Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.192
Filter
1.
Cureus ; 16(8): e66200, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39105203

ABSTRACT

A renal angiomyolipoma (AML) is a rare, usually benign tumor consisting of smooth muscle cells, abnormal blood vessels, and fat tissue. Although AMLs are often asymptomatic, they can present with flank pain, hematuria, and a palpable mass in the abdomen. A significant complication involves rupture and hemorrhage into the retroperitoneal cavity, which can be life-threatening. The treatment approach has evolved from surgical removal to more conservative management, such as nephron-sparing embolization and mammalian target of rapamycin (mTOR) inhibitors for tuberous sclerosis complex (TSC)-associated AML. In March 2024, a 36-year-old female patient diagnosed with TSC was admitted to our department and underwent several endovascular embolizations after a life-threatening hemorrhage from a ruptured multilocular AML. The treatment was successful, with complete exclusion of the AMLs from circulation and without any complications during the postoperative period. This case emphasizes the effectiveness of selective arterial embolization using the Onyx liquid embolic system in managing AMLs and highlights the importance of preserving renal function. Methods used in AML diagnosis include ultrasound and computed tomography scans, with magnetic resonance imaging and biopsy recommended in difficult cases. Treatment depends on aspects such as tumor size, symptoms, and patient's general condition, with options ranging from active surveillance for small, asymptomatic AMLs to more invasive procedures for larger, symptomatic tumors. The main goal is to minimize symptoms and preserve renal function.

2.
Neurogenetics ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110368

ABSTRACT

Tuberous sclerosis complex (TSC) is a rare autosomal dominant disorder caused by mutations in the TSC1 or TSC2 gene. The aim of this study was to analyze the genotypes and phenotypes of Korean patients diagnosed with TSC and expand our understanding of this disorder. This retrospective observational study included 331 patients clinically diagnosed with TSC between November 1990 and April 2023 at Severance Children's Hospital, Seoul, South Korea. The demographic and clinical characteristics of the patients were investigated. Thirty novel variants were identified. Of the 331 patients, 188 underwent genetic testing, and genotype-phenotype variation was analyzed according to the type of gene mutation and functional domain. Fourty-nine patients (49/188, 26%) were had TSC1 mutations, 103 (55%) had TSC2 mutations, and 36 (19%) had no mutation identified (NMI). Hotspots were identified in exons 8 of TSC1 and exons 35 and 41 of TSC2. Patients with TSC2 mutations exhibited a significantly younger age at the time of seizure onset and had refractory epilepsy. Infantile epileptic spasms syndrome (IESS) was more common in the middle mutation domain of TSC2 than in the hamartin domain. Additionally, retinal hamartoma, cardiac rhabdomyoma, and renal abnormalities were significantly associated with TSC2 compared with other gene types. This study contributes to our understanding of TSC by expanding the genotypic spectrum with novel variants and providing insights into the clinical spectrum of patients with TSC in Korea.

3.
Epilepsy Behav Rep ; 27: 100697, 2024.
Article in English | MEDLINE | ID: mdl-39157687

ABSTRACT

A 24-year-old female patient with pre-existing refractory epilepsy caused by tuberous sclerosis (TSC) and electroclinical features of Lennox-Gastaut syndrome (LGS) was referred to our hospital from an external clinic. Upon arrival, she presented with super-refractory status epilepticus (SRSE) since anaesthetics had already been used in the referring clinic. Despite various changes in ASM-treatment and continuous administration of anaesthetics for more than two weeks, SRSE could not be terminated. On treatment day 24, we started Fenfluramin (FFA) which was soon titrated to a dose of 0,7 mg/kg/day. A few days after beginning the treatment with FFA, EEG and clinical situation improved dramatically. The following 6 weeks of treatment went without reported seizures. This case illustrates the successful use of FFA in SRSE in TSC and LGS and, to the best of our knowledge, represents the first report of FFA in this clinical context.

4.
Cureus ; 16(7): e64313, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39130912

ABSTRACT

Subependymal giant cell astrocytomas (SEGAs) are benign, slow-growing, noninvasive tumors frequently associated with the tuberous sclerosis complex (TSC). The tumor's location and the patient's age should be considered carefully before diagnosis. Considering SEGA as a differential diagnosis, even in adult patients without TSC, is essential. In the present case, a 22-year-old male presented with a progressive headache, dizziness, and blurring of vision. Radiological investigations confirmed the site of the tumor, and a positive expression of thyroid transcription factor 1 in the ganglion cell component, along with the absence of germline mutation in TSC1 and TSC2, led to the final diagnosis of SEGA without TSC.

5.
Pediatr Neurol ; 159: 62-71, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39142021

ABSTRACT

BACKGROUND: Children with tuberous sclerosis complex (TSC) are at high risk for drug-resistant epilepsy (DRE). The ability to stratify those at highest risk for DRE is important for counseling and prompt, aggressive management, necessary to optimize neurocognitive outcomes. Using the extensively phenotyped PREVeNT cohort, we aimed to characterize whether the TSC genotype was associated with DRE. METHODS: The study group (N = 70) comprised participants with TSC enrolled at age less than or equal to six months with detailed epilepsy and other phenotypic and genotypic data, prospectively collected as part of the PREVeNT trial. Genotype-phenotype correlations of DRE, time to first abnormal electroencephalography, and time to epilepsy onset were compared using Fisher exact test and regression models. RESULTS: Presence of a TSC2 pathogenic variant was significantly associated with DRE, compared with TSC1 and participants with no pathogenic mutation identified. In fact, all participants with DRE had a TSC2 pathogenic variant. Furthermore, TSC2 variants expected to result in no protein product were associated with higher risk for DRE. Finally, TSC1 pathogenic variants were associated with later-onset epilepsy, on average 21.2 months later than those with other genotypes. CONCLUSIONS: Using a comprehensively phenotyped cohort followed from infancy, this study is the first to delineate genotype-phenotype correlations for epilepsy severity and onset in children with TSC. Patients with TSC2 pathogenic variants, especially TSC2 pathogenic variants predicted to result in lack of TSC2 protein, are at highest risk for DRE, and are likely to have earlier epilepsy onset than those with TSC1. Clinically, these insights can inform counseling, surveillance, and management.

6.
Heliyon ; 10(15): e34937, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170496

ABSTRACT

Background: We aimed to demonstrate the function of premelanosome protein (PMEL) as a biomarker to predict the effectiveness of mammalian target of rapamycin complex 1 (mTORC1) inhibitor treatment in renal angiomyolipomas (RAMLs) in tuberous sclerosis complex (TSC) patients. Methods: 95 whole blood samples from 49 patients diagnosed with TSC-RAMLs were collected. PMEL, N4BP2, and PCSK1N expression in the plasma samples were tested by quantitative sandwich ELISA. The target tumor volume assessed by maximum cross-sectional area (CSAmax) in CT scans. Correlation analysis was used to determine the relationship between PMEL expression and target tumors, as well as the tumor reduction rate. Results: The tumor size of TSC-RAMLs positivity correlated with PMEL expression (r = 0.30, p = 0.036) and PCSK1N expression (r = 0.23, p = 0.027), but had no significant relationship with N4BP2 (r = 0.06, p = 0.89). The positive correlation between TSC-RAML tumor volume and PMEL expression still existed in TSC patients before (r = 0.30, p = 0.026) and after mTORC1 inhibitor treatment (r = 0.41, p = 0.0017), but the correlation between tumor volume and PCSK1N expression no longer existed. Further analysis found that PMEL expression negatively correlated with the reduction rate of TSC-RAMLs after mTORC1 inhibitor treatment (r = -0.50, p = 0.0022), both after 3 months (r = -0.47, p = 0.048) and 6 months of treatment (r = -0.52, p = 0.028). Conclusion: PMEL expression positively correlated with the tumor size of TSC-RAMLs, and inversely with the reduction rate of TSC-RAMLs after mTORC1 inhibitor treatment, which may suggest that PMEL may serve as a predictive biomarker for the efficacy of mTORC1 inhibitor treatment.

7.
J Rare Dis (Berlin) ; 3(1): 24, 2024.
Article in English | MEDLINE | ID: mdl-39165678

ABSTRACT

Background: Tuberous sclerosis complex (TSC) is a rare approximate 1:6000 birth incidence, a genetic disease with a wide variability of physical and neuropsychiatric symptoms. Patients require lifelong care from multiple healthcare specialities, for which International and United Kingdom (UK) TSC consensus recommendations exist. Personalised care delivered by a centralised coordinated team of TSC experts is recommended. There is no such service for the estimated 600 TSC patients in the Republic of Ireland (ROI) and there is a paucity of information regarding the healthcare of this group. Purpose: Evaluate the baseline care of patients with TSC attending epilepsy services in the Republic of Ireland (ROI) against UK TSC consensus recommendations. Methods: Patients with a diagnosis of TSC attending 12 adult and paediatric epilepsy centres in the ROI were identified. Clinical audits measured the baseline care of a subset of these patients against UK, TSC clinical recommendations. Data was anonymised and analysed at Trinity College Dublin. Results: One hundred thirty-five TSC patients attending twelve epilepsy centres were identified. Adults (n = 67) paediatric (n = 68). The care of 83 patients was audited (n = 63 ≥ 18 years) and (n = 20 < 18 years). Many baseline tests were completed, however, they required intra or interhospital referral. Care appears fragmented and there was no evidence of formal disease surveillance plans. Conclusions: The number of TSC patients attending epilepsy services is lower than expected (n = 135). Specialist services and treatments for TSC are available through informal referral pathways. Although UK, TSC consensus baseline recommendations are roughly adhered to, care is fragmented. Increased coordination of care could benefit disease management. Supplementary Information: The online version contains supplementary material available at 10.1007/s44162-024-00049-8.

8.
Chest ; 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39168181

ABSTRACT

TOPIC IMPORTANCE: Diffuse cystic lung diseases (DCLDs) represent a group of pathophysiologically heterogeneous entities that share a common radiological phenotype of multiple thin-walled pulmonary cysts. DCLDs differ from the typical fibroinflammatory interstitial lung diseases in their epidemiology, clinical presentation, molecular pathogenesis, and therapeutic approaches, making them worthy of a distinct classification. The importance of timely and accurate identification of DCLDs is heightened by the impact on patient management including recent discoveries of targeted therapeutic approaches for some disorders. REVIEW FINDINGS: This article offers a practical framework for evaluating patients with DCLD indicating the most appropriate and current diagnostic and management approaches. We focus on the DCLDs that are most likely to be encountered by practicing pulmonologists: lymphangioleiomyomatosis, pulmonary Langerhans cell histiocytosis, Birt-Hogg-Dubé syndrome, and lymphoid interstitial pneumonia. Chest computed tomography is the most informative non-invasive diagnostic modality to identify DCLDs. Thereafter, instituting a structured approach to high-yield associated factors such as medical, social and family history, as well as renal and dermatological findings increases the likelihood of identifying DCLDs and achieving a diagnosis. SUMMARY: While the individual diseases that comprise the DCLD family are rare, taken together DCLDs can be encountered more frequently in clinical practice than commonly perceived. An increased eagerness among general pulmonary physicians to recognise these entities, coupled with a practical and systematic clinical approach to examinations and investigations is required to improve case finding, allow earlier intervention, and reduce morbidity and mortality.

9.
Front Cardiovasc Med ; 11: 1391775, 2024.
Article in English | MEDLINE | ID: mdl-39119187

ABSTRACT

A 33-year-old patient presented with a chief complaint of patent ductus arteriosus (PDA) persisting for over 30 years. Physical examination revealed bilateral facial angiofibromas, multiple nail fibromas, intraoral fibromas, and a 'shagreen patch' on the left lumbar region. Genetic testing was performed using a peripheral venous blood sample, which confirmed the diagnosis of Tuberous Sclerosis Type 2 (TSC2). Subsequently, the patient underwent cardiac color Doppler ultrasound and chest computed tomography angiography, which confirmed the presence of PDA. Tuberous sclerosis complex (TSC) is associated with cardiovascular diseases. The initial clinical manifestation of TSC is usually cardiac rhabdomyoma in children, and it is rarely reported in adults with PDA. In this case, the patient was diagnosed with PDA when he was young, and the genetic test showed heterozygous variation of TSC2 gene. The purpose of this article is to explore the correlation between TSC and PDA at the gene level through literature review.

10.
Transl Pediatr ; 13(7): 1190-1200, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39144436

ABSTRACT

Background: The optimal biomarkers for early diagnosis, treatment, and prognosis of tuberous sclerosis complex (TSC)-associated epilepsy are not yet clear. This study identifies the crucial genes involved in the pathophysiology of TSC-associated epilepsy via a bioinformatics analysis. These genes may serve as novel therapeutic targets. Methods: Gene chip data sets (GSE62019 and GSE16969) comprising the data of patients with TSC-associated epilepsy and healthy control participants were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) in the GEO database were identified using the GEO2R gene expression analysis tool. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, Gene Ontology function, and protein-protein interaction (PPI) network analyses were then conducted. The results were analyzed using R language, and are presented in volcano plots, Venn diagrams, heatmaps, and enrichment pathway bubble charts. A gene set enrichment analysis (GSEA), was conducted to examine the KEGG pathways and crucial genes linked to TSC-associated epilepsy. The potential genes were compared with the genes listed in the Online Mendelian Inheritance in Man (OMIM) database and analyzed against the literature to determine their clinical significance. Finally, the expression of the key genes in the TSC-associated epilepsy mice cerebral cortex was examined through immunohistochemical staining. Results: The intersection of the GSE62019 and GSE16969 data sets revealed 151 commonly upregulated DEGs. The KEGG enrichment analysis indicated that these DEGs affected the occurrence and development of TSC-associated epilepsy by modulating complement and coagulation cascades, glycosaminoglycans in cancer, and extracellular matrix-receptor interactions. Four high-scoring clusters emerged, and podoplanin (PDPN) was identified as a key gene through the construction of a PPI network of the common DEGs using the Cytoscape software. A GSEA of the DEGs revealed that the common DEG PDPN was enriched in both data sets in pathways related to platelet activation, aggregation, and the glycoprotein VI (GPVI)-mediated activation cascade. Immunohistochemical staining revealed a significant elevation in PDPN expression in the cerebral cortex of mice with TSC-associated epilepsy. Conversely, the control group mice did not display any significantly positive neurons. Conclusions: The discovery of these crucial genes and signaling pathways extends understanding of the molecular processes underlying the development of TSC-associated epilepsy. Additionally, our findings may provide a theoretical basis for research into targeted clinical treatments.

11.
Res Sq ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38978564

ABSTRACT

Background: Tuberous Sclerosis Complex (TSC) manifests behaviorally with features of autism, epilepsy, and intellectual disability. Resting state electroencephalography (EEG) offers a window into neural oscillatory activity and may serve as an intermediate biomarker between gene expression and behavioral manifestations. Such a biomarker could be useful in clinical trials as an endpoint or predictor of treatment response. However, seizures and antiepileptic medications also affect resting neural oscillatory activity and could undermine the utility of resting state EEG features as biomarkers in neurodevelopmental disorders such as TSC. Methods: This paper compares resting state EEG features in a cross-sectional cohort of young children with TSC (n=49, ages 12-37 months) to 49 age- and sex-matched typically developing controls. Within children with TSC, associations were examined between resting state EEG features, seizure severity composite score, and use of GABA agonists. Results: Compared to matched typically developing controls, children with TSC showed significantly greater alpha and beta power in permutation cluster analyses iterated across a broad frequency range (2-50Hz). Children with TSC also showed significantly greater aperiodic offset after power spectra were parameterized using SpecParam into aperiodic and periodic components. Within children with TSC, greater seizure severity was significantly related to increased periodic peak beta power. Use of GABA agonists was also independently and significantly associated with increased periodic peak beta power; the interaction between seizure severity and GABA agonist use had no significant effect on peak beta power. Conclusions: The elevated peak beta power observed in children with TSC compared to matched typically developing controls may be driven by both seizures and GABA agonist use. It is recommended to collect seizure and mediation data alongside EEG data for clinical trials. These results highlight the challenge of using resting state EEG features as biomarkers in trials with neurodevelopmental disabilities when epilepsy and anti-epileptic medication are common.

12.
Radiol Case Rep ; 19(9): 3637-3642, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38983288

ABSTRACT

Tuberous sclerosis complex is a multisystem genetic disease with autosomal dominant inheritance, characterized by the development of benign tumors known as hamartomas that affect multiple organs. It is a condition with a wide phenotypic spectrum, and its clinical presentation varies over time within the same individual. Hence, the importance of early screening and rigorous monitoring of evolving clinical manifestations. Diagnosis can occur at any age. These tumors are generally benign, but their size and location can have a significant impact on the prognosis and, in some cases, even on life expectancy. Cardiac, neurological, and cutaneous manifestations are most common in childhood. The onset of early and severe epilepsy within the first year of life is associated with neurodevelopmental disorders that impact the quality of life for affected individuals and their families. We present a case of a 22-year-old female patient experiencing inaugural epileptic seizures in adulthood, with magnetic resonance imaging revealing subependymal hamartomas, cortical tubers and radial migration bands accompanied by polycystic kidney disease; the diagnosis of tuberous sclerosis complex was established based on the association of these lesions, which constitute major and minor criteria.

13.
Cureus ; 16(6): e62133, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38993452

ABSTRACT

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease presenting a variable clinical course ranging from mild to severe multiorgan dysfunction. While the exact etiology of SLE remains elusive, genetic and environmental factors are known to play crucial roles in its pathogenesis. Similarly, tuberous sclerosis complex (TSC) is a multisystem autosomal dominant genetic condition that manifests as benign hamartomatous proliferation in various organs. We present the case of a 46-year-old woman diagnosed with SLE who exhibited clinical features of TSC two decades after the initial diagnosis of SLE. The definitive diagnosis of TSC was made based on major clinical criteria, including facial angiofibroma and bilateral renal angiomyolipomas. As the patient remained asymptomatic without neurological complications, specific treatment for TSC was not initiated. The coexistence of SLE and TSC is exceedingly rare and has been scarcely reported in medical literature.

14.
Epilepsia Open ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010669

ABSTRACT

OBJECTIVE: Comorbidity of epilepsy and autism in tuberous sclerosis complex 2 (TSC2) is very frequent, but the link between these conditions is still poorly understood. To study neurological problems related to autism, the scientific community has been using an animal model of TSC2, Tsc2+/- mice. However, it is still unknown whether this model has the propensity to exhibit increased seizure susceptibility. Further, the importance of sex and/or the circadian cycle in this biological process has never been addressed. This research aimed to determine whether male and female Tsc2+/- mice have altered seizure susceptibility at light and dark phases. METHODS: We assessed seizure susceptibility and progression in a Tsc2+/- mouse model using the chemical convulsant kainic acid (KA), a potent agonist of the AMPA/kainate class of glutamate receptors. Both male and female animals at adult age were evaluated during non-active and active periods. Seizure severity was determined by integrating individual scores per mouse according to a modified Racine scale. Locomotor behavior was monitored during control and after KA administration. RESULTS: We found increased seizure susceptibility in Tsc2+/- mice with a significant influence of sex and circadian cycle on seizure onset, progression, and behavioral outcomes. While, compared to controls, Tsc2+/- males overall exhibited higher susceptibility independently of circadian cycle, Tsc2+/- females were more susceptible during the dark and post-ovulatory phase. Interestingly, sexual dimorphisms related to KA susceptibility were always reported during light phase independently of the genetic background, with females being the most vulnerable. SIGNIFICANCE: The enhanced susceptibility in the Tsc2 mouse model suggests that other neurological alterations, beside brain lesions, may be involved in seizure occurrence for TSC. Importantly, our work highlighted the importance of considering biological sex and circadian cycle for further studies of TSC-related epilepsy research. PLAIN LANGUAGE SUMMARY: Tuberous sclerosis complex (TSC) is a rare genetic disorder. It causes brain lesions and is linked to epilepsy, intellectual disability, and autism. We wanted to investigate epilepsy in this model. We found that these mice have more induced seizures than control animals. Our results show that these mice can be used in future epilepsy research for this disorder. We also found that sex and time of day can influence the results. This must be considered in this type of research.

15.
Cureus ; 16(7): e65132, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39040610

ABSTRACT

Subependymal giant cell astrocytoma (SEGA) associated with tuberous sclerosis complex (TSC) occurs in 5-20% of TSC patients, with a subset developing hydrocephalus. We present a case of a 14-year-old male diagnosed with TSC in the neonatal period who developed SEGA and subsequent hydrocephalus. Despite reducing the tumor size with the mammalian target of rapamycin (mTOR) inhibitors, ventricular enlargement persisted, indicating that obstructive hydrocephalus due to the foramen of Monro blockage was not the sole mechanism. Elevated cerebrospinal fluid (CSF) protein levels suggested additional factors like impaired CSF outflow. This case underscores the need for comprehensive treatment strategies and further research to better understand and manage hydrocephalus in TSC patients with SEGA.

16.
Ther Adv Rare Dis ; 5: 26330040241265411, 2024.
Article in English | MEDLINE | ID: mdl-39070094

ABSTRACT

Tuberous sclerosis complex (TSC) is a genetic disease leading to malformations, or tubers, in the cerebral cortex and growth of tumors, most frequently in the brain, heart, kidneys, skin, and lungs. Changes in the brain caused by TSC usually have the biggest negative impact on quality of life. Approximately 85% of individuals with TSC have epilepsy, and TSC-associated neuropsychiatric disorders (TAND) affect nearly all individuals with TSC in some way. TSC Alliance's research strategy is built upon both funding and catalyzing research. Through grants, the organization provides funding directly to researchers through a competitive application process. The organization has also built a set of resources available to researchers worldwide, including a Natural History Database, Biosample Repository, and Preclinical Consortium. These resources catalyze research because they are available to qualified academic or industry researchers around the world, enabling an almost unlimited number of scientists to access data and resources to enable and accelerate research on TSC. This research strategy continues to be shaped by the needs and priorities of the TSC community, working toward a future where everyone affected by TSC can live their fullest lives.


The role of the TSC Alliance in advancing therapy development: a patient organization perspective Finding a new treatment for any disease is a long and expensive process, and it can be even more challenging for a rare disease such as tuberous sclerosis complex (TSC). To encourage research on TSC and speed up the process developing new treatments, the TSC Alliance established a research strategy based upon the priorities of people living with TSC. TSC community members best know how the disease negatively affects their lives. Equally importantly, the TSC community is a necessary partner for any researcher or company who wants to bring forward a potential new treatment. The TSC Alliance awards research grants to individual researchers who are at early stages of their careers. We also collaborate with many researchers and healthcare providers, and with the TSC community, to build shared resources. These resources include data from medical records and biological samples, such as blood and tissue samples, which are shared with researchers around the world for a wide range of projects related to TSC. We also collaborate with researchers from academic laboratories and the pharmaceutical or biotech industry to test potential new drugs or other therapies in animals, which is required before new therapies can be tested in humans. Before and during human testing in clinical trials, we help researchers design a trial that is both meaningful to the TSC community and not overly burdensome to participants. As new therapies become available, the TSC Alliance educates the TSC community and advocates for patient access to new therapies. Over time, as more is learned about how best to monitor and treat people with TSC, the organization convenes a conference of TSC experts to update clinical consensus guidelines to guide improved treatment of this rare disease.

17.
J Neurosurg Pediatr ; : 1-9, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38996393

ABSTRACT

OBJECTIVE: The authors evaluated the impact of the timing of epilepsy surgery on postoperative neurocognitive outcomes in a cohort of children followed in the multiinstitutional Tuberous Sclerosis Complex (TSC) Autism Center of Excellence Research Network (TACERN) study. METHODS: Twenty-seven of 159 patients in the TACERN cohort had drug-refractory epilepsy and underwent surgery. Ages at surgery ranged from 15.86 to 154.14 weeks (median 91.93 weeks). Changes in patients' first preoperative (10-58 weeks) to last postoperative (155-188 weeks) scores on three neuropsychological tests-the Mullen Scales of Early Learning (MSEL), the Vineland Adaptive Behavior Scales, 2nd edition (VABS-2), and the Preschool Language Scales, 5th edition (PLS-5)-were calculated. Pearson correlation and multivariate linear regression models were used to correlate test outcomes separately with age at surgery and duration of epilepsy prior to surgery. Analyses were separately conducted for patients whose seizure burdens decreased postoperatively (n = 21) and those whose seizure burdens did not (n = 6). Regression analysis was specifically focused on the 21 patients who achieved successful seizure control. RESULTS: Age at surgery was significantly negatively correlated with the change in the combined verbal subtests of the MSEL (R = -0.45, p = 0.039) and predicted this score in a multivariate linear regression model (ß = -0.09, p = 0.035). Similar trends were seen in the total language score of the PLS-5 (R = -0.4, p = 0.089; ß = -0.12, p = 0.014) and in analyses examining the duration of epilepsy prior to surgery as the independent variable of interest. Associations between age at surgery and duration of epilepsy prior to surgery with changes in the verbal subscores of VABS-2 were more variable (R = -0.15, p = 0.52; ß = -0.05, p = 0.482). CONCLUSIONS: Earlier surgery and shorter epilepsy duration prior to surgery were associated with greater improvement in postoperative language in patients with TSC. Prospective or comparative effectiveness clinical trials are needed to further elucidate surgical timing impacts on neurocognitive outcomes.

18.
J Med Case Rep ; 18(1): 330, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39030575

ABSTRACT

BACKGROUND: Subependymal giant cell astrocytoma is a benign brain tumor that occurs in patients with tuberous sclerosis complex. Surgical removal is the traditional treatment, and expert opinion is strongly against the use of radiotherapy. Recently, success has been reported with the mTor inhibitor everolimus in reducing tumor volume, but regrowth has been observed after dose reduction or cessation. CASE REPORT: We present the case of a 40-year-old Asian female patient treated successfully for growing bilateral subependymal giant cell astrocytoma with fractionated stereotactic radiotherapy before everolimus became available. After a follow-up of 8 years, everolimus was administered for renal angiomyolipoma and the patient was followed up until 13 years after radiotherapy. Successive magnetic resonance imaging demonstrated an 80% volume reduction after radiotherapy that increased to 90% with everolimus. A review of the literature was done leveraging Medline via PubMed, and we assembled a database of 1298 article references and 780 full-text articles in search of evidence for contraindicating radiotherapy in subependymal giant cell astrocytoma. Varying results of single-fraction radiosurgery were described in a total of 13 cases. Only in two published cases was the radiation dose of fractionated radiotherapy mentioned. One single publication mentions an induced secondary brain tumor 8 years after whole-brain radiotherapy. CONCLUSION: There is no evidence of contraindication and exclusion of fractionated radiotherapy in treating subependymal giant cell astrocytoma. Our experience demonstrates that subependymal giant cell astrocytoma, as other benign intracranial tumors, responds slowly but progressively to radiotherapy and suggests that fractionated stereotactic radiotherapy holds promise to consolidate responses obtained with mTor inhibitors avoiding regrowth after cessation.


Subject(s)
Astrocytoma , Brain Neoplasms , Everolimus , Radiosurgery , Humans , Female , Astrocytoma/radiotherapy , Astrocytoma/surgery , Adult , Brain Neoplasms/radiotherapy , Everolimus/therapeutic use , Magnetic Resonance Imaging , Antineoplastic Agents/therapeutic use , Treatment Outcome , Kidney Neoplasms/radiotherapy , Kidney Neoplasms/pathology , Tuberous Sclerosis/complications
19.
Article in English | MEDLINE | ID: mdl-38953209

ABSTRACT

The advent of high-dimensional imaging offers new opportunities to molecularly characterize diagnostic cells in disorders that have previously relied on histopathological definitions. One example case is found in tuberous sclerosis complex (TSC), a developmental disorder characterized by systemic growth of benign tumors. Within resected brain tissues from patients with TSC, detection of abnormally enlarged balloon cells (BCs) is pathognomonic for this disorder. Though BCs can be identified by an expert neuropathologist, little is known about the specificity and broad applicability of protein markers for these cells, complicating classification of proposed BCs identified in experimental models of this disorder. Here, we report the development of a customized machine learning pipeline (BAlloon IDENtifier; BAIDEN) that was trained to prospectively identify BCs in tissue sections using a histological stain compatible with high-dimensional cytometry. This approach was coupled to a custom 36-antibody panel and imaging mass cytometry (IMC) to explore the expression of multiple previously proposed BC marker proteins and develop a descriptor of BC features conserved across multiple tissue samples from patients with TSC. Here, we present a modular workflow encompassing BAIDEN, a custom antibody panel, a control sample microarray, and analysis pipelines-both open-source and in-house-and apply this workflow to understand the abundance, structure, and signaling activity of BCs as an example case of how high-dimensional imaging can be applied within human tissues.

20.
Trends Neurosci ; 47(8): 583-592, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39054162

ABSTRACT

Intellectual disability is defined as limitations in cognitive and adaptive behavior that often arise during development. Disordered sleep is common in intellectual disability and, given the importance of sleep for cognitive function, it may contribute to other behavioral phenotypes. Animal models of intellectual disability, in particular of monogenic intellectual disability syndromes (MIDS), recapitulate many disease phenotypes and have been invaluable for linking some of these phenotypes to specific molecular pathways. An emerging feature of MIDS, in both animal models and humans, is the prevalence of metabolic abnormalities, which could be relevant for behavior. Focusing on specific MIDS that have been molecularly characterized, we review sleep, circadian, and metabolic phenotypes in animal models and humans and propose that altered metabolic state contributes to the abnormal sleep/circadian phenotypes in MIDS.


Subject(s)
Intellectual Disability , Sleep Wake Disorders , Humans , Intellectual Disability/genetics , Intellectual Disability/physiopathology , Animals , Sleep Wake Disorders/genetics , Sleep Wake Disorders/physiopathology , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL