Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.677
Filter
1.
Front Oncol ; 14: 1458616, 2024.
Article in English | MEDLINE | ID: mdl-39296981

ABSTRACT

Renal cell carcinoma is a urological malignancy with a high metastatic rate, while targeted therapy for renal cell carcinoma still has much room for improvement. Some cutting-edge researches have focused on exosome in cancer treatment and there are some breakthroughs in breast cancer, lung cancer, and pancreatic cancer. Up to now, exosome in renal cell carcinoma progression and implications for targeted therapy has been under research by scientists. In this review, we have summarized the structure, formation, uptake, functions, and detection of exosomes, classified the mechanisms of exosomes that cause renal cell carcinoma progression, and listed the promising utilization of exosomes in targeted therapy for renal cell carcinoma. In all, based on the mechanisms of exosomes causing renal cell carcinoma progression and borrowing the successful experience from renal cell carcinoma models and other cancers, exosomes will possibly be a promising target for therapy in renal cell carcinoma in the foreseeable future.

2.
Int J Oncol ; 65(5)2024 Nov.
Article in English | MEDLINE | ID: mdl-39301639

ABSTRACT

Macrophages have crucial roles in immune responses and tumor progression, exhibiting diverse phenotypes based on environmental cues. In the present study, the impact of cinobufagin (CB) on macrophage polarization and the consequences on tumor­associated behaviors were investigated. Morphological transformations of THP­1 cells into M0, M1 and M2 macrophages were observed, including distinct changes in the size, shape and adherence properties of these cells. CB treatment inhibited the viability of A549 and LLC cells in a concentration­dependent manner, with an IC50 of 28.8 and 30.12 ng/ml, respectively. CB at concentrations of <30 ng/ml had no impact on the viability of M0 macrophages and lung epithelial (BEAS­2B) cells. CB influenced the expression of macrophage surface markers, reducing CD206 positivity in M2 macrophages without affecting CD86 expression in M1 macrophages. CB also altered certain expression profiles at the mRNA level, notably downregulating macrophage receptor with collagenous structure (MARCO) expression in M2 macrophages and upregulating tumor necrosis factor­α and interleukin­1ß in both M0 and M1 macrophages. Furthermore, ELISA analyses revealed that CB increased the levels of pro­inflammatory cytokines in M1 macrophages and reduced the levels of anti­inflammatory factors in M2 macrophages. CB treatment also attenuated the migration and invasion capacities of A549 and LLC cells stimulated by M2 macrophage­conditioned medium. Additionally, CB modulated peroxisome proliferator­activated receptor γ (PPARγ) and MARCO expression in M2 macrophages and epithelial­mesenchymal transition in A549 cells, which was partially reversed by rosiglitazone, a PPARγ agonist. Finally, CB and cisplatin treatments hindered tumor growth in vivo, with distinct impacts on animal body weight and macrophage marker expression in tumor tissues. In conclusion, the results of the present study demonstrated that CB exerted complex regulatory effects on macrophage polarization and tumor progression, suggesting its potential as a modulator of the tumor microenvironment and a therapeutic for cancer treatment.


Subject(s)
Bufanolides , Cell Movement , Lung Neoplasms , Neoplasm Invasiveness , Tumor-Associated Macrophages , Bufanolides/pharmacology , Bufanolides/therapeutic use , Humans , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/immunology , Animals , Mice , Cell Movement/drug effects , A549 Cells , Xenograft Model Antitumor Assays , THP-1 Cells , PPAR gamma/metabolism , Macrophage Activation/drug effects , Cell Line, Tumor
3.
Drug Discov Today ; : 104189, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39306235

ABSTRACT

Metabolic and transcriptional reprogramming are crucial hallmarks of carcinogenesis that present exploitable vulnerabilities for the development of targeted anticancer therapies. Through controlling the balance of the cellular methionine (MET) metabolite pool, MET adenosyl transferase 2 alpha (MAT2A) regulates crucial steps during metabolism and the epigenetic control of transcription. The aberrant function of MAT2A has been shown to drive malignant transformation through metabolic addiction, transcriptional rewiring, and immune modulation of the tumor microenvironment (TME). Moreover, MAT2A sustains the survival of 5'-methylthioadenosine phosphorylase (MTAP)-deficient tumors, conferring synthetic lethality to cancers with MTAP loss, a genetic alteration that occurs in ∼15% of all cancers. Thus, the pharmacological inhibition of MAT2A is emerging as a desirable therapeutic strategy to combat tumor growth. Here, we review the latest insights into MAT2A biology, focusing on its roles in both metabolic addiction and gene expression modulation in the TME, outline the current landscape of MAT2A inhibitors, and highlight the most recent clinical developments and opportunities for MAT2A inhibition as a novel anti-tumor therapy.

4.
Mol Biol Rep ; 51(1): 1006, 2024 Sep 22.
Article in English | MEDLINE | ID: mdl-39306810

ABSTRACT

RNA helicases constitute a large family of proteins that share a catalytic core with high structural similarity. DEAD-box (DDX) proteins belong to the largest RNA helicase subfamily, and DDX members have been implicated in all facets of RNA metabolism, from transcription to translation, miRNA maturation, and RNA delay and degradation. Interestingly, an increasing number of studies have suggested a relationship between DDX proteins and cancer initiation and progression. The expression levels of many DDX proteins are elevated in a majority of cancers, and recent studies have demonstrated that some DDX proteins have a potent positive effect on promoting the metastasis of malignant cells. Metastasis is a complex, multistep cascade process that includes local invasion, intravasation and survival in the circulation, arrest at a distant organ site, extravasation and metastatic colonization; here, we review this process and present the suggested functions and mechanisms of DDX family proteins in particular steps of the invasion‒metastasis cascade.


Subject(s)
DEAD-box RNA Helicases , Neoplasm Metastasis , Neoplasms , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Humans , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Animals , Neoplasm Invasiveness , Gene Expression Regulation, Neoplastic
5.
Article in English | MEDLINE | ID: mdl-39310782

ABSTRACT

Background: Timely detection of tumor progression in breast cancer (BC) patients is critical for therapeutic management and prognosis. Plasma exosomal miRNAs are potential liquid biopsy markers for monitoring tumor progression, but their roles in BC remain unclear. Methods: In the TCGA database, we first screened for miRNAs significantly associated with BC progression by comparing miRNA expression in para-carcinoma tissues, stage I BC tissues, and stage II-III BC tissues (n = 1026). Cox regression analyses and survival analyses were performed on candidate miRNAs to explore their prognostic value (n = 848). KEGG, GO, and PPI analyses were used to identify enriched pathways associated with cancer. Finally, the potential of candidate miRNAs as liquid biopsy markers was evaluated by sequencing and analyzing plasma exosomal miRNAs from our collection of 45 BC patients (14 in stage I, 31 in stage II-III) and 5 healthy controls, combined with qRT-PCR analysis to assess the correlation of candidate gene expression in plasma exosomes and BC tissues. Results: We found that only miR-203a-3p was progressively elevated with BC progression and was associated with poor prognosis in the TCGA dataset. Its potential target genes were enriched in pathways related to tumor progression, and the downregulation of 48 of these genes was associated with poor prognosis. More importantly, plasma exosomal miR-203a-3p was also found to gradually increase with BC progression, and its expression was positively correlated with miR-203a-3p in BC tissues. This result suggests that plasma exosomal miR-203a-3p may reflect the expression of miR-203a-3p in tumor tissues and serve as a potential liquid biopsy marker for monitoring BC progressions. Conclusion: We found for the first time that elevated miR-203a-3p was associated with BC progression and poor prognosis. Our findings suggested that plasma exosomal miR-203a-3p could hold potential as a liquid biopsy marker for evaluating BC progression in patients.

6.
Int J Biol Macromol ; 280(Pt 1): 135698, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39288851

ABSTRACT

Circadian clock dominates a variety of biological activities, while its roles and regulatory mechanisms in neuroblastoma (NB), a pediatric extracranial malignancy, still remain largely elusive. Herein, through comprehensive analyses of public datasets, E2F transcription factor 1 (E2F1) and its circular RNA (circE2F1)-encoded 99-amino acid peptide (E2F1-99aa) were identified as vital regulators of circadian machinery essential for purine and pyrimidine biosynthesis during NB progression. Mechanistically, through interaction with Spi-B transcription factor (SPIB), E2F1 was transactivated to up-regulate circadian machinery genes (CRY1 and TIMELESS), resulting in relief of CLOCK/BMAL1-repressed transcription of enzymes (DHODH, PAICS, or PPAT) essential for de novo purine and pyrimidine biosynthesis. The biogenesis of circE2F1 was repressed by eukaryotic translation initiation factor 4A3 (EIF4A3), while E2F1-99aa or its truncated peptide competitively bound to SPIB, leading to decrease in SPIB-E2F1 interaction, circadian machinery and nucleotide biosynthetic gene expression, purine or pyrimidine biosynthesis, tumorigenesis, and aggresiveness of NB cells. In clinical NB cases, high EIF4A3, E2F1 or SPIB expression was correlated with low survival possibility of patients, while lower circE2F1 or E2F1-99aa levels were associated with advanced stages and tumor progression. These results indicate that circE2F1-encoded peptide inhibits circadian machinery essential for nucleotide biosynthesis and tumor progression via repressing SPIB/E2F1 axis.

7.
Discov Oncol ; 15(1): 458, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39292317

ABSTRACT

BACKGROUND: Chondroitin polymerizing factor (CHPF) has been found to be involved in the development of numerous cancers and correlated with poor prognosis. However, its role in the tumorigenesis and development of colorectal cancer (CRC) remains unknown. METHODS: In our research, we explored CHPF expression and clinicopathological characteristics using The Cancer Genome Atlas Program (TCGA), UALCAN, GSE9348, TIMER2.0 and The Human Protein Atlas (HPA) database, in addition, we validated CHPF expression in CRC cell lines by Real-Time Quantitative PCR (qRT-PCR) and Western blot (WB). KM-Plotter, PrognoScan and TCGA were also utilized to verify its prognosis value in CRC. Small-interfer RNA (Si-RNA) was used to perform Cell Counting Kit-8 (CCK8), colony formation, 5-ethynyl-2'-deoxyuridine (EDU), transwell and wound healing assays to testify its function on the tumor progression. Based on TCGA database, we probed potential biological mechanism by which CHPF play its role via clusterProfiler package and GEPIA database and we validated their correlation by WB assay. Moreover, we explored its potential association with the tumor microenvironment (TME), immune infiltrated cells, immune checkpoints, tumor mutation burden (TMB) as well as microsatellite instability (MSI), and investigated immunotherapy sensitivity via Tumor Immune Dysfunction and Exclusion (TIDE) algorithm as well as potentially effective therapeutic drugs via pRRophetic algorithm. RESULTS: CHPF was identified upregulated in CRC tissues and cells, correlated with poor prognosis, and nodal metastasis status, stage and histological subtype. Down-regulation of CHPF inhibited CRC cell proliferation, migration and its expression correlated with wnt pathway key molecules. In addition, high expression of CHPF was positively correlated with TME scores, Regulatory T cells (Tregs) cell infiltration degree, Programmed death-1 (PD-1), MSI-high (MSI-H), and TIDE scores, however, not with TMB. Targeted drug analysis showed that patients with high CHPF expression were more sensitive to telatinib, recaparib, serdemetan, and trametinib. CONCLUSION: CHPF could promote the proliferation and migration of CRC cells and lead to poor prognosis, possibly through wnt pathways as well as changes in TME. Patients with high expression of CHPF had poor efficacy in immunotherapy, which might be related to Tregs cell infiltration. Above all, it might offer more reliable guidance for future immunotherapy.

8.
Genes Chromosomes Cancer ; 63(9): e23267, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39258844

ABSTRACT

AIMS: Identifying molecular alterations in the adenoma and carcinoma components within the same tumor would greatly contribute to understanding the neoplastic progression of early colorectal cancer. METHODS AND RESULTS: We examined somatic copy number alterations (SCNAs) and mutations involved in the adenoma and carcinoma components obtained from the same tumor in 46 cases of microsatellite-stable carcinoma in adenoma, using a genome-wide SNP array and gene mutation panel. In addition, we also performed hierarchical clustering to determine the SCNA frequencies in the tumors, resulting in stratification of the samples into two subgroups according to SCNA frequency. Subgroup 1 was characterized by multiple SCNAs and carcinoma components exclusively, while Subgroup 2 was characterized by a low frequency of SCNAs and both the adenoma and carcinoma components. The numbers of total genes and genes with gains were higher in the carcinoma than adenoma components. The three most frequent gains in both components were located at 1p36.33-1q44, 2p25.3-2q37.3, and 3p26.3-3q29. However, no candidate genes mapped to these regions. APC and KRAS mutations were common in both components, whereas the frequency of TP53 mutations was statistically higher in the carcinoma than adenoma component. However, TP53 mutations were not correlated with SCNA frequency. CONCLUSIONS: We suggest that considerable SCNAs and TP53 mutations are required for progression from adenoma to carcinoma within the same intramucosal neoplastic lesion.


Subject(s)
Adenoma , Colorectal Neoplasms , DNA Copy Number Variations , Mutation , Humans , Adenoma/genetics , Adenoma/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Female , Male , Middle Aged , Aged , Polymorphism, Single Nucleotide , Carcinoma/genetics , Carcinoma/pathology , Adult , Gene Dosage , Tumor Suppressor Protein p53/genetics
9.
Int J Biol Markers ; : 3936155241281076, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39233606

ABSTRACT

BACKGROUND: Exploring effect biomarkers that monitor tumor progression and predict the prognosis could benefit the clinical management of bladder cancer and improve the postoperative life of patients. This study aimed to estimate the function of long non-coding (lnc)RNA RHPN1-AS1 (RHPN1-AS1) in bladder cancer and the potential molecular mechanism. METHODS: The expression of RHPN1-AS1 was evaluated in bladder cancer tissues from 115 patients and cells by polymerase chain reaction. The clinical significance of RHPN1-AS1 was assessed and its effect was also estimated in cell proliferation, migration, and invasion. The underlying molecular mechanism was explored by the dual-luciferase reporter assay. RESULTS: The expression of RHPN1-AS1 was 2.91-fold elevated in bladder cancer, which showed a close correlation with advanced tumor node metastasis stage (P = 0.013) and the presence of lymph node metastasis (P = 0.018). RHPN1-AS1 also served as a poor prognostic indicator (hazard ratio = 2.563) for bladder cancer. The knockdown of RHPN1-AS1 significantly suppressed the proliferation and metastasis ability of bladder cancer cells. Moreover, miR-485-5p was found to mediate the function of RHPN1-AS1 in bladder cancer, which was considered the underlying regulatory mechanism. CONCLUSIONS: RHPN1-AS1 serves as a prognostic biomarker and tumor promoter in bladder cancer via modulating miR-485-5p, which might be a reliable target of bladder cancer therapy.

10.
Mol Biol Rep ; 51(1): 964, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39240390

ABSTRACT

The intricate interplay between Homeobox genes, long non-coding RNAs (lncRNAs), and the development of malignancies represents a rapidly expanding area of research. Specific discernible lncRNAs have been discovered to adeptly regulate HOX gene expression in the context of cancer, providing fresh insights into the molecular mechanisms that govern cancer development and progression. An in-depth comprehension of these intricate associations may pave the way for innovative therapeutic strategies in cancer treatment. The HOX gene family is garnering increasing attention due to its involvement in immune system regulation, interaction with long non-coding RNAs, and tumor progression. Although initially recognized for its crucial role in embryonic development, this comprehensive exploration of the world of HOX genes contributes to our understanding of their diverse functions, potentially leading to immunology, developmental biology, and cancer research discoveries. Thus, the primary objective of this review is to delve into these aspects of HOX gene biology in greater detail, shedding light on their complex functions and potential therapeutic applications.


Subject(s)
Disease Progression , Gene Expression Regulation, Neoplastic , Genes, Homeobox , Immune System , Neoplasms , RNA, Long Noncoding , Humans , Neoplasms/genetics , Neoplasms/immunology , RNA, Long Noncoding/genetics , Genes, Homeobox/genetics , Immune System/metabolism , Animals
11.
Int J Mol Sci ; 25(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39273214

ABSTRACT

Neurofibromatosis type 1 (NF1), an autosomal dominant genetic disorder, is caused by mutations in the NF1 gene, which encodes the GTPase-activating protein neurofibromin. The pathogenesis of the tumor progression of benign plexiform neurofibromas (PNs) and malignant peripheral nerve sheath tumors (MPNSTs) remain unclear. Here, we found that interferon-induced transmembrane protein 1 (IFITM1) was downregulated in MPNST tissues compared to those in PN tissues from patients with NF1. Overexpression of IFITM1 in NF1-associated MPNST cells resulted in a significant decrease in Ras activation (GTP-Ras) and downstream extracellular regulatory kinase 1/2 (ERK1/2) phosphorylation, whereas downregulation of IFITM1 via treatment with small interfering RNA in normal Schwann cells had the opposite result, indicating that expression levels of IFITM1 are closely associated with tumor progression in NF1. Treatment of MPNST cells with interferon-gamma (IFN-γ) significantly augmented the expression of IFITM1, thereby leading to a decrease in Ras and ERK1/2 activation. Despite the small number of patient samples, these findings may potentially provide a new target for chemotherapy in patients with NF1-associated MPNSTs. In xenograft mice injected with MPNST cells, IFN-γ treatment successfully suppressed tumor progression with increased IFITM1 expression and decreased Ras and ERK1/2 activation in tumor tissues. Collectively, these results suggest that IFITM1 is closely involved in MPNST pathogenesis and that IFN-γ is a good candidate for the therapeutic treatment of MPNSTs in NF1.


Subject(s)
Antigens, Differentiation , Nerve Sheath Neoplasms , Neurofibromatosis 1 , Humans , Animals , Neurofibromatosis 1/metabolism , Neurofibromatosis 1/genetics , Neurofibromatosis 1/pathology , Neurofibromatosis 1/complications , Mice , Nerve Sheath Neoplasms/metabolism , Nerve Sheath Neoplasms/genetics , Nerve Sheath Neoplasms/pathology , Cell Line, Tumor , Antigens, Differentiation/metabolism , Antigens, Differentiation/genetics , Down-Regulation , Female , Gene Expression Regulation, Neoplastic , Male , Interferon-gamma/metabolism , MAP Kinase Signaling System , ras Proteins/metabolism , ras Proteins/genetics , Neurofibromin 1/genetics , Neurofibromin 1/metabolism , Adult
12.
Front Immunol ; 15: 1423232, 2024.
Article in English | MEDLINE | ID: mdl-39267734

ABSTRACT

Over the last decades, extracellular vesicles (EVs) have become increasingly popular for their roles in various pathologies, including cancer and neurological and immunological disorders. EVs have been considered for a long time as a means for normal cells to get rid of molecules it no longer needs. It is now well established that EVs play their biological roles also following uptake or by the interaction of EV surface proteins with cellular receptors and membranes. In this review, we summarize the current status of EV production and secretion in glioblastoma, the most aggressive type of glioma associated with high mortality. The main purpose is to shed light on the EVs as a universal mediator of interkingdom and intrakingdom communication in the context of tumor microenvironment heterogeneity. We focus on the immunomodulatory EV functions in glioblastoma-immune cross-talk to enhance immune escape and reprogram tumor-infiltrating immune cells. We critically examine the evidence that GBM-, immune cell-, and microbiome-derived EVs impact local tumor microenvironment and host immune responses, and can enter the circulatory system to disseminate and drive premetastatic niche formation in distant organs. Taking into account the current state of the art in intratumoral microbiome studies, we discuss the emerging role of bacterial EV in glioblastoma and its response to current and future therapies including immunotherapies.


Subject(s)
Brain Neoplasms , Extracellular Vesicles , Glioblastoma , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Glioblastoma/immunology , Glioblastoma/pathology , Extracellular Vesicles/immunology , Extracellular Vesicles/metabolism , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Animals , Tumor Escape , Cell Communication/immunology , Immunotherapy/methods , Microbiota/immunology
13.
Cell Oncol (Dordr) ; 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39222175

ABSTRACT

PURPOSE: Bromodomain-containing protein 7 (BRD7) is downregulated and functions as a tumor suppressor in many types of cancers including breast cancer, and the dysregulation of BRD7 expression is closely related to the development and progression of breast cancer. Whereas little attention has been focused on the regulation of BRD7 protein levels in breast cancer, which needs to be further elucidated. METHODS: The protein stability of BRD7 in breast cancer cells and BRD7 protein level in breast cancer tissues was examined by Western Blotting. The potential E3 ubiquitin ligase proteins that interact with the BRD7 was screened by coimmunoprecipitation combined with mass spectrometry analysis in MDA-MB-231 cells. We proved the interaction between BRD7 and tripartite motif containing 28 (TRIM28) through Co-Immunoprecipitation (Co-IP) and immunofluorescence assays. Co-IP and ubiquitination assay were used to explore the specific binding domain between BRD7 and TRIM28 and the ubiquitination site of BRD7. The effects of TRIM28 on the BRD7 protein stability and ubiquitination level was investigated by qPCR, Western Blot and Co-IP assay. CCK-8 and clone formation assays were carried out to assess the effect of TRIM28 on proliferation ability of breast cancer ells. Transwell assay and wound healing assay were used to investigate the effect of TRIM28 on breast cancer cell invasion and migration. Flow cytometry was used to detect the effect of TRIM28 on cell cycle and apoptosis of breast cancer cells. In addition, we confirmed effect of TRIM28 on tumor growth and metastasis by xenograft and metastatic mouse models. We designed some recovery assays to explore the role of recovery BRD7 in TRIM28-mediated promotion of malignant progression of breast cancer in vivo and in vitro. Finally, the clinical significance of TRIM28 and BRD7 was proved by immunohistochemistry. RESULTS: In this study, we demonstrated that BRD7 was an unstable protein and might be regulated by ubiquitination in breast cancer; furthermore, we found that the Coiled-Coil region of TRIM28 could directly bind to N-terminal of BRD7, and TRIM28 mediates BRD7 ubiquitination and degradation dependent on K21 by acting as a potential E3 ubiquitin ligase. Moreover, TRIM28 promoted cell proliferation, migration, invasion, xenograft tumor growth and metastasis, thus playing an oncogenic role in breast cancer. Furthermore, the restoration of BRD7 expression in breast cancer significantly reversed the promotional effects of TRIM28 on malignant progression both in vitro and in vivo. In addition, TRIM28 was highly expressed in the biopsy tissues of breast cancer, and its expression was negatively correlated with BRD7 expression and positively correlated with TNM stage and poor prognosis of BC patients. CONCLUSIONS: Our findings provide a novel mechanism by which TRIM28 significantly facilitates BRD7 ubiquitination and degradation, thus promoting breast cancer malignant progression. Targeting the TRIM28/BRD7 axis might be a novel potential strategy for the clinical diagnosis and treatment of breast cancer.

14.
Cell Oncol (Dordr) ; 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39222177

ABSTRACT

Telomeric repeat-containing RNAs (TERRA) and telomerase RNA component (TERC) regulate telomerase activity (TA) and thereby contribute to telomere homeostasis by influencing telomere length (TL) and the cell immortality hallmark of cancer cells. Additionally, the non-canonical functions of telomerase reverse transcriptase (TERT) and TERRA appear to be involved in the epithelial-mesenchymal transition (EMT), which is important for cancer progression. However, the relationship between TERRA and patient prognosis has not been fully characterized. In this small-scale study, 68 patients with colorectal cancer (CRC) were evaluated for correlations between telomere biology, proliferation, and EMT gene transcripts and disease outcome. The proliferating cell nuclear antigen (PCNA) and the epithelial splicing regulatory proteins 1 and 2 (ESRP1 and ESRP2) showed a positive correlation with TERRA, while TA and TERRA exhibited an inverse correlation. Consistent with previous findings, the present study revealed higher expression levels of TERT and TERC, and increased TA and TL in CRC tumor tissue compared to adjacent non-tumor tissue. In contrast, lower expression levels of TERRA were observed in tumor tissue. Patients with high TERRA expression and low PCNA levels exhibited favorable overall survival rates compared to individuals with the inverse pattern. Furthermore, TERRA suppressed CRC tumor growth in severe combined immunodeficiency disease (SCID) mice. In conclusion, our study extends previously published research on TERRA suggesting its potential therapeutic role in telomerase-positive CRC.

15.
Cancer Biol Med ; 21(9)2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39177125

ABSTRACT

Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related deaths worldwide. Dendritic cells (DCs) constitute a heterogeneous group of antigen-presenting cells that are important for initiating and regulating both innate and adaptive immune responses. As a crucial component of the immune system, DCs have a pivotal role in the pathogenesis and clinical treatment of CRC. DCs cross-present tumor-related antigens to activate T cells and trigger an antitumor immune response. However, the antitumor immune function of DCs is impaired and immune tolerance is promoted due to the presence of the tumor microenvironment. This review systematically elucidates the specific characteristics and functions of different DC subsets, as well as the role that DCs play in the immune response and tolerance within the CRC microenvironment. Moreover, how DCs contribute to the progression of CRC and potential therapies to enhance antitumor immunity on the basis of existing data are also discussed, which will provide new perspectives and approaches for immunotherapy in patients with CRC.


Subject(s)
Colorectal Neoplasms , Dendritic Cells , Disease Progression , Immunotherapy , Tumor Microenvironment , Humans , Dendritic Cells/immunology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/therapy , Colorectal Neoplasms/pathology , Tumor Microenvironment/immunology , Immunotherapy/methods , Animals , Immune Tolerance
16.
J Hepatocell Carcinoma ; 11: 1641-1652, 2024.
Article in English | MEDLINE | ID: mdl-39206421

ABSTRACT

Background: The prognosis of initially unresectable hepatocellular carcinoma (iuHCC) has been improved by TACE with TKIs and PD-1 inhibitors (TTP). However, the role of timing of tumor progression and and early salvage surgery during TTP therapy remains unclear. Patients and Methods: The data of 151 patients who received TTP for iuHCC consecutively between November 2019 and December 2022 were retrospectively analyzed. The X-Tile software was used to determine the optimal threshold of progression timing to differentiate the post-progression survival (PPS) for patients with tumor progression, ultimately yielding 9 months as the optimal cut-off time. Early tumor progression was defined as patients with tumor recurrence (surgical patients) or progressive disease by mRECIST (nonsurgical patients) within 9 months of initial treatment. Accordingly, early salvage surgery was defined as salvage surgery performed within 9 months of the initial treatment. Results: Out of all the patients, 55 (36.4%) patients showed early tumor progression, 33 (34.4%) showed late tumor progression, and 63 (41.7%) showed non-progression. Patients who experienced early tumor progression had a median PPS of 5.2 months, while those with late tumor progression had a median PPS of 16.8 months (P < 0.001). Multivariable analysis revealed a robust independent correlation between early tumor progression and PPS (HR = 3.279, 95% CI: 1.591-6.756; P = 0.001). Patients who received early salvage surgery showed a considerably lower early tumor progression rate when compared with patients who did not receive early surgery (12.5% vs 42.9%, P = 0.002). The multivariable analysis revealed that early salvage surgery was an independent factor influencing early tumor progression (OR = 0.246; 95% CI: 0.078-0.773; P = 0.016). Conclusion: Early tumor progression is associated with worse PPS in patients with iuHCC receiving TTP therapy. Early salvage surgery can further improve patient outcomes by lowering the incidence of early progression.

17.
Clin Transl Oncol ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39187643

ABSTRACT

Maternal embryonic leucine zipper kinase (MELK), a member of the adenosine monophosphate-activated protein kinase (AMPK) protein family, has been reported to be involved in the regulation of many cellular events. The aberrant expression of MELK is associated with tumorigenesis and malignant progression of various tumors. Moreover, MELK plays an essential role in the regulation of tumor microenvironment (TME), which affects the function of immune cells and the responsiveness to immunotherapy. Currently, small molecule inhibitors targeting MELK have been developed and evaluated in clinical trials. A comprehensive understanding of MELK may provide clues and confidence for subsequent basic research and scientific transformation. In this review, we provide a comprehensive overview of the structural features, molecular biological functions, and critical roles of MELK in tumors and TME, as well as the targeted agents under development for the treatment of tumors and discuss the perspective for MELK-targeted therapies for tumors.

18.
Cell Signal ; 122: 111339, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39121973

ABSTRACT

BACKGROUND: Gastric cancer (GC) is a common cancer worldwide; however, its molecular and pathogenic mechanisms remain unclear. MicroRNAs (miRNAs), which target key genes in GC, are associated with tumor promotion or suppression. Therefore, identifying new miRNA mechanisms could improve the novel diagnostic and therapeutic strategies for patients with GC. METHODS: To explore the biological functions of miR-135b-5p in GC, bioinformatic analysis and in vitro functional assays, including colony formation, wound healing, Transwell, and EdU assays, were used to assess the proliferative, invasive, and migratory capacities of GC cells. Target genes were predicted using RNA-seq and online databases. Dual-luciferase reporter assay, fluorescence in situ hybridization and western blotting were used to confirm the regulatory relationship between miR-135b-5p and CLIP4. The role of CLIP4 in tumor progression was assessed using clinical samples and both in vitro and in vivo assays. The tumor-suppressive mechanism of CLIP4 in GC was elucidated using rescue assays. RESULTS: Our study identified that miR-135b-5p as one of the top three over-expressed miRNAs in GC tissues, with RT-qPCR confirming its upregulation. Functional analysis showed that upregulated miR-135b-5p promoted malignant phenotypes in GC cells. Mechanistic research indicated that miR-135b-5p acts as a cancer promoter by targeting CLIP4. Moreover, our study suggested that CLIP4 exerts its tumor-suppressive function by inhibiting the JAK2/STAT3 signaling pathway. CONCLUSION: This study reveals a novel mechanism by which miR-135b-5p exerts its tumor-promoting functions by targeting CLIP4. The tumor-suppressive function of CLIP4 by inactivating the JAK2/STAT3 pathway is also elucidated. Regulatory mechanism of CLIP4 by miR-135b-5p provides a promising novel therapeutic strategy for GC patients.


Subject(s)
Gene Expression Regulation, Neoplastic , Janus Kinase 2 , MicroRNAs , STAT3 Transcription Factor , Signal Transduction , Stomach Neoplasms , Animals , Humans , Male , Mice , Carcinogenesis/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Janus Kinase 2/metabolism , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/metabolism , MicroRNAs/genetics , rho GTP-Binding Proteins , STAT3 Transcription Factor/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism
19.
Gene ; 930: 148871, 2024 Dec 20.
Article in English | MEDLINE | ID: mdl-39154972

ABSTRACT

BACKGROUND: The prognosis of patients with metastatic osteosarcoma is poor, and the variation of basement membrane genes (BMGs) is associated with cancer metastasis. However, the role of BMGs in osteosarcoma has been poorly studied. METHODS: BMGs were collected and differentially expressed BMGs (DE-BMGs) were found through difference analysis. DE-BMGs were further screened by univariate Cox regression and Lasso regression analyses, and six key BMGs were identified and defined as basement membrane genes signatures (BMGS). Then, BMGS was used to construct the osteosarcoma BMGS risk score system, and the osteosarcoma patients were divided into high- and low-risk groups based on the median risk score. Single-sample gene set enrichment analysis (ssGSEA) and ESTIMATE scores were used to investigate the differences in immune infiltration between the two scoring groups. Additionally, we investigated whether UNC5B affects various features in tumors by bioinformatic analysis and whether UNC5B was involved in multiple biological functions of osteosarcoma cells by wound healing assay, transwell assay, and western blot. RESULTS: The osteosarcoma BMGS risk score reliably predicts the risk of metastasis, patient prognosis, and immunity. UNC5B expression was elevated in osteosarcoma, and correlated with various characteristics such as immune infiltration, prognosis, and drug sensitivity. In vitro assays showed that UNC5B knockdown reduced osteosarcoma cells' capacity for migration and invasion, and EMT process. CONCLUSION: A novel BMGS risk score system that can effectively predict the prognosis of osteosarcoma was developed and validated. The UNC5B gene in this system is one of the key aggressive biomarkers of osteosarcoma.


Subject(s)
Basement Membrane , Biomarkers, Tumor , Bone Neoplasms , Gene Expression Regulation, Neoplastic , Netrin Receptors , Osteosarcoma , Osteosarcoma/genetics , Osteosarcoma/pathology , Humans , Biomarkers, Tumor/genetics , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Prognosis , Basement Membrane/metabolism , Basement Membrane/pathology , Cell Line, Tumor , Netrin Receptors/genetics , Netrin Receptors/metabolism , Male , Female , Cell Movement/genetics
20.
Receptors (Basel) ; 3(2): 182-200, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39175529

ABSTRACT

Estrogen receptor (ER) ß (ERß) is the second ER subtype that mediates the effects of estrogen in target tissues along with ERα that represents a validated biomarker and target for endocrine therapy in breast cancer. ERα was the only known ER subtype until 1996 when the discovery of ERß opened a new chapter in endocrinology and prompted a thorough reevaluation of the estrogen signaling paradigm. Unlike the oncogenic ERα, ERß has been proposed to function as a tumor suppressor in breast cancer, and extensive research is underway to uncover the full spectrum of ERß activities and elucidate its mechanism of action. Recent studies have relied on new transgenic models to capture effects in normal and malignant breast that were not previously detected. They have also benefited from the development of highly specific synthetic ligands that are used to demonstrate distinct mechanisms of gene regulation in cancer. As a result, significant new information about the biology and clinical importance of ERß is now available, which is the focus of discussion in the present article.

SELECTION OF CITATIONS
SEARCH DETAIL