ABSTRACT
Cultivation of yellow dragon fruit (Selenicereus megalanthus) in Peru has recently expanded (Verona-Ruiz et al. 2020). In August 2021, approximately 170 of 1,110 dragon fruit cuttings (15.3%) in the university's nursery (6°26'10'' S; 77°31'25'' W) showed basal rot symptoms. Initial symptoms included small brown spots on the base of stems, expanding towards the top that became soft and watery. All symptomatic plants eventually died, i.e., a severity of 100%. The disease was more prevalent on cuttings during the rooting phase than on well-established cuttings. We collected five symptomatic cuttings from throughout the nursery. Four sections of 1 × 1 cm2 of tissue adjacent to the diseased area were excised from each cutting, immersed for 1 min in 2% NaClO, rinsed twice with sterile distilled water, placed on potato dextrose agar (PDA) medium (four sections per Petri plate, five plates), and incubated at 25°C for 7 days. Morphologically similar mycelia grew from all sections, and five monosporic isolates were obtained, one per plate. Colonies grew fast, reaching 60 to 64 mm in 7 days, and produced violet-white cottony aerial mycelia with orange sporodochia on PDA, and abundant macro- and microconidia on synthetic nutrient-poor agar. Macroconidia were straight to slightly curved, typically with 2 to 3 septa, 16.6 to 23.3 × 1.7 to 3.7 µm (n = 30); microconidia were oval or kidney-shaped, and commonly hyaline, 6.7 to 16.4 × 2.5 to 4.7 µm (n = 40). Genomic DNA was extracted from isolate AFHP-100, then the ITS region and the TEF1 and RPB2 partial genes were amplified and sequenced (Accession numbers PP977433, OR437358, PP537149) following Gardes and Bruns (1993) and O'Donnell et al. (1998). We conducted a BLASTn search of ITS sequence against the NCBI "nr" database and local 'megablast' searches of TEF1 and RPB2 sequences against FUSARIUM-ID v.3.0 (Torres-Cruz et al. 2022). We found 100%, 98.19 to 99.84%, and 98.81 to 99.76% identities in ITS, TEF1, and RPB2 sequences, respectively, to the ex-epitype and other reference strains of Fusarium oxysporum (CBS 144134, NRRL26406, among others). A maximum likelihood phylogenetic analysis with a TEF1-RPB2 concatenated dataset with FUSARIUM-ID sequences also showed isolate AFHP-100 was F. oxysporum. A pathogenicity test was carried out by inoculating wounded healthy roots of three cuttings with submersion in a 5 × 106 conidia/ml suspension for 25 min. Then, the inoculated plants were planted in sterile soil. One cutting with wounded roots submerged in sterile water served as a control. In parallel, sterile soil was inoculated with 20 mL of the conidial suspension, and another three healthy cuttings were planted. A cutting planted in noninoculated soil also served as a control. Basal rot symptoms developed in all inoculated plants after 25 days. After re-isolation, the same fungus, corroborated based on micromorphology and TEF1 sequence (PP335689), was recovered, fulfilling Koch's postulates. The isolate was deposited in the KUELAP Herbarium (voucher KUELAP-3214), located and administered by the National University Toribio Rodriguez de Mendoza de Amazonas, in Chachapoyas, Peru. Fusarium oxysporum has been reported to cause basal stem rot in Bangladesh and Argentina (Mahmud et al. 2021; Wright et al. 2007), and stem blight in Malaysia (Mohd Hafifi et al. 2019) on dragon fruit. This is the first report of F. oxysporum causing basal rot in S. megalanthus in Peru. This fungus is among the most destructive plant pathogens, and the rapid expansion of the crop in Peru requires a comprehensive knowledge of the biotic factors influencing production. Therefore, this report is foundational to implementing proper control strategies.
ABSTRACT
Cactus pear var. miúda (Nopalea cochenillifera L. Salm-Dyck) is an important crop for the Northeast region of Brazil, composing one of the main sources of animal feed. By April 2021, cladode rot caused death of several cactus pear plants in a production area located in Itaporanga, Paraíba state, Brazil (7°21'55.35" S and 38°11'38.68" W). The infected cladodes showed brown circular necrotic spots, and soft rot with perforations that extended throughout the cladode, followed by tipping over and death of the infected plants. The incidence of the disease ranged from 10 to 30% of the plants. Bisifusarium strains were isolated and cultured on potato dextrose agar (PDA) and syntetic-nutrient-poor-agar (SNA). The colonies showed purple color on PDA. On SNA, macroconidia (n = 100) were abundant, hyaline, slightly falcate, three-septate, measuring 11.0-23.1 x 2.3-4.1 µm. Microconidia (n = 100) were oval, generally aseptate, measuring 4.1-8.7 x 2.3-3.0 µm. Conidiogenic cells formed into short monophialides. Chlamydospores were not observed. According to these morphological features, the pathogen was initially identified as Bisifusarium lunatum (Gryzenhoutm et al. 2017). For further confirmation of the identification, the partial sequences of translation elongation factor 1-alpha (TEF1-α) and the second largest subunit of RNA polymerase II (RPB2) genes were sequenced for a representative isolate (CMA 34: GenBank accession no: TEF1-α: OR536502; and RPB2: OR553509) and compared to other Bisifusarium species from GenBank database. Subsequently, it was subjected to a phylogenetic analysis of maximum likelihood including previously published sequences. According to BLAST searches, the TEF1-α and RPB2 sequences were 99% (637/640 nt) and 100% (312/312 nt) similar to B. lunatum (COUFAL0213: TEF1-α (MK640219), and RPB2 (MK301291)), respectively. The isolate was also clustered in a clade containing the ex-type of B. lunatum with 100% support (SH-aLRT and UFboot), being confidently assigned to this species. The pathogenicity test was performed after Medeiros et al. (2015), by using healthy two months old cactus pear seedlings (n = 10) cultivated in a greenhouse. Sterile toothpicks were distributed over colonies of the representative isolate grown on PDA at 25 ± 2 °C for seven days. Seedling cladodes were stuck with the toothpicks, moistened with sterile water and covered with transparent plastic bags for 24h, thus simulating a humid chamber. Following three months, all control plants (stuck with sterile toothpicks) remained healthy, while those inoculated with the representative isolate exhibited rot symptoms. This test was performed twice. B. lunatum was reisolated from symptomatic cladodes and identified as previously described, thus fulfilling the Koch's postulates. To our best knowledge, this is the first report of B. lunatum causing soft rot on N. cochenillifera in Brazil. Besides N. cochenillifera, this species was also reported on Opuntia ficus-indica in India (Gryzenhoutm et al., 2017), which raises concern regarding its ability to infect other forage sources for cattle feed in Brazilian semiarid regions. The present study highlights that the precise identification of B. lunatum is a key factor to adjust control strategies and management of the disease to prevent the spread of this disease to prevent its spread to other crops.
ABSTRACT
Roselle (Hibiscus sabdariffa L.) is a crop of economic importance, refreshing drinks are prepared from its calyces, it is also attributed to antioxidant, antibacterial, and antihypertensive properties (Da-Costa-Rocha et al. 2014). In November 2022, in municipality of Iguala (18.355592N, 99.548546W, 749 m above sea level), Guerrero, México, roselle plants of approximately 1.5 months of age with basal rot were detected under greenhouse conditions. The symptoms consisted of wilting, yellowing, and root and stem rot with constriction in the base of the stem. The symptoms were detected in approximately 15% of plants at the operation. From symptomatic tissue, cuts were made into approximately 0.5 cm pieces, sterilized with 2% NaClO, washed with sterile distilled water, transferred to PDA medium amended with 50 mg/liter of Chloramphenicol, and incubated in the dark for four days at 28 °C. Rhizoctonia-like colonies were consistently obtained, and nine isolates were selected and purified by the hyphal-tip method. After four days, isolates developed a mycelium was light-white that became brown with age. Right-angled hyphal branching was also observed, in addition to a slight constriction at the base of the branches. In some older cultures, numerous dark brown sclerotia were observed. They were multinucleate cell with three to eight nuclei and measured from 1 to 2 mm in diameter. Together these characteristics were consistent with the description of Rhizoctonia solani Kühn (Parmeter 1970). The anastomosis group (AG) was confirmed by amplifying the ITS region with the primers ITS1 and ITS4 (White et al. 1990) of the RIJAM3 and RIJAM5 strains. The sequences were deposited in GenBank (Nos. OR364496 and OR364497 for RIJAM3 and RIJAM5, respectively). BLAST analysis, both isolates indicated 99.7 identity to R. solani AG-4 HG-I (GenBank: KM013470) strain ICMP 20043 (Ireland et al. 2015). The phylogenetic analysis of AGs sequences allowed assignment of isolates RIJAM3 and RIJAM5 to the AG-4 HG-1 clade. A pathogenicity test was performed on 20 one-month-old roselle plants. Mycelium of RIJAM3 isolate was inserted into the base of the stem with a sterile toothpick. As a control, a sterile toothpick with no mycelium was inserted in ten healthy plants. Additionally, 50 eight-day-old seedlings were inoculated by placing a 5-mm diameter agar plug colonized with mycelium of RIJAM3 at the base of the stem 10 mm below the soil surface. As control treatments, uncolonized PDA plugs were deposited at the base of 25 seedlings. The inoculated plants were incubated in a greenhouse with an average temperature and relative humidity of 28°C and 85%, respectively. Following inoculation, symptoms similar to those observed in the original outbreak were observed in plants after six days and only after four days in seedlings. In both experiments, the control plants and seedlings remained asymptomatic. R. solani was re-isolated from plants and seedlings, complying with Koch's postulates. The pathogenicity testing was repeated twice, with concordant results. In Nigeria and Malaysia R. solani was reported to seedling death to cause seedling dieback in roselle (Adeniji 1970; Eslaminejad and Zakaria 2011). In México R. solani AG-4 has been previously reported in crops of potato, chili and tomato (Montero-Tavera et al. 2013; Ortega-Acosta et al. 2022; Virgen-Calleros et al. 2000). To the best of our knowledge, this is the first report of R. solani AG-4 HG-I as a causing of root and basal stem rot on roselle in Mexico. This research provides information essential for informing the management of this disease, and may help design measures to prevent the spread of the pathogen to other regions.
ABSTRACT
In México, avocado production is an important economic source. In the last season it generated $ 3. 27 billion USD of foreign currency in the country. Irpex spp. are wood decay fungi. In the period 2019-2022, in the state of Michoacán (19°13' N; 101°55' W), México, basidiomes of Irpex sp. were observed on the base of trunks and crowns of 5-years-old and older avocado (Persea americana) trees. The trees exhibited disease symptoms that included white root rot, leaf yellowing, small leaves, branch diebacks, generalized defoliation, apical flaccidity, abundant but small sun burnt fruits due to the lack of foliage, and after 2-4 years of first disease appearance, the infected trees died. In the place where fungus was established, abundant white and cottony mycelium was formed, which caused trees decay. The incidence of the disease in the sampled orchards was estimated to be 30% per ha with 350 - 400 trees, which was determined through a simple sampling design focused on trees with signs and symptoms of the disease due to the phytopathogen. Samples of infected tissue (roots and stems) and fungal basidiomes were collected from 90 trees (5-6 per orchard). The symptomatic avocado trees studied were randomly selected from 17 orchards. For the fungal macroscopic characterization, the synoptic keys described by Gilbertson and Ryvarden (1986) and by Largent (1973) were used. The samples showed typical structures corresponding to Irpex sp., including rosettes, annual basidiomes, a system of monomitic hyphae, and subglobose basidiospores. In vitro fungal isolation from basidiomes and infected tree tissues was done according to the protocol of Agrios (2004). The fungal strains were maintained on PDA at 28 °C. At 16 days of incubation the colonies were opaque, whitish with fluffy and corky mycelium. Microscopic analysis of the fungus showed typical yellowish spores, with an ellipsoid shape of 3-4 x 4-5.5 µm (50 accounted structures per isolate [N=19]) and basidia of 20-25 x 4.5-5.5 µm (n=20 basidiomes). For molecular characterization, two molecular markers were used, the internal transcribed spacer rDNA-ITS1 5.8 rDNA-ITS2 (ITS; White et al. 1990) and the large ribosomal subunit (LSU; Vilgalys and Hester 1990). The PCR reaction was performed as described by Martínez-González et al. (2017). The consensus sequences were compared with those deposited in the NCBI-GenBank, using the BLASTN 2.2.19 tool (Zhang et al. 2000), the samples showed 99% match with the species, Irpex rosettiformis. GenBank accession numbers of the submitted isolates are summarized in supplementary Table 4. To test Koch's postulates, 3-months old avocado plants grown in greenhouse conditions were inoculated (n = 10 per each isolate [N= 19]) on the roots with 3 g of I. rosettiformis mycelium. The experiment was done twice with 20 non-inoculated plants as control. After 67 days, basidiomes (50 x 70 x 1.5 mm in average) were observed where the disease incidence was >77%, with subsequent tree decline. The pathogen was re-isolated in vitro in PDA and its identity was confirmed by morphological characteristics of mycelium. This work shows that I. rosettiformis is not only a wood decay fungus, but also a phytopathogen, the causative agent of white root rot disease in P. americana var. drymifolia, cultivar 'Hass', which establishes a precedent for monitoring and preventing its proliferation to other regions in the American continent and the world where nursery avocado seedlings are exported.
ABSTRACT
Banana (Musa spp.) is the most economically important crop in Ecuador, with exports representing 35% of the agricultural GDP of the country. It covers 230,000 hectares, mostly concentrated in three coastal provinces, Guayas, Los Ríos, and El Oro. Between July and September 2022, disease symptomatic banana cv. Williams plants were observed in commercial plantations located in two parishes in the province of Guayas (Naranjito and Lorenzo de Garaicoa) and one parish in the province of Santo Domingo de los Tsáchilas (La Concordia), with an incidence that ranged from 5% to 15%. Symptoms included soft rot of the pseudostem and rhizome decay, characterized by a fetid odor. Three symptomatic pseudostems from each location were collected, washed with running water to remove any debris, and dried with absorbent paper. From the lesion of each pseudostem, seven pieces of 2 cm² were taken, surface-sterilized, and macerated in 9 ml of sterile peptone water (0.1% w/v). The macerate was diluted three fold in sterile water, plated on nutrient agar, and incubated at 30°C for 24 h. Eight randomly picked colonies, with convex elevation and creamy white color, were isolated on nutrient agar. Each of the bacterial isolates was biochemically profiled by the Biolog system (Biolog Inc., USA) and identified as Pectobacterium. Three isolates, one from each parish (FP220416, FP220694, and FP220904), were selected for testing Koch's postulates and further identification. Sequences from fragments of the 16S, dnaA, gapA and gyrB genes were obtained from these isolates, following the protocols used by Dobhal et al. (2020) and Boluk et al. (2020), showing 98.1-99.0%, 98.2%, 99.7-99.8%, and 98.4-98.9% identitity, respectively, with sequences from the P. brasiliense type strain LMG_21371 (Acc. number JQOE00000000). The obtained sequences were deposited in GenBank with the following accession numbers: OR392417, OR371545,OR371546, OR727281, OR727282, and OR739074-OR739080. Using BEAST v.1.10.4 (Suchard et al.,2018), a bayesian multilocus phylogenetic tree was built with multiple sequence alignments of dnaA, gapA, ang gyrB from 22 P. brasiliense isolates and 2 P. aquaticum isolates used as outgroup. The phylogenetic analysis showed that the Ecuadorian isolates cluster with P. brasiliense BF20, isolated from Opuntia ficus-indica in México and are closely related with the type strain. Pathogenicity tests were conducted through syringe infiltration with 1 ml of 1 × 10^8 CFU ml-1 bacterial suspensions. Each of the three characterized isolates were inoculated into the pseudostems of five healthy 4-month-old banana plants of the Williams cultivar. Negative control plants were infiltrated with sterile distilled water. The plants were incubated at 25°C and 74% relative humidity. Black lesions started to appear 11 days after inoculation and 5 weeks after inoculation plants showed clear symptoms of soft rot of the pseudostem, including fetid odor associated with plant tissue decomposition. Control plants remained symptom-free. Bacteria were re-isolated only from symptomatic pseudostems and identified as P. brasiliense with specific primers Pb1F and Pb1R. Soft rot of banana caused by different enterobacteria including Dickeya zeae, Erwinia carotovora, and Erwinia chrysanthemi hasve been previously reported (Jingxin et al. 2022, Arun et al. 2012, Loganathan, et al. 2019). This is the first report of P. brasiliense causing soft rot of banana in Ecuador, the biggest exporter of the fruit in the world.
ABSTRACT
Rambutan (Nepehelium lappaceum) is a tropical exotic fruit belonging to the Sapindaceae family. Several pathogens have been identified in rambutan causing different diseases on fruits, inflorescences, and branches (Serrato-Diaz et al., 2015, 2017, 2020) but few on leaves. From 2015 to 2021, a disease survey was conducted in one greenhouse in Mayaguez, Puerto Rico and experimental rambutan field orchards of the USDA-ARS Tropical Agriculture Research Station located at Isabela, Corozal, Santa Isabel, and Adjuntas, Puerto Rico (Latitude: 18°12'28"N, 18°34'10'' N, 18°00'47''N, 18°16'35''N and Longitude: 67°08'17"W, 66°31'74'' W, 66°38'98''W, 66°72'32''W, respectively). Varieties Benjai, Gula Batu, Jitlee, R-134, R-156Y, R-162, R-167 and Rongren were sampled. Necrotic spots and leaf blight were commonly observed with a disease incidence of 80%. Diseased leaves showed necrosis starting from the apex and spreading through the lamina. Ten diseased leaves were collected from each location and sections of symptomatic tissue (5mm2) were disinfected and plated on potato dextrose agar (PDA) and oatmeal agar (OA). Two representative isolates of Diaporthe tulliensis, A3 and A4, were obtained, purified, and identified morphologically and by PCR amplifications of three nuclear genes of the Internal Transcribed Spacer ITS1-5.8S-ITS2 region of the ribosomal DNA primers ITS5/ITS4, portions of the ß tubulin (BT) primers Bt2a/Bt2b and the translation elongation factor 1-α (TEF1-α) primers EF1728F/EF1986R. On PDA and OA colonies of isolates A3 and A4 were initially white and flat with sparse mycelia that turned yellowish-white to grey with age. Pycnidia were black with cream to pale yellow conidial droplets that exuded from ostioles. Hyaline, unicellular alpha conidia were oval to cylindrical, rounded at apex and obconically truncate at base. Alpha conidia (n = 50) for isolates of D. tulliensis were 4.9 to 5.9 µm long by 2.2 - 2.5 µm wide. DNA sequences of the ITS region and partial sequences of TEF1-α and BT genes were compared by BLASTN with Diaporthe sequences deposited in GenBank. ITS, BT and EF1-α sequences of isolates A3 and A4 (OP219651 and OP161553 for ITS region; OP222137 and OP168832 for TEF1-α; OP222136 and OP168831 for BT, respectively) were grouped to the holotype BRIP 62248a (Bootstrap BS=100) of Diaporthe tulliensis R.G. Shivas, Vawdrey & Y.P. Tan. Pathogenicity tests were conducted on six of six-months-old rambutan seedlings of R-167 variety. Three unwounded healthy non-detached leaves were inoculated per isolate with one 5mm mycelial disk from pure cultures grown on PDA. Rambutan seedlings were kept in a humid chamber using plastic bags for 8 days under greenhouse conditions. Two of six seedlings were used as controls and inoculated with PDA disks only. Eight and 14 days after inoculation (DAI), D. tulliensis isolates caused necrotic spots and leaf blight, on leaves. Diseased leaves turned from light to dark brown starting from the apex and spreading through the lamina with necrotic lesions ranging in size from 5 - 10 mm. Untreated controls showed no symptoms, and no fungi were re-isolated from tissue. D. tulliensis was re-isolated from diseased leaves, fulfilling Koch's postulates. D. tulliensis has been reported in Taiwan causing Diaporthe leaf spot in Boston Ivy (Huang, C. et al., 2021) and Bodhi trees (Li, K.Y. et al., 2022), as well as Jasmin stem canker (Ching Hsu, C. et al., 2022). It has been reported as causing leaf blight of coffee (Gong, J. L., et al., 2019), kiwifruit stem canker in China (Bai et al., 2017), and most recently causing cacao pod rot in Puerto Rico (Serrato-Diaz, L.M. et al., 2022). To our knowledge, this is the first report of Diaporthe tulliensis causing necrotic spots and leaf light on rambutan in Puerto Rico and often associated with a potassium deficiency in many parts of the world. It will be important to establish an adequate and effective control management of this disease in rambutan producing countries worldwide. References and doi hyperlinks: 1. Huang, C. et al. Plant Dis. 105:2718, 2021 https://doi.org/10.1094/PDIS-12-20-2652-PDN 2. Li, K.Y. et al. Plant Dis. 0:ja, 2022 https://doi.org/10.1094/PDIS-01-22-0211-PDN 3. Ching Hsu, C. et al. Plant Dis. 0:ja, 2022 https://doi.org/10.1094/PDIS-09-21-1908-PDN 4. Gong, J. L., et al. Plant Dis. 104:570, 2019 https://doi.org/10.1094/PDIS-09-19-1833-PDN 5. Bai et al. Plant Dis. 101:508, 2017 https://doi.org/10.1094/PDIS-10-16-1445-PDN 6. Serrato-Diaz L.M., et al. 2015. Plant Dis. 99: 1187. https://doi.org/10.1094/PDIS-09-14-0923-PDN 7. Serrato-Diaz L.M. et al. 2017. Plant Dis. 101: 1043. https://doi.org/10.1094/PDIS-11-16-1557-PDN 8. Serrato-Diaz, L.M., et al. 2020. Plant Dis. 104: 105-115. https://doi.org/10.1094/PDIS-02-19-0295-RE 9. Serrato-Diaz, L.M. et al. 2022 Plant Dis. 106: 2530. https://doi.org/10.1094/PDIS-12-21-2634-PDN.
ABSTRACT
Fusarium wilt of banana (Musa spp.), caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense (Foc), is a major constraint to banana production worldwide (Dita et al., 2018). A strain of Foc that affects Cavendish (AAA) bananas in the tropics, called Foc tropical race 4 (TR4; VCG 01213), is of particular concern. Foc TR4 was first detected in Malaysia and Indonesia around 1990 but was restricted to Southeast Asia and northern Australia until 2012. The fungus has since been reported from Africa, the Indian subcontinent, and the Middle East (Viljoen et al., 2020). Foc TR4 was detected in Colombia in 2019 and in Perú in 2021 (Reyes-Herrera et al., 2020). The incursions into Latin America and the Caribbean (LAC) triggered global concerns, as 75% of international export bananas are produced in the region. Banana production in Venezuela, however, is primarily intended for domestic consumption (Aular and Casares, 2011). In 2021 the country produced 533,190 metric tons of banana on an area of 35,896 ha, with an approximate yield of 14,853 kg/ha (FAOSTAT, 2023). In July 2022, severe leaf-yellowing, and wilting, along with internal vascular discoloration of the pseudostem, were noted in Cavendish banana plants cultivar 'Valery' in the states of Aragua (10°11'8â³N; 67°34'51â³W), Carabobo (10º14'24â³N; 67º48'51â³W), and Cojedes (9°37'44â³N; 68°55'4â³W). Necrotic strands from the pseudostems of diseased plants were collected for identification of the causal agent using DNA-based techniques, vegetative compatibility group (VCG) analysis and pathogenicity testing. The samples were first surface disinfected and plated onto potato dextrose agar medium. Single-spored isolates were identified as F. oxysporum based on cultural and morphological characteristics, including white colonies with purple centres, infrequent macroconidia, abundant microconidia on short monophialides, and terminal or intercalary chlamydospores (Leslie and Summerell, 2006). Foc TR4 was identified from five isolates by endpoint and quantitative-PCR using four different primer sets (Li et al. 2013; Dita et al. 2010; Aguayo et al. 2017; Matthews et al. 2020). The same isolates were identified as VCG 01213 by successfully pairing nitrate non-utilizing (nit-1) mutants of the unknown strains with Nit-M testers of Foc TR4 available at Stellenbosch University (Leslie and Summerell, 2006). For pathogenicity testing, 3-month-old Cavendish banana plants cultivar 'Williams' were inoculated with isolates from Venezuela grown on sterile millet seed (Viljoen et al., 2017). Plants developed typical Fusarium wilt symptoms 60 days after inoculation, including yellowing of leaves that progressed from the older to the younger leaves, wilting, and internal discoloration of the pseudostem. Koch's postulates were fulfilled by reisolating and identifying Foc TR4 from the plants by qPCR (Matthews et al., 2020). These results provide scientific proof of the presence of Foc TR4 in Venezuela. The Venezuelan Plant Protection Organization (INSAI) has declared Foc TR4 as a newly introduced pest (January 19, 2023), and infested banana fields were placed under quarantine. Comprehensive surveys are now conducted in all production areas in Venezuela to assess the presence and impact of Foc TR4, and information campaigns were started to make farmers aware of biosecurity protocols. Collaborative initiatives and coordinated actions among all stakeholders are needed to prevent the spread of Foc TR4 to other countries in Latin America, and to develop Foc TR4-resistant bananas (Figueiredo et al. 2023).
ABSTRACT
Soursop (Annona muricata L: Annonaceae) is a small tropical fruit tree native to South America (Pinto, 2005). The flesh of its fruits is widely used as a main ingredient of pastries, even young fruits are used as a vegetable. In June 2022, leaf spots symptoms were observed on fifty soursop plants in a commercial nursery located in Juan José Ríos (25°45'20"N 108°50'21"W), Ahome, Sinaloa State. The incidence of the disease was 75%, while the severity was 12%. Symptoms were round, small black necrotic spots, that grew up to 6 mm in diameter with brown or gray color at the center. Fungal isolation was done on potato dextrose agar (PDA) and Colletotrichum-like colonies were obtained. Five isolates were recovered and purified by single spore culture and only a single morphotype was observed. One random isolate was selected for pathogenicity tests, morphological and molecular characterization. The isolate was deposited in the Culture Collection of Phytopathogenic Fungi of the Biotic Products Development Center at the National Polytechnic Institute under accession no. IPN 13.0102. Colonies in PDA at 25°C grow at a rate of 9.0-14.0 mm/d. After 14 days, the colony was olive to gray with orange conidial masses, and conidia (n =100) were hyaline, aseptate, cylindrical, and straight with rounded ends, measuring 11.5 to 18.5 and 3.5 to 5.5 µm. Appressoria were melanized and circular or oval in shape, measuring 6.0 to 4.0 µm (n=20). According to the morphological characteristics observed, the isolate was placed tentatively within the Colletotrichum gloeosporioides species complex (Weir et al. 2012). For molecular confirmation, genomic DNA was extracted, and the internal transcribed spacer (ITS) region (White et al. 1990), partial sequences of actin (ACT) (Weir et al. 2012) and span style="font-family:'Times New Roman'">glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes were amplified and sequenced. Sequences were deposited in GenBank under the accession numbers: ITS, OQ606966; ACT, OQ617292 and GAPDH, OQ617293. A phylogenetic tree including published sequences of the C. gloeosporiodes species complex was constructed according to Talhinhas and Baroncelli (2021) and the isolate IPN 13.0102 was grouped in a clade with the ex-type culture of C. siamense (ICMP18578) and C. pandanicola. However, C. pandanicola was recorded only as an epiphytic fungus occurring on leaves of Pandanus sp. (Pandanaceae) (Tibpromma et al. 2018) and there are no additional reports of this fungus as a plant pathogen on Pandanus or any other plant. Therefore, the isolate IPN 13.0102 corresponds to C. siamense. Pathogenicity was demonstrated by spraying a conidial suspension (1 × 105 conidia/ml) onto four healthy soursop plants, while two control plants were sprayed using sterile distilled water. All plants were kept in a wet chamber for 48 h at 28 ï± 2°C and 85% RH. The characteristic symptoms of the disease were observed 14 days after inoculation, while control plants remained healthy. The pathogenicity test was repeated twice obtaining the same results. The morphology of the recovered fungus was consistently identical to that originally isolated from diseased leaves, fulfilling Koch's postulates. Colletotrichum siamense has been previously reported on Anona spp. in Brazil (Costa et al. 2019). To our knowledge, this is the first report of Colletotrichum siamense causing leaf spots on Annona muricata in Mexico. Further studies for monitoring and control strategies of leaf spots on soursop are required.
ABSTRACT
The coconut (Cocos nucifera L., Arecaceae) is one of the most important tropical species used by humans. In Brazil, its cultivation has been expanding in the recent years (Souza et al. 2020) and many diseases have emerged. The pestalotia spot, caused by Pestalotiopsis guepinii (Desm.), is a leaf disease of the coconut characterized by elliptic lesions with defined dark borders varying in size from 3 to 5 mm (Cardoso et al. 2003). In January of 2018, leaves with symptoms of pestalotia spot were obtained from ten year old coconut plants "dwarf variety" in a commercial planting in the city of Neópolis (10°20'S/36°42'W), Sergipe, Brazil. Disease incidence was 80% on 60 plants observed. Twenty samples of symptomatic tissues were collected and disinfested for 2 min in 1% sodium hypochlorite, washed in sterile water, placed on PDA (potato dextrose agar), and incubated at 25 ± 1°C with a 12-h photoperiod for 4 days. Five isolates were obtained, and pure cultures deposited in Phytopathogen Collection of the Federal University of Alagoas, accession numbers: COUFAL0240 to COUFAL0244. Seven day old colonies grown on PDA at 25°C, were whitish with aerial mycelium on the surface and abundant production of black conidiomata. Conidia were fusiform, straight to slightly curved with five cells, three median cells with brown coloring being the second and third being darker and the apical and basal cells, hyaline. Fifty conidia were measured and varied in size from 20.02-24.26 x 5.37-7.50 µm. The conidia presented two to four apical appendages and one basal appendage (Fig. S1). The morphological characteristics coincide with the Neopestalotiopsis foedans (Sacc. & Ellis), Maharachchikumbura et al. (2014). Molecular identification was conducted using partial nucleotide sequences from the ITS (ITS1/ITS4) region (GenBank no. MT605375 to MT605379) and from the genes TUB2 (Bt2a/Bt2B) (no. MT634202 to MT634206) and TEF-1α (526F/1567R) (no. MT634197 to MT634201). Besides that, the isolates grouped with the ex-type N. foedans species (CGMCC 3.9123) in a phylogenetic tree of Bayesian inference using concatenated sequences (Fig. S2). The pathogenicity was confirmed on seedling from coconut plants "dwarf variety" maintained in a greenhouse. Four plants were used, being one as a control. Spore suspensions of 106 conidia mL-1 was prepared from a 7 days old culture (cultivated at 25ºC). Inoculations were performed by spraying the conidial suspension on two whole leaves per plant (wounded and unwounded). In the control, sterilized distilled water was used. Plants were incubated at 25 ± 1°C and 100% relative humidity. Ten days after inoculation, depressed and necrotic lesions were observed in 100% on the inoculated leaves with wound. No symptoms observed on unwounded leaves, nor in the control treatment. To complete Koch's postulates, the N. foedans fungus was successfully re-isolated from the symptomatic leaves and identified phenotypically in optical microscope. Neopestalotiopsis foedans has already been reported in Calliandra haematocephala (Hassk), Neodypsis decaryi (Jum.), Rhizophora mangle (L.), Thuja occidentalis and Psidium guajava (L.) (Saccardo, 1882; Maharachchikumbura et al. 2014, Solarte et al. 2018). However, this is first report of N. foedans causing leaf spot in coconut in the world. The pestalotia spot is commonly observed in Brazil in C. nucifera and should be considered an important disease for this culture, as this can significantly reduce its photosynthetic area.
ABSTRACT
Papaya sticky disease (PSD) is a major virus disorder of papaya (Carica papaya). The disease is characterized by fruit damage caused by the oxidation of spontaneously exuded latex. In Brazil, PSD is caused by the coinfection of two viruses, papaya meleira virus (PMeV), a toti-like virus, and papaya meleira virus-2 (PMeV-2), an umbra-like virus. The disorder has also been reported in Mexico and, more recently, in Australia, but the presence of both PMeV and PMeV-2 in symptomatic plants has been documented only in Brazil. In 2021, 2-year-old papaya plants (cultivar Passion Red) exhibiting PSD-like symptoms were observed in Santa Elena Province, Ecuador. Molecular tests of leaf tissue and fruit latex from symptomatic plants failed to detect PMeV. However, papaya virus Q (PpVQ), an umbra-like virus related to but distinct from PMeV-2, and a novel virus, tentatively named papaya sticky fruit-associated virus (PSFaV), were found in the symptomatic samples. PSFaV shares 56% nucleotide identity with the genome of PMeV, suggesting that PSD symptoms can be caused by "couples" of viruses related to but distinct from PMeV (a toti-like virus) and PMeV-2 (an umbra-like virus). This review discusses the history and epidemiology of PSD and the genomic features of newly discovered virus couples involved in this syndrome. Given the unusual etiology of PSD, which involves distinct virus species, the importance of implementing proper diagnostic approaches for PSD is highlighted.
Subject(s)
Carica , Plant Viruses , RNA Viruses , RNA Viruses/genetics , Plant Viruses/genetics , Latex , Plant LeavesABSTRACT
Mangoes (Mangifera indica L.) are one of the most important export fruits in Peru and anthracnose, caused by several species in the Colletotrichum gloeosporioides species complex (CGSC), is one of their main postharvest diseases (Alvarez et al. 2020). Balsas is the major mango producing district in the Amazonas department, where farmers practice intercropping in orchards mostly of less than 5 ha (Cabezudo Cerpa 2022). In July 2021, mango fruits cv. Kent with anthracnose were detected at an incidence of 55 to 80% during postharvest in Balsas. Symptoms included sunken dark brown lesions with appearance of orange conidiomata at advanced stages of the disease. We collected two samples of infected mangoes from a farm located at 6°51'01" S, 77°59'48" W (1088 m.a.s.l.). One axenic culture (INDES-AM1) was obtained from a hyphal tip of a monosporic colony and cultivated on PDA medium at 25 °C in the dark. The growing rate of the colony was 8.1 mm.day-1. Conidia were hyaline, guttulate, unicellular and cylindrical with narrowing center, with dimensions of 15.8 to 23.5 × 4.5 to 7.6 µm (mean = 18.6 ± 0.03 × 6.0 ± 0.02 µm, SE, n = 50), consistent to the CGSC (Weir et al. 2012). Appressoria were dark brown, and ovoid to slightly irregular in shape, ranging from 5.3 to 10.1 × 4.7 to 8.3 µm (mean = 7.9 ± 0.02 × 6.0 ± 0.02 µm, SE, n = 50). Koch's postulates were fulfilled on mature mango fruits of the same cultivar and from the same district. Mangoes were washed with detergent and left to dry before inoculation. PDA-mycelial plugs of 0.5 cm wide were transferred on two different locations of two fruits, with four replicates. One location was previously wounded with five needle punctures of 3 mm depth. The inoculated fruits were maintained in a moist chamber at ambient light and temperature (18.9 ± 0.5 °C, SE). Symptoms appeared three-to-five days post inoculation (dpi), and the superficial diameter of the lesions were 8.3 ± 1.5 and 3.6 ± 2 mm with the invasive and the superficial inoculation approaches, respectively, at five dpi. Lesions were very similar to original symptoms. Macro and micromorphological characteristics of the re-isolated fungal colonies were the same as isolate INDES-AM1. Molecular identification of the pathogen was carried out following Weir et al. (2012). Total DNA was extracted using the Wizard® Genomic DNA Purification Kit (Promega Corp., Madison, Wisconsin) and the ribosomal internal transcribed spacer (ITS), and partial sequences of the chitin synthase (CHS1), actin (ACT), ß-tubulin 2 (TUB2), calmodulin (CAL), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) nuclear genes were sequenced (Accession numbers: OP425395, OP440444, OP440442, OP440443, OP555062, OP555063). ITS, CHS1, ACT, TUB2, CAL, and GAPDH sequences were 98.6, 100, 100, 99.5, 100, and 99.08% identical to Colletotrichum asianum type strain ICMP 18580 sequences, respectively. Additionally, a bootstrapped maximum likelihood midpoint-rooted phylogeny with a multilocus dataset with the six sequences from reference strains of C. asianum and closely related species within the CGSC revealed that strain INDES-AM1 is C. asianum. This species has been found causing anthracnose on M. indica in at least 15 different countries in Africa, America, Asia, and Oceania (Weir et al. 2012). It was originally described from coffee and has multiple other hosts (Prihastuti et al. 2009; Lima et al. 2015). To the best of our knowledge, this is the first report of C. asianum infecting mangoes in Peru.
ABSTRACT
Cotton leafroll dwarf virus (genus Polerovirus, family Solemoviridae) has been commonly reported affecting cotton plants (Gossypium spp., family Malvaceae) and several weed species (Ramos-Sobrinho et al., 2021; Sedhain et al., 2021). During a recent survey, cacao (Theobroma cacao L.) trees exhibiting virus-like symptoms such as leaf mosaic, vein clearing, and yellow spot were observed in the south part of the state of Bahia, northeastern Brazil, in 2022. Leaf samples were randomly collected from symptomatic cacao plants (n=30) growing in an affected area of approximately 30 ha. Total RNA obtained from pooled cacao samples were subjected to Illumina HiSeq 2500 sequencing as previously described (Keith et al., 2021), and partial sequences of cotton leafroll dwarf virus (CLRDV), and other virus-specific sequence contigs, were de novo assembled according to Ramos-Sobrinho et al. (2021). To further investigate the presence of CLRDV in cacao leaves, total RNA was individually extracted using a modified silica protocol (Rott and Jelkmann, 2001) and used as template for cDNA synthesis with random hexamers using the SuperScript™ IV First-Strand Synthesis System (Invitrogen, CA, USA) following the manufacturer´s protocol. Detection of CLRDV was carried out by reverse transcription-polymerase chain reaction (RT-PCR) with the primers PL4F and o3-R, which amplify the open reading frame 3 (ORF3) encoding the capsid protein (Corrêa et al., 2005). Expected size amplicons (~0.6 kb) were observed from 16 out of 30 symptomatic plants, indicating ~53% of the cacao trees were infected by CLRDV. Considering 14 symptomatic plants tested negative for CLRDV, the symptoms observed here could also be caused by other viral groups or abiotic stress. To confirm the detection of CLRDV, the first half (~3.5kb) of the viral genome was amplified from two representative cacao samples using the primers P20F and P22R (Avelar et al., 2020). The RT-PCR products were gel-purified using the Wizard® SV Gel and PCR Clean-Up System (Promega, WI, USA) and Sanger sequenced. The RNA Illumina sequencing from pooled cacao samples (n=30) yielded 34,610,572 million trimmed reads. Two contigs of 868 and 839 nucleotides (nt) in length, and sharing high nt identity with CLRDV isolates, were assembled from 6,903 and 10,271 reads, at a coverage depth of 795 and 1,224x, respectively. Together, these contigs represent ~29% of the complete viral genome and included part of the 5´-untraslated region, ORF0 and the second half of ORF1-ORF2. Additional CLRDV-like contigs were observed across the viral genome, but they were not considered for further analyses due to the poor sequence quality. The Illumina- and Sanger-derived ORF0 and partial ORF1-ORF2 sequences shared >97% nt identity, suggesting they were congruent. Pairwise sequence comparisons for ORF0, encoding the gene silencing suppressor P0, indicated the cacao-associated isolates shared 99.7 and 99.2% nt and amino acid (aa) identity one with another, respectively. The ORF0 nt sequences showed 91.9-93.8 and 90.7-93.6% identity, while the aa sequences shared 85.8-88.5 and 86.2-90.0% similarity, with CLRDV isolates previously reported in South America and the USA, respectively. Finally, the ~3.5kb nt sequences of cacao-infecting CLRDV isolates shared 92.9-95.8% identity with CLRDV genomes deposited in NCBI-GenBank. The Bayesian phylogenetic tree reconstructed based on ORF0 nt sequences showed the new sequences were more closely related to CLRDV-atypical isolates (GenBank accession nos. KF359946, KF359947, KF906260, and KF906261). Together, these results suggest the new ORF0 sequences belong to CLRDV and were deposited in GenBank under accession nos. ON954058-ON954059. To our knowledge, this is the first report of CLRDV infecting cacao plants, expanding the range of malvaceous hosts of this polerovirus. CLRDV is largely known for causing yield losses in cotton crops, but additional studies are needed to determine if CLRDV infection is detrimental to cacao production.
ABSTRACT
Plants emit a broad number of Biogenic Volatile Organic Compounds (BVOCs) that can impact urban ozone (O3) production. Conversely, the O3 is a phytotoxic pollutant that causes unknown alterations in BVOC emissions from native plants. In this sense, here, we characterized the constitutive and O3-induced BVOCs for two (2dO3) and four (4dO3) days of exposure (O3 dose 80 ppb) and evaluated the O3 response by histochemical techniques to detect programmed cell death (PCD) and hydrogen peroxide (H2O2) in three Brazilian native species. Croton floribundus Spreng, Astronium graveolens Jacq, and Piptadenia gonoacantha (Mart.) JF Macbr, from different groups of ecological succession (acquisitive and conservative), different carbon-saving defense strategies, and specific BVOC emissions. The three species emitted a very diverse BVOC composition: monoterpenes (MON), sesquiterpenes (SEQ), green leaf volatiles (GLV), and other compounds (OTC). C. floribundus is more acquisitive than A. graveolens. Their most representative BVOCs were methyl salicylate-MeSA (OTC), (Z) 3-hexenal, and (E)-2-hexenal (GLV), γ-elemene and (-)-ß-bourbonene (SEQ) ß-phellandrene and D-limonene (MON), while in A. graveolens were nonanal and decanal (OTC), and α-pinene (MON). Piptadenia gonoachanta is more conservative, and the BVOC blend was limited to MeSA (OTC), (E)-2-hexenal (GLV), and ß-Phellandrene (MON). The O3 affected BVOCs and histochemical traits of the three species in different ways. Croton floribundus was the most O3 tolerant species and considered as an SEQ emitter. It efficiently reacted to O3 stress after 2dO3, verified by a high alteration of BVOC emission, the emergence of the compounds such as α-Ionone and trans-ß-Ionone, and the absence of H2O2 detection. On the contrary, A. graveolens, a MON-emitter, was affected by 2dO3 and 4dO3, showing increasing emissions of α-pinene and ß-myrcene, (MON), γ-muurolene and ß-cadinene (SEQ) and H2O2 accumulation. Piptadenia gonoachanta was the most sensitive and did not respond to BVOCs emission, but PCD and H2O2 were highly evidenced. Our results indicate that the BVOC blend emission, combined with histochemical observations, is a powerful tool to confirm the species' tolerance to O3. Furthermore, our findings suggest that BVOC emission is a trade-off associated with different resource strategies of species indicated by the changes in the quality and quantity of BVOC emission for each species.
ABSTRACT
The agave crop (Agave angustifolia), is of economic importance for Mexico, for the agave is made mainly an alcoholic beverage called locally mezcal. In the state of Guerrero, in the municipality of Huitzuco de los Figueroa (18.2510026N, 99.2320182W, 1196 m above sea level), a severe disease affecting agave leaves was detected. The field symptoms consisted of pale to brown dark descending lesions, covering >50% of the leaf surface, in which the presence of pycnidia was observed. In an estimated area of 0.5 ha, the estimated incidence was 67% (n=100 plants). Symptomatic fragments from leaves (approximately 0.5 cm) were taken, superficially disinfected with 1% NaClO, and rinsed twice with sterile distilled water. Then they were transferred to potato dextrose agar (PDA) medium, and incubated at 28 °C. After five days, twelve representative isolates were selected and purified by the hyphal tip technique. In the PDA medium, the colonies were initially light gray, later they became dark, and after 22 days of incubation, the development of numerous dark pycnidia was observed on the surface of the medium. Initially, immature hyaline conidia, unicellular, oval, and double-walled were observed. The mature conidia were dark brown, oval, with one septum and longitudinal striation, and measured 17.5 to 27 [average 25.3 µm; n=50] × 10.5 to 15.7 [average 13.9 µm; n=50]. Based on the morphological characteristics, the fungus was identified as Lasiodiplodia theobromae (Pat.) Griffon & Maubl. (Alves et al. 2008). Isolates LAS3 and LAS4 were used for molecular identification, this was done by amplifying the regio internal transcribed spacer (ITS) of rDNA with primers ITS1 and ITS4 (White et al. 1990) and translation elongation factor 1-alpha ( EF-1α) genes using primers EF1-728F/EF1-986R (Carbone and Kohn 1999). The resulting sequences were deposited in GenBank (LAS3; ON391564 and LAS4; ON391565 for ITS, and LAS3; ON368190 and LAS4; ON368191 for EF-1α). BLASTn analysis sequences of isolated LAS3 and LAS4 revealed for ITS 98.6% identity with L. theobromae (MK934699.1), and for EF-1α indicated 100% identity (MF422024.1). From concatenated sequences ITS-EF-1α regions, a phylogenetic analysis was carried out in MEGA X software, using the Maximum Likelihood and Kimura 2-parameter model with 1,000 bootstraps replicated; isolates LAS3 and LAS4 were clustered in the clade of the members of L. theobromae strains CAA006 (Alves et al. 2006), and INTA-IMC 1601 (Perez et al. 2018). The pathogenicity tests were carried out on 10 healthy 3 year-old agave plants, in which the mycelium of the LAS4 isolate was inserted at three equidistant points/leaf, using a sterile toothpick. Five healthy agave plants were inoculated only with sterile PDA as control treatment. The inoculated plants were covered with transparent plastic bags and housed in a greenhouse at 28 °C. After seven days, similar symptoms to those observed in the field were observed in all inoculated plants. Control plants did not develop symptoms. The fungus L. theobromae was re-isolated again from the infected leaves, fulfilling Koch's postulates. In China, L. theobromae has been reported as the cause of leaf rot on A. sisalana (Xie et al. 2016). To our knowledge, this is the first report of L. theobromae causing leaf rot on A. angustifolia in Mexico. This research is useful to design management strategies for leaf rot disease for local farmers of A. angustifolia.
ABSTRACT
Conophytum luiseae is native to the Namaqualand region of Cape, South Africa. It is a lovely plant with many short succulent spines on ingot-shaped fleshy leaf surfaces, and a high-value ornamental plant in China. In August to October 2021, a serious soft rot disease on Conophytum luiseae plants was observed in four greenhouses at a horticultural farm in Songjiang District, Shanghai, China. 70% of Conophytum luiseae plants on this farm had severe rot symptoms. Initially, wilting and soft rot symptoms appeared on fleshy leaves, then progressed into browning and withering symptoms of all fleshy leaves. To isolate and identify the causal agent, small pieces of lesion tissues were sterilized by 75% ethanol for 30 s, and rinsed three times with sterile water. Later, the tissues were crushed in sterile 2.0 mL centrifuge tube with 100 µl of sterile water. The suspension was serially diluted and spread on Luria-Bertani agar (LB) medium. After incubation at 28°C for 48 h, the bacterial colonies were tiny and streaked on LB plate for purification. After purification, five independent representative colonies were used for further confirmation. Genomic DNA from the bacterial isolate was extracted and used as the template to amplify 16s rDNA with primers 27F/1492R (Ying et al. 2012) and the housekeeping genes, dnaX with primers dnaXF/ dnaXR (Slawiak et al. 2009), and leuS with primers leuSF/ leuSR (Portier et al. 2019), respectively, by a polymerase chain reaction (PCR). The 16S rRNA sequences of one bacterial isolate was deposited in GenBank (GenBank accession OM333246) and showed a 99% similarity to that of Pectobacterium brasiliense (syn. Pectobacterium carotovorum subsp. brasiliense, Pcb) strains HG1501090309 (KU997683), BC1(CP009769), KC08 (KY021029). The dnaX (OM320998) and leuS (OM321306) sequences showed high similarity (> 99%) to P. brasiliense sequences. To further validate this identification, Pcb-specific primers BR1f/L1r was used for PCR, and it produced a predicted amplicon of 322 bp expected for P. brasiliense (Duarte et al. 2004). All five isolates could be detected by BR1f/L1r primer. To fulfill Koch's postulates, five healthy Conophytum luiseae were inoculated by spraying bacterial inoculum (108 CFU/ml), meanwhile five additional healthy Conophytum luiseae were implemented with sterilized distilled water as a negative control. The plants were then kept at 70% humidity and 25ºC. Seven days after inoculation, the inoculated plants showed serious soft rot, while the control samples remained healthy. Bacteria were re-isolated from rot of inoculated tissues, and the isolates were identified as the original pathogen by the 16S rRNA gene sequences. P. Brasiliense has been reported to cause soft rot on diverse plant hosts, like sweet potato, radish, tobacco (Liu et al. 2019; Voronina et al., 2019; Wang et al., 2017). Best to our knowledge, this is the first report that P. Brasiliense causes soft rot on Conophytum luiseae in China.
ABSTRACT
Peru is the second largest producer of organic cocoa and one of the most important suppliers of fine aroma cocoa beans in the world (Sánchez et al. 2019). The fine aroma cocoa produced by smallholder farmers in the Bagua and Utcubamba Provinces, Amazonas Department, under the name of "Cacao Amazonas Peru", is protected by the Peruvian appellation rules (Díaz-Valderrama et al. 2020). Despite this importance, native diseases of the crop (Theobroma cacao) are poorly documented due to difficulty of access in this region. In November 2020 we conducted expeditions into Imaza District (4°47'09.4"S 78°16'51.6"W), a significant producer of fine aroma cocoa in terms of number of cultivated plots (4,651 out of 6,505 total in the Bagua Province) (INEI 2012). We visited 20 farms of < 2-ha in size; in 19 of these small farms, T. cacao trees were found infected with a white fungal thread blight and rhizomorphs covering branches and leaves. Disease incidence ranged from 90 to nearly 100%, and severity exceeded 80% on the eight farms with the most deficient phytosanitary management. Heavily infected leaves were hanging on branches by mycelial threads, harboring tiny (0.5 to 5.3 mm broad) white mushrooms. These symptoms and signs correspond to the thread blight disease constellation (TBD) of cacao caused by various species of Marasmius and Marasmiellus (Amoako-Attah et al. 2020). Mushrooms lacked a collarium, and their stipes were absent or rudimentary (< 2-mm long) and eccentric, consistent with Marasmius tenuissimus (Tan et al. 2009). Axenic cultures were obtained by surface sterilization of mycelium threads with 2% NaClO, rinsed three times in sterile water, plated on potato dextrose agar medium (PDA), and incubated for 7 days at 25°C. Hyphae was non-pigmented with clamp connections, consistent with the genus Marasmius. We extracted the DNA of isolate INDES-AFHP31 using the Wizard® Purification Kit (Promega Corp., Madison, Wisconsin) and sequenced the rDNA internal transcribed spacer 1 and 2 intervening the 5.8S subunit (ITS), and the 28S subunit (LSU) (Accession numbers: OM720123 and OM720135) according to Aime and Phillips-Mora (2005). The ITS and LSU sequences were 97.92 to 98.79% and 99.07 to 99.30% identical, respectively, with published sequences from M. tenuissimus from Ghana (Amoako-Attah et al. 2020). The pathogenicity test was conducted by inoculation of ten healthy cacao leaves with 7-day-old mycelium PDA discs of isolate INDES-AFHP31. An equal number of healthy cacao leaves were inoculated with PDA discs without mycelium as control. The observation of TBD symptoms and signs in the non-control set of cacao leaves starting at 3 days post inoculation, and the re-isolation of the same fungus from infected tissue confirmed its pathogenicity on cacao. Isolate INDES-AFHP31 was deposited as a dried culture into the herbarium Kuélap of the Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (voucher KUELAP-2251). Marasmius tenuissimus was originally reported from dead and living twigs and leaves of unidentified dicotyledonous trees from Indonesia, Brazil, and Bolivia (Singer 1976). However, it was first associated with TBD of cacao in Ghana in 2020, being the most frequently TBD-causing fungus isolated in the country (Amoako-Attah et al. 2020). Its discovery in 19 of the 20 surveyed cacao farms in Imaza District, Amazonas, Peru, reveals its importance as a cacao pathogen in the Western hemisphere.
ABSTRACT
Peru is the ninth exporter of coffee (Coffea arabica) in the world, and Amazonas is among its most important producing departments (INIA 2019). In July 2021, in the nursery of the "Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva", in Huambo district (6° 26' 11.19'' S; 77° 31' 24.18'' W), four-month-old coffee seedlings cv. Catimor with 0.5-2.0 cm brown concentric leaf spots and rotten stems, bearing white mycelial tufts and black sporodochia, were observed at 30% incidence. Infected seedlings were collected. Foliar sections of 2-3 mm with infected tissue were surfaced disinfected in 2% NaClO and transferred onto Petri plates containing potato dextrose agar medium (PDA). The plates were incubated at 25° C for 7 days. We obtained three isolates (INDES-AFHP61, INDES-AFHP62 and INDES-AFHP66) with similar morphology from different seedlings. Colonies (16-17 mm diam.) formed concentric rings with white aerial mycelium, giving rise to viscous and olivaceous dark green sporodochial conidiomata. Conidia (4.82-5.77 × 1.34-1.65 µm; n = 30) were cylindric, hyaline, smooth, and aseptate. These morphological features correspond to Paramyrothecium spp. (Lombard et al. 2016). The DNA of isolates was extracted using the Wizard® Purification Kit (Promega Corp., Madison, Wisconsin), and the internal transcribed spacer 1 and 2 intervening the 5.8S subunit rDNA region (Accession numbers: OM892830 to OM892832), and part of the second-largest subunit of the RNA polymerase II, the calmodulin and the ß-tubulin genes (OM919453 to OM919461) were sequenced following Lombard et al. (2016). All sequences had a percent identity greater than or equal to 99% to corresponding sequences of the P. roridum type specimen (CBS 357.89). Additionally, a multilocus Maximum Likelihood phylogenetic analysis incorporating sequence data from previous relevant studies (Lombard et al. 2016; Pinruan et al. 2022) grouped our three isolates together with the type and other specimens of P. roridum in a strongly supported clade, confirming the species identification. To evaluate pathogenicity, four-month-old coffee seedlings cv. Catimor were sprayed with 10 mL of conidial suspensions at 1 x 106 /mL. A set of control seedlings were inoculated with sterile water. Seedlings were maintained in a humidity chamber at 25 °C. After 15 days brown concentric foliar spots, stem rotting, mycelial tufts and sporodochia (same symptoms and signs observed originally at the nursery) arose in the non-control seedlings. The pathogen was re-isolated on PDA, confirming P. roridum was the causal agent of leaf spot and stem rot diseases of coffee. Paramyrothecium roridum has wide geographic distribution and host range (Lombard et al. 2016). This pathogen was reported to infect C. arabica in Mexico and Coffea sp. in Colombia (Pelayo-Sánchez et al. 2017; Lombard et al. 2016; Huaman et al. 2021). It was also reported in Africa infecting soybeans (Haudenshield et al. 2018), in Brazil infecting Tectona grandis (Borges et al. 2018), in Egypt infecting strawberries (Soliman 2020), and in Malaysia infecting Eichhornia crassipes (Hassan et al. 2021). To the best of our knowledge, this is the first time P. roridum is reported on coffee in Peru.
ABSTRACT
Mango originated in the Indo-Burmese region (Alphonse de Candolle, 1885). In the Caribbean, Puerto Rico currently produces and exports mangoes to the United States and Europe. Globally, an important disease affecting mango production is dieback, caused by fungi belonging to Botryosphaeriaceae family. During a one-year survey from 2019 to 2020, conducted at the mango germplasm collection of the Agricultural Experiment Station of the University of Puerto Rico, located at Juana Díaz, PR, symptoms of dieback were observed in shoots, descending towards the woody part, and vascular necrosis. We sampled bimonthly, 35 Keitt trees for one year. At the end of the evaluation, we detected that a 74% disease incidence was caused by Botryosphaeriaceae. Lasiodiplodia mahajangana (syn. L. caatinguensis) was associated with 4% disease incidence. In addition, we identified other Botryosphaeriaceae species causing 70% of disease incidence. To identify the causal agent, sections of symptomatic tissue (4mm2) were surface disinfected by immersion in 70% ethanol, 10% sodium hypochlorite and rinsed with sterile-distilled water for 1 minute at each solution. Sections were transferred to petri dishes containing potato dextrose agar acidified with 85% lactic acid (aPDA). Ten fungal isolates were obtained with similar morphological characteristics such as colony color and texture, after 12 days. Of these, one representative (isolate 17) was selected and identified as L. mahajangana (Lm) using morphological parameters and sequences of four nuclear genes (Zhang, W. et al., 2021). In aPDA, Lm colonies showed sparse and slow-growing aerial mycelium with dark gray-greenish color at the center and light gray edges. Black pycnidia were observed after 15 days of incubation at 28°C and dark conditions. Hyaline, ovoid to ellipsoid immature conidia (n=40) with average size of 22 µm long and 12 µm wide were observed. Mature bicellular pigmented conidia (n=40) had longitudinal striate and its average size was 23 µm long and 12 µm wide. Internal transcribed spacer (ITS), ß-tubulin (ßtub), elongation factor 1-alpha (EF1-α) and large ribosomal subunit (LSU) genetic regions were amplified by PCR from the original and pathogenicity test recovered isolates. Sequences of PCR products were compared with NCBI database BLAST tool with other Lm sequences. Sequence accession numbers of the four genetic regions of Lm are as follows: OL375401 and OL375402 for the ITS region; OL405579 and OL405580 for ß-tubulin; OL455922 and OL455923 for EF1-α; and OL375648 and OL375649 for LSU. All the sequences were grouped with the ex-type CMM1325 of Lm (BS=84). Pathogenicity tests were performed on 6-month-old mango trees of cv. Keitt. Three healthy trees were inoculated with 5 mm mycelial disks of Lm, on stems, with and without wounds. Controls were inoculated with aPDA disks only. Inoculated trees were covered for 3 days with plastic bags, keeping them in conditions of high relative humidity with constant irrigation, temperature of 28°C, and 12 hours of light and 12 hours of darkness for 12 days. Twelve days after inoculation, Lm isolates caused stem necrosis and canker, with differences in lesion severity from 2 to 17 mm2 with wound, and 0 to 6 mm2 without wound. Untreated controls showed no symptoms of canker. Lasiodiplodia mahajangana was re-isolated from diseased stems fulfilling Koch's postulates, and a sequence of the recovered isolate from the pathogenicity test was compared and included in the phylogenetic analysis. Lasiodiplodia mahajangana has been reported to cause stem-end rot of mango in Malaysia (Li, L. et. al., 2021). To our knowledge, this is the first report of Lm causing canker of mango in Puerto Rico. Knowing L. mahajangana as a new pathogen that causes canker of mango is important to establish an adequate and effective control management of this disease in mango producing countries worldwide.
ABSTRACT
Hevea brasiliensis is widely planted in tropical and subtropical regions and is the main source of natural rubber production. The growth of rubber trees is plagued by various leaf diseases, resulting in decreased rubber production. From January to March in 2020, a severe leaf spots disease on Hevea brasiliensis found in Agricultural Science Base in Haidian campus of Hainan University (20° 03' 31â³ N, 110° 19' 07â³ E), Haikou, Hainan province, China. Spots were only observed on the mature green rather than young and bronze-colored leaves. This symptom has never been reported on the leaves of Hevea brasiliensis. During the early stages of the disease, gray leaf spots were concentrated to the leaf margins, but later expanded forming irregular gray lesions with chlorotic edges (Figure 1A). Eventually, lesions became necrotic shot holed, and leaves curled, wilted, and dropped. Five small pieces were cut from the margin of spots from different infected leaves, and were surface disinfected with 75% alcohol three times for five seconds each time and 1% sodium hypochlorite solution (NaClO) for 60 s. After washing twice with sterile water, leaf pieces were placed in the center of plates with Potato Dextrose Agar (PDA) medium and incubated for one week at 28 °C. After 7 days, mycelium developed and colonies were single-spore cultured for further study. One of the strains labeled HN01 developed a yellowish-brown to reddish-brown pigment on PDA, and the colonies were gray and cottony. The colony and pigment feature very consistent with Stemphylium sp. (Figure 2) (Li et al. 2017). Conidiophore were solitary, transparent to pale, mostly 102.1-228.8 µm × 4.0-5.8 µm, with 2-3 septa and apical vesicular swellings 6.5-7.9 µm. The dimensions of conidia were 28.3-45.1 × 11.5-17.5 µm and one septum (Figure 3). Conidia of S. lycopersici were solitary, oblong with a conical end at the apex, with 1-2 septa, and constricted at the transverse septum. The internal transcribed spacer region of rDNA was amplified with primers ITS1/ITS4 (5'-TCCGTAGGTGAACCTGCGG-3'/5'-TCCTCCGCTTATTGATATGC-3'), glyceraldehyde-3-phosphate dehydrogenase (gpd) was amplified with primers GPD-F/R (5'-GCACCGACCACAAAAATC-3'/ 5'-GGGCCGTCAACGACCTTC-3'), calmodulin region (cmdA) was amplified with the primers CALDF1/CALDR2 (5'-AGCAAGTCTCCGAGTTCAAGG-3'/5'-CTTCTGCATCATCAYCTGGACG3') from genomic DNA of strain HN01 (Xie et al. 2018), and PCR products were sequenced. The ITS sequence of strain HN01 (GenBank Accession No. MZ496930) had 99.64% identity with isolates sl001, sl110, sl111, and sl112 of Stemphylium lycopersici (GenBank Accession No. KX858848.1, MF480547.1, MF480548.1, MF480549.1). Similarly GPD sequences (GenBank Accession No. MZ505106) had 100% identity with strain xiqing, HZ2114 and HZ2115 of Stemphylium lycopersici (GenBank Accession No. KR911809.1, KR911810.1, KT957742.1 and KT957743.1), and CMDA sequences (GenBank Accession No. MZ505105) had 99.85% identity with Stemphylium lycopersici strain LJ1609270201 (GenBank Accession No. MG742412.1). A phylogenetic analysis constructed by MEGA6.0 based on concatenated sequences of the HN01 and another 17 strains from GenBank by using the maximum-likelihood (ML) method showed that the HN01 was clustered and matched with Stemphylium lycopersici LJ1609270201 (Figure 4). To satisfy Koch's postulates, we inoculated mature green leaves of Hevea brasiliensis with mycelial plugs (diameter = 5 mm) of pure cultured strain HN01. All leaves of Hevea brasiliensis were wrapped in a freezer bag to maintain relative humidity >85%, and the temperature of greenhouse is 28ºC. The disease developed on the inoculated leaves after 2-3 days, but not on control leaves (Figure 1B). We used the same method as before to re-isolate the pathogen, which had the same morphology and genotypes as the original isolate. S. lycopersici has been reported to infect the leaves of a variety of plants, including pepper, tomato, eggplant, watermelon, Physalis alkekengi. (Yang et al.2017; Ben et al. 2017; Yang et al. 2020). To our knowledge, this is the first record of S. lycopersici causing leaf spot of Hevea brasiliensis in China, and Hevea brasiliensis is the global new host of S. lycopersici. Hevea brasiliensis is the main source of natural rubber and is widely planted in southern China. Therefore, it is imperative to implement disease management measures to prevent potential threats.
ABSTRACT
Worldwide cacao pod rot is a devastating disease of Theobroma cacao, infected cacao pods turn necrotic reducing yield up to 30%. From July 2020 to August 2021, a survey was conducted at the USDA-ARS cacao germplasm collection located at Mayaguez, Puerto Rico. Incidence of cacao pod rot was 73.9%, observed in 142 of the 196 accessions sampled. The disease was observed at different stages of pod development (small, green, mature pods, and dry mummified large pods). Diseased tissue from three cacao pods (1 mm2) per each cacao accession was surface disinfested by immersion in 70% ethanol for one minute, rinsed with sterile-distilled-water and plated on potato dextrose agar (PDA) amended with 250 mg/L ampicillin and 60 mg/L streptomycin. After 30 days of incubation at 25°C, seven isolates developing white fast-growing colonies with black-globose pycnidia were observed. All isolates produced hyaline, one-celled, biguttulate, and cylindrical and rounded at the apex α conidia of 5.1 to 7.3 µm × 2.5 to 3.0 µm in size and were identified as Diaporthe spp. (Gomes et al. 2013; Crous et al. 2015). To determine the species identity, seven isolates were sequenced of the internal transcribed spacer (ITS), sections of ß-tubulin (BT) and translation elongation factor 1 alpha (EF1-α) and compared using the BLASTn with Diaporthe spp. type specimens deposited in NCBI GenBank. ITS, BT and EF1-α sequences of Phomocac16, Phomcac17, Phomcac18 and Phomcac21 isolates (GenBank accession nos. OL353698 to OL353701, OL412430 to OL412433, and OL412437 to OL412440 for ITS, BT and EF1-α, respectively) were grouped to the holotype BRIP 62248a (Bootstrap BS=100) of Diaporthe tulliensis R.G. Shivas, Vawdrey & Y.P. Tan. The other three isolates (Phomcac8P1, Phomcac8P3 and Phomcac8P4) were grouped to the ex-type (CBS 101339) of Diaporthe pseudomangiferae R.R. Gomes, Glienke & Crous, ITS, BT and EF1-α sequences of (GenBank accessions nos. OL353702 to OL353704, OL412434 to OL412436, and OL412441 to OL412443, for ITS, BT and EF1-α, respectively). Pathogenicity tests were conducted using isolates Phomocac16, Phomcac17, Phomcac18 and Phomcac21 of D. tulliensis and isolates Phomcac8P1, Phomcac 8P3 and Phomcac8P4 of D. pseudomangiferae on five healthy detached green, yellow and red pods of the following cacao varieties: TARS27, ICS16, ICS1, GS29, UF601, SIAL56, Amelonado, SIAL98, EET94, ICS129 and GNV58. Cacao pods were wounded and inoculated with 5-mm mycelial disks from 8-day-old pure cultures grown on PDA of each isolate and wrapped with parafilm. Untreated controls were inoculated with PDA disks only. Fruits were kept in a humid chamber for 8 days at 25°C. Tests were repeated twice. Eight days after inoculation with D. tulliensis and D. pseudomangiferae, all cacao pods turned dark brown, untreated controls showed no symptoms of pod rot, and no fungi were isolated from tissue. Both species, D. tulliensis and D. pseudomangiferae were reisolated from their respective diseased tissues fulfilling Koch's postulates. Diaporthe tulliensis has been reported from rotted stem ends of cacao pods in Australia (Crous et al. 2015), and D. pseudomangiferae was reported in a shipment of cacao seed pods in California; however, pathogenicity tests were not conducted at either location. In California D. pseudomangiferae is considered a quarantine pathogen with a temporary Q rating (Chitambar 2017). To our knowledge, this is the first report of D. tulliensis and D. pseudomangiferae causing cacao pod rot in Puerto Rico. Knowing the identity and incidence of these new cacao pathogens is the first step for developing specific control measures and potential sources for resistance to cacao pod rot caused by Diaporthe spp. References: Chitambar J. 2017. California Pest Rating for Diaporthe pseudomangiferae R. R. Gomes, C. Glienke & Crous. https://blogs.cdfa.ca.gov/Section3162/?p=3285 Crous P.W. et al. 2015. Persoonia 35:264. https://doi.org/10.3767/003158515X690269 Gomes R.R. et al. 2013. Persoonia 31:1 http://dx.doi.org/10.3767/003158513X666844.