size and aspect ratio) and orientation on secondary electron emission and deposited energy ratio, providing validated results against previously published simulations.Main results. Our findings demonstrate that gold nanorods exhibit comparable secondary electron emission to their spherical counterparts. Notably, nanorods with smaller surface-area-to-volume ratios (SA:V) and alignment with the incident photon beam proved to be more efficient radiosensitizing agents, showing superiority in emitted electron fluence. However, in the microscale, the deposited energy ratio (DER) was not markedly influenced by the SA:V of the nanorod. Additionally, our findings revealed that the geometry of gold nanoparticles has a more significant impact on the emission of M-shell Auger electrons (with energies below 3.5 keV) than on higher-energy electrons.Significance. This research investigated the radiosensitization properties of gold nanorods, positioning them as promising alternatives to the more conventionally studied spherical gold nanoparticles in the context of cancer research. With increasing interest in multimodal cancer therapy, our findings have the potential to contribute valuable insights into the perspective of gold nanorods as effective multipurpose agents for synergistic photothermal therapy and radiotherapy. Future directions may involve exploring alternative metallic nanorods as well as further optimizing the geometry and coating materials, opening new possibilities for more effective cancer treatments.


Subject(s)
Metal Nanoparticles , Nanotubes , Radiation-Sensitizing Agents , Gold/pharmacology , Gold/chemistry , Metal Nanoparticles/chemistry , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/chemistry , Computer Simulation
8.
Phys Med Biol ; 69(4)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38211313

ABSTRACT

Objective.In this paper, we present MONAS (MicrOdosimetry-based modelliNg for relative biological effectiveness (RBE) ASsessment) toolkit. MONAS is a TOPAS Monte Carlo extension, that combines simulations of microdosimetric distributions with radiobiological microdosimetry-based models for predicting cell survival curves and dose-dependent RBE.Approach.MONAS expands TOPAS microdosimetric extension, by including novel specific energy scorers to calculate the single- and multi-event specific energy microdosimetric distributions at different micrometer scales. These spectra are used as physical input to three different formulations of themicrodosimetric kinetic model, and to thegeneralized stochastic microdosimetric model(GSM2), to predict dose-dependent cell survival fraction and RBE. MONAS predictions are then validated against experimental microdosimetric spectra andin vitrosurvival fraction data. To show the MONAS features, we present two different applications of the code: (i) the depth-RBE curve calculation from a passively scattered proton SOBP and monoenergetic12C-ion beam by using experimentally validated spectra as physical input, and (ii) the calculation of the 3D RBE distribution on a real head and neck patient geometry treated with protons.Main results.MONAS can estimate dose-dependent RBE and cell survival curves from experimentally validated microdosimetric spectra with four clinically relevant radiobiological models. From the radiobiological characterization of a proton SOBP and12C fields, we observe the well-known trend of increasing RBE values at the distal edge of the radiation field. The 3D RBE map calculated confirmed the trend observed in the analysis of the SOBP, with the highest RBE values found in the distal edge of the target.Significance.MONAS extension offers a comprehensive microdosimetry-based framework for assessing the biological effects of particle radiation in both research and clinical environments, pushing closer the experimental physics-based description to the biological damage assessment, contributing to bridging the gap between a microdosimetric description of the radiation field and its application in proton therapy treatment with variable RBE.


Subject(s)
Proton Therapy , Protons , Humans , Relative Biological Effectiveness , Monte Carlo Method , Cell Survival/radiation effects
9.
Phys Med Biol ; 69(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38198700

ABSTRACT

Objective.To compare two independently developed methods that enable modelling inter-track interactions in TOPAS-nBio by examining the yield of radiolytic species in radiobiological Monte Carlo track structure simulations. One method uses a phase space file to assign more than one primary to one event, allowing for inter-track interaction between these primary particles. This method has previously been developed by this working group and published earlier. Using the other method, chemical reactions are simulated based on a new version of the independent reaction time approach to allow inter-track interactions.Approach.G-values were calculated and compared using both methods for different numbers of tracks able to undergo inter-track interactions.Main results.Differences in theG-values simulated with the two methods strongly depend on the molecule type, and deviations can range up to 3.9% (H2O2), although, on average, the deviations are smaller than 1.5%.Significance.Both methods seem to be suitable for simulating inter-track interactions, as they provide comparableG-values even though both techniques were developed independently of each other.


Subject(s)
Hydrogen Peroxide , Radiobiology , Radiobiology/methods , Monte Carlo Method
10.
Phys Med Biol ; 68(24)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37939402

ABSTRACT

Objective.To investigate the influence of different versions of the Monte Carlo codesgeant4 andflukaon the calculation of overall response functionsfQof air-filled ionization chambers in clinical proton beams.Approach. fQfactors were calculated for six plane-parallel and four cylindrical ionization chambers withgeant4 andfluka. These factors were compared to already published values that were derived using older versions of these codes.Main results.Differences infQfactors calculated with different versions of the same Monte Carlo code can be up to ∼1%. Especially forgeant4, the updated version leads to a more pronounced dependence offQon proton energy and to smallerfQfactors for high energies.Significance.Different versions of the same Monte Carlo code can lead to differences in the calculation offQfactors of up to ∼1% without changing the simulation setup, transport parameters, ionization chamber geometry modeling, or employed physics lists. These findings support the statement that the dominant contributor to the overall uncertainty of Monte Carlo calculatedfQfactors are type-B uncertainties.


Subject(s)
Protons , Radioactivity , Radiometry/methods , Computer Simulation , Monte Carlo Method
11.
Front Med (Lausanne) ; 10: 1253746, 2023.
Article in English | MEDLINE | ID: mdl-37841004

ABSTRACT

Purpose: Targeted Radionuclide Therapy (TRT) with Auger Emitters (AE) is a technique that allows targeting specific sites on tumor cells using radionuclides. The toxicity of AE is critically dependent on its proximity to the DNA. The aim of this study is to quantify the DNA damage and radiotherapeutic potential of the promising AE radionuclide copper-64 (64Cu) incorporated into the DNA of mammalian cells using Monte Carlo track-structure simulations. Methods: A mammalian cell nucleus model with a diameter of 9.3 µm available in TOPAS-nBio was used. The cellular nucleus consisted of double-helix DNA geometrical model of 2.3 nm diameter surrounded by a hydration shell with a thickness of 0.16 nm, organized in 46 chromosomes giving a total of 6.08 giga base-pairs (DNA density of 14.4 Mbp/µm3). The cellular nucleus was irradiated with monoenergetic electrons and radiation emissions from several radionuclides including 111In, 125I, 123I, and 99mTc in addition to 64Cu. For monoenergetic electrons, isotropic point sources randomly distributed within the nucleus were modeled. The radionuclides were incorporated in randomly chosen DNA base pairs at two positions near to the central axis of the double-helix DNA model at (1) 0.25 nm off the central axis and (2) at the periphery of the DNA (1.15 nm off the central axis). For all the radionuclides except for 99mTc, the complete physical decay process was explicitly simulated. For 99mTc only total electron spectrum from published data was used. The DNA Double Strand Breaks (DSB) yield per decay from direct and indirect actions were quantified. Results obtained for monoenergetic electrons and radionuclides 111In, 125I, 123I, and 99mTc were compared with measured and calculated data from the literature for verification purposes. The DSB yields per decay incorporated in DNA for 64Cu are first reported in this work. The therapeutic effect of 64Cu (activity that led 37% cell survival after two cell divisions) was determined in terms of the number of atoms incorporated into the nucleus that would lead to the same DSBs that 100 decays of 125I. Simulations were run until a 2% statistical uncertainty (1 standard deviation) was achieved. Results: The behavior of DSBs as a function of the energy for monoenergetic electrons was consistent with published data, the DSBs increased with the energy until it reached a maximum value near 500 eV followed by a continuous decrement. For 64Cu, when incorporated in the genome at evaluated positions (1) and (2), the DSB were 0.171 ± 0.003 and 0.190 ± 0.003 DSB/decay, respectively. The number of initial atoms incorporated into the genome (per cell) for 64Cu that would cause a therapeutic effect was estimated as 3,107 ± 28, that corresponds to an initial activity of 47.1 ± 0.4 × 10-3 Bq. Conclusion: Our results showed that TRT with 64Cu has comparable therapeutic effects in cells as that of TRT with radionuclides currently used in clinical practice.

12.
Phys Med Biol ; 68(21)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37844576

ABSTRACT

Objective:This study evaluates a compact Monte Carlo (MC) model of a pencil beam scanning clinical proton beam using TOPAS to estimate the dose out-of-field (OOF). Compact modelling means that the model starts from a pristine proton beam at the nozzle exit, customised based on acceptance and commissioning data, instead of modelling the full treatment head and room.Approach: First, in-field validation tests were performed. Then, the OOF dose was validated in an RW3 phantom with bubble detectors for personal neutron dosimetry (measuring the neutron dose equivalent) and thermoluminiescent detectors (measuring the absorbed dose by protons and gammas). Measurements were performed at 15 and 35 cm from the distal edge of the field for five different irradiation plans, covering different beam orientations, proton energies and a 40 mm range shifter. TOPAS simulations were performed with QGSP Binary Cascade HP (BIC) and QGSP Bertini HP (Bertini) hadron physics lists.Main results: In-field validation shows that MC simulations agree with point dose measurements within -2.5 % and +1.5 % at locations on- and off-axis and before, in and after the Bragg peak or plateau. The gamma passing rate 2%/3mm of four simulated treatment plans compared to the dose distribution calculated by the TPS exceeds 97 % agreement score. OOF dose simulations showed an average overestimation of 27 % of the neutron dose equivalent for the BIC hadron physics list and an average underestimation of 20 % for the Bertini hadron physics list. The simulated absorbed dose of protons and gammas showed a systematic underestimation which was on average 21 % and 51 % for BIC and Bertini respectively.Significance: Our study demonstrates that a compact MC model can reliably produce in-field data, while out-of-field dose data are within the uncertainties of the detector systems and MC simulations nuclear models, and do so with shorter modelling and faster calculation time.


Subject(s)
Proton Therapy , Protons , Radiotherapy Dosage , Radiometry , Monte Carlo Method , Radiotherapy Planning, Computer-Assisted , Phantoms, Imaging
13.
Phys Med Biol ; 68(22)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37797652

ABSTRACT

Objective.To investigate biological effectiveness of252Cf brachytherapy source using Monte Carlo-calculated microdosimetric distributions.Approach.252Cf source capsule was placed at the center of the spherical water phantom and phase-space data were scored as a function of radial distance in water (R= 1-5 cm) using TOPAS Monte Carlo code. The phase-space data were used to calculate microdosimetric distributions at 1µm site size. Using these distributions, Relative Biological Effectiveness (RBE), mean quality factor (Q̅) and Oxygen Enhancement Ratio (OER) were calculated as a function ofR.Main results.The overall shapes of the microdosimetric distributions are comparable at all the radial distances in water. However, slight variation in the bin-wise yield is observed withR. RBE,Q̅and OER are insensitive to R over the range 1-5 cm. Microdosimetric kinetic model based RBE values are about 2.3 and 2.8 for HSG tumour cells and V79 cells, respectively, whereas biological weighting function-based RBE is about 2.8. ICRP 60 and ICRU 40 recommendation-basedQ̅values are about 14.5 and 16, respectively. Theory of dual radiation action based RBE is 11.4. The calculated value of OER is 1.6.Significance.This study demonstrates the relative insensitivity of RBE,Q̅and OER radially away from the252Cf source along the distances of 1-5 cm in water.


Subject(s)
Brachytherapy , Brachytherapy/methods , Kinetics , Monte Carlo Method , Relative Biological Effectiveness , Water
14.
Phys Med Biol ; 68(17)2023 08 29.
Article in English | MEDLINE | ID: mdl-37567226

ABSTRACT

Objective. In this contribution we present a special Fano test for charged particles in presence of magnetic fields in the MC code TOol for PArticle Simulation (TOPAS), as well as the determination of magnetic field correction factorskBfor Farmer-type ionization chambers using proton beams.Approach. Customized C++ extensions for TOPAS were implemented to model the special Fano tests in presence of magnetic fields for electrons and protons. The Geant4-specific transport parameters,DRoverRandfinalRange,were investigated to optimize passing rate and computation time. ThekBwas determined for the Farmer-type PTW 30013 ionization chamber, and 5 custom built ionization chambers with same geometry but varying inner radius, testing magnetic flux density ranging from 0 to 1.0 T and two proton beam energies of 157.43 and 221.05 MeV.Main results. Using the investigated parameters, TOPAS passed the Fano test within 0.39 ± 0.15% and 0.82 ± 0.42%, respectively for electrons and protons. The chamber response (kB,M,Q) gives a maximum at different magnetic flux densities depending of the chamber size, 1.0043 at 1.0 T for the smallest chamber and 1.0051 at 0.2 T for the largest chamber. The local dose differencecBremained ≤ 0.1% for both tested energies. The magnetic field correction factorkB, for the chamber PTW 30013, varied from 0.9946 to 1.0036 for both tested energies.Significance. The developed extension for the special Fano test in TOPAS MC code with the adjusted transport parameters, can accurately transport electron and proton particles in magnetic field. This makes TOPAS a valuable tool for the determination ofkB. The ionization chambers we tested showed thatkBremains small (≤0.72%). To the best of our knowledge, this is the first calculations ofkBfor proton beams. This work represents a significant step forward in the development of MRgPT and protocols for proton dosimetry in presence of magnetic field.


Subject(s)
Farmers , Protons , Humans , Monte Carlo Method , Radiometry/methods , Magnetic Fields
15.
Front Oncol ; 13: 1196502, 2023.
Article in English | MEDLINE | ID: mdl-37397382

ABSTRACT

Introduction: DNA damage is the main predictor of response to radiation therapy for cancer. Its Q8 quantification and characterization are paramount for treatment optimization, particularly in advanced modalities such as proton and alpha-targeted therapy. Methods: We present a novel approach called the Microdosimetric Gamma Model (MGM) to address this important issue. The MGM uses the theory of microdosimetry, specifically the mean energy imparted to small sites, as a predictor of DNA damage properties. MGM provides the number of DNA damage sites and their complexity, which were determined using Monte Carlo simulations with the TOPAS-nBio toolkit for monoenergetic protons and alpha particles. Complexity was used together with a illustrative and simplistic repair model to depict the differences between high and low LET radiations. Results: DNA damage complexity distributions were were found to follow a Gamma distribution for all monoenergetic particles studied. The MGM functions allowed to predict number of DNA damage sites and their complexity for particles not simulated with microdosimetric measurements (yF) in the range of those studied. Discussion: Compared to current methods, MGM allows for the characterization of DNA damage induced by beams composed of multi-energy components distributed over any time configuration and spatial distribution. The output can be plugged into ad hoc repair models that can predict cell killing, protein recruitment at repair sites, chromosome aberrations, and other biological effects, as opposed to current models solely focusing on cell survival. These features are particularly important in targeted alpha-therapy, for which biological effects remain largely uncertain. The MGM provides a flexible framework to study the energy, time, and spatial aspects of ionizing radiation and offers an excellent tool for studying and optimizing the biological effects of these radiotherapy modalities.

16.
Phys Med Biol ; 68(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37285861

ABSTRACT

Objective.In FLASH radiotherapy (dose rates ≥40 Gy s-1), a reduced normal tissue toxicity has been observed, while maintaining the same tumor control compared to conventional radiotherapy (dose rates ≤0.03 Gy s-1). This protecting effect could not be fully explained yet. One assumption is that interactions between the chemicals of different primary ionizing particles, so-called inter-track interactions, trigger this outcome. In this work, we included inter-track interactions in Monte Carlo track structure simulations and investigated the yield of chemicals (G-value) produced by ionizing particles.Approach.For the simulations, we used the Monte Carlo toolkit TOPAS, in which inter-track interactions cannot be implemented without further effort. Thus, we developed a method enabling the simultaneous simulation ofNoriginal histories in one event allowing chemical species to interact with each other. To investigate the effect of inter-track interactions we analyzed theG-value of different chemicals using various radiation sources. We used electrons with an energy of 60 eV in different spatial arrangements as well as a 10 MeV and 100 MeV proton source. For electrons we setNbetween 1 and 60, for protons between 1 and 100.Main results.In all simulations, the totalG-value decreases with increasingN. In detail, theG-value for•OH , H3O and eaqdecreases with increasingN, whereas theG-value of OH-, H2O2and H2increases slightly. The reason is that with increasingN, the concentration of chemical radicals increases allowing for more chemical reactions between the radicals resulting in a change of the dynamics of the chemical stage.Significance.Inter-track interactions resulting in a variation of the yield of chemical species, may be a factor explaining the FLASH effect. To verify this hypothesis, further simulations are necessary in order to evaluate the impact of varyingG-values on the yield of DNA damages.


Subject(s)
Linear Energy Transfer , Water , Monte Carlo Method , Water/chemistry , Protons , Computer Simulation
17.
Front Oncol ; 13: 1124838, 2023.
Article in English | MEDLINE | ID: mdl-37143943

ABSTRACT

Purpose: The aim of this work was two-fold: a) to assess two treatment planning strategies for accounting CT artifacts introduced by temporary tissue-expanders (TTEs); b) to evaluate the dosimetric impact of two commercially available and one novel TTE. Methods: The CT artifacts were managed using two strategies. 1) Identifying the metal in the RayStation treatment planning software (TPS) using image window-level adjustments, delineate a contour enclosing the artifact, and setting the density of the surrounding voxels to unity (RS1). 2) Registering a geometry template with dimensions and materials from the TTEs (RS2). Both strategies were compared for DermaSpan, AlloX2, and AlloX2-Pro TTEs using Collapsed Cone Convolution (CCC) in RayStation TPS, Monte Carlo simulations (MC) using TOPAS, and film measurements. Wax slab phantoms with metallic ports and breast phantoms with TTEs balloons were made and irradiated with a 6 MV AP beam and partial arc, respectively. Dose values along the AP direction calculated with CCC (RS2) and TOPAS (RS1 and RS2) were compared with film measurements. The impact in dose distributions was evaluated with RS2 by comparing TOPAS simulations with and without the metal port. Results: For the wax slab phantoms, the dose differences between RS1 and RS2 were 0.5% for DermaSpan and AlloX2 but 3% for AlloX2-Pro. From TOPAS simulations of RS2, the impact in dose distributions caused by the magnet attenuation was (6.4 ± 0.4) %, (4.9 ± 0.7)%, and (2.0 ± 0.9)% for DermaSpan, AlloX2, and AlloX2-Pro, respectively. With breast phantoms, maximum differences in DVH parameters between RS1 and RS2 were as follows. For AlloX2 at the posterior region: (2.1 ± 1.0)%, (1.9 ± 1.0)% and (1.4 ± 1.0)% for D1, D10, and average dose, respectively. For AlloX2-Pro at the anterior region (-1.0 ± 1.0)%, (-0.6 ± 1.0)% and (-0.6 ± 1.0)% for D1, D10 and average dose, respectively. The impact in D10 caused by the magnet was at most (5.5 ± 1.0)% and (-0.8 ± 1.0)% for AlloX2 and AlloX2-Pro, respectively. Conclusion: Two strategies for accounting for CT artifacts from three breast TTEs were assessed using CCC, MC, and film measurements. This study showed that the highest differences with respect to measurements occurred with RS1 and can be mitigated if a template with the actual port geometry and materials is used.

18.
Phys Med Biol ; 68(12)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37201533

ABSTRACT

Objective. The TOPAS-nBio Monte Carlo track structure simulation code, a wrapper of Geant4-DNA, was extended for its use in pulsed and longtime homogeneous chemistry simulations using the Gillespie algorithm.Approach. Three different tests were used to assess the reliability of the implementation and its ability to accurately reproduce published experimental results: (1) a simple model with a known analytical solution, (2) the temporal evolution of chemical yields during the homogeneous chemistry stage, and (3) radiolysis simulations conducted in pure water with dissolved oxygen at concentrations ranging from 10µM to 1 mM with [H2O2] yields calculated for 100 MeV protons at conventional and FLASH dose rates of 0.286 Gy s-1and 500 Gy s-1, respectively. Simulated chemical yield results were compared closely with data calculated using the Kinetiscope software which also employs the Gillespie algorithm.Main results. Validation results in the third test agreed with experimental data of similar dose rates and oxygen concentrations within one standard deviation, with a maximum of 1% difference for both conventional and FLASH dose rates. In conclusion, the new implementation of TOPAS-nBio for the homogeneous long time chemistry simulation was capable of recreating the chemical evolution of the reactive intermediates that follow water radiolysis.Significance. Thus, TOPAS-nBio provides a reliable all-in-one chemistry simulation of the physical, physico-chemical, non-homogeneous, and homogeneous chemistry and could be of use for the study of FLASH dose rate effects on radiation chemistry.


Subject(s)
Hydrogen Peroxide , Linear Energy Transfer , Reproducibility of Results , Protons , Monte Carlo Method , Water/chemistry
19.
Phys Med Biol ; 68(11)2023 05 23.
Article in English | MEDLINE | ID: mdl-37059110

ABSTRACT

Objective.The Monte Carlo (MC) method provides a complete solution to the tissue heterogeneity effects in low-energy low-dose rate (LDR) brachytherapy. However, long computation times limit the clinical implementation of MC-based treatment planning solutions. This work aims to apply deep learning (DL) methods, specifically a model trained with MC simulations, to predict accurate dose to medium in medium (DM,M) distributions in LDR prostate brachytherapy.Approach.To train the DL model, 2369 single-seed configurations, corresponding to 44 prostate patient plans, were used. These patients underwent LDR brachytherapy treatments in which125I SelectSeed sources were implanted. For each seed configuration, the patient geometry, the MC dose volume and the single-seed plan volume were used to train a 3D Unet convolutional neural network. Previous knowledge was included in the network as anr2kernel related to the first-order dose dependency in brachytherapy. MC and DL dose distributions were compared through the dose maps, isodose lines, and dose-volume histograms. Features enclosed in the model were visualized.Main results.Model features started from the symmetrical kernel and finalized with an anisotropic representation that considered the patient organs and their interfaces, the source position, and the low- and high-dose regions. For a full prostate patient, small differences were seen below the 20% isodose line. When comparing DL-based and MC-based calculations, the predicted CTVD90metric had an average difference of -0.1%. Average differences for OARs were -1.3%, 0.07%, and 4.9% for the rectumD2cc, the bladderD2cc, and the urethraD0.1cc. The model took 1.8 ms to predict a complete 3DDM,Mvolume (1.18 M voxels).Significance.The proposed DL model stands for a simple and fast engine which includes prior physics knowledge of the problem. Such an engine considers the anisotropy of a brachytherapy source and the patient tissue composition.


Subject(s)
Brachytherapy , Deep Learning , Male , Humans , Brachytherapy/methods , Radiotherapy Dosage , Prostate , Prostheses and Implants , Monte Carlo Method , Radiotherapy Planning, Computer-Assisted/methods
20.
J Funct Biomater ; 14(3)2023 Mar 04.
Article in English | MEDLINE | ID: mdl-36976069

ABSTRACT

Type-1 diabetes is one of the most prevalent metabolic disorders worldwide. It results in a significant lack of insulin production by the pancreas and the ensuing hyperglycemia, which needs to be regulated through a tailored administration of insulin throughout the day. Recent studies have shown great advancements in developing an implantable artificial pancreas. However, some improvements are still required, including the optimal biomaterials and technologies to produce the implantable insulin reservoir. Here, we discuss the employment of two types of cyclic olefin copolymers (Topas 5013L-10 and Topas 8007S-04) for an insulin reservoir fabrication. After a preliminary thermomechanical analysis, Topas 8007S-04 was selected as the best material to fabricate a 3D-printed insulin reservoir due to its higher strength and lower glass transition temperature (Tg). Fiber deposition modeling was used to manufacture a reservoir-like structure, which was employed to assess the ability of the material to prevent insulin aggregation. Although the surface texture presents a localized roughness, the ultraviolet analysis did not detect any significant insulin aggregation over a timeframe of 14 days. These interesting results make Topas 8007S-04 cyclic olefin copolymer a potential candidate biomaterial for fabricating structural components in an implantable artificial pancreas.

SELECTION OF CITATIONS
SEARCH DETAIL