Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Biomimetics (Basel) ; 7(4)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36546945

ABSTRACT

As one of the new intelligent materials, controllable bionic adhesive materials have great application prospects in many fields, such as wearable electronic devices, wall climbing robot systems, and biomedical engineering. Inspired by the microstructure of the newt pad's surface, this paper reports a bionic adhesive surface material with controllable adhesion on dry, wet acrylic, and iron sheet surfaces. The material is prepared by mixing the PDMS matrix with micron carbonyl iron powders (CIPs) and then pouring the mixture into a female mold prepared by Photo-curing 3D Printing for curing. As the mold interior is designed with a two-level microstructure array, the material's surface not only coated a regular hexagonal column array with a side length of 250 µm and a height of 100 µm but also covered seven dome structures with a diameter of 70 µm on each column. In what follows, the adhesion force of the proposed materials contacted three different surfaces are tested with/without magnetic fields. The experimental results show that the MAEs covered with two-level bionic structures(2L-MAE) reported in this paper exhibit a stronger initial adhesion in the three types of surfaces compared to the normal one. Besides, we also found that the magnetic field will noticeably affect their adhesion performance. Generally, the 2L-MAE's adhesion will increase with the external magnetic field. When the contact surface is an iron sheet, the material adhesion will be reduced by the magnetic field.

2.
ACS Appl Mater Interfaces ; 14(34): 39567-39576, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35983650

ABSTRACT

Tuning the surface wettability and adhesion of metallic glasses (MGs) is a promising approach to enrich their engineering applications. In this study, using nanosecond laser ablation in air, hierarchical micro/nanostructures were directly fabricated on a Zr-based MG surface. Following subsequent annealing, the surface exhibited superhydrophobicity (maximum contact angle: 166°, minimum sliding angle: 2°). Furthermore, the superhydrophobic surface could be tuned from low to high surface adhesion force by controlling the laser-ablated spot interval. By analyzing the laser-ablated structures and surface chemical compositions, the superhydrophobicity was related to the formation of hierarchical micro/nanostructures and the absorption of organic compounds with low surface free energy in air, and the change in surface adhesion force was attributed to the difference in surface roughness. The experimental results showed that the superhydrophobic surface with low adhesion force could be used in self-cleaning applications, while the superhydrophobic surfaces with different adhesion forces could be used in no-loss liquid transportation. This study provides an efficient and low-cost way to fabricate superhydrophobic MG surfaces with tunable adhesion, which will broaden the functional applications of MGs.

3.
ACS Appl Mater Interfaces ; 14(31): 36246-36257, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35881172

ABSTRACT

Rose-petal-like superhydrophobic surfaces with strong water adhesion are promising for microdroplet manipulation and lossless droplet transfer. Assembly of self-grown micropillars on shape-memory polymer sheets with their surface adhesion finely tunable was enabled using a picosecond laser microprocessing system in a simple, fast, and large-scale manner. The processing speed of the wettability-finely-tunable superhydrophobic surfaces is up to 0.5 cm2/min, around 50-100 times faster than the conventional lithography methods. By adjusting the micropillar height, diameter, and bending angle, as well as superhydrophobic chemical treatment, the contact angle and adhesive force of water droplets on the micropillar-textured surfaces can be tuned from 117.1° up to 165° and 15.4 up to 200.6 µN, respectively. Theoretical analysis suggests a well-defined wetting-state transition with respect to the micropillar size and provides a clear guideline for microstructure design for achieving a stabilized superhydrophobic region. Droplet handling devices, including liquid handling tweezers and gloves, were fabricated from the micropillar-textured surfaces, and lossless liquid transfer of various liquids among various surfaces was demonstrated using these devices. The superhydrophobic surfaces serve as a microreactor platform to perform and reveal the chemical reaction process under a space-constrained condition. The superhydrophobic surfaces with self-assembled micropillars promise great potential in the fields of lossless droplet transfer, biomedical detection, chemical engineering, and microfluidics.

4.
J Colloid Interface Sci ; 622: 612-624, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35533477

ABSTRACT

HYPOTHESIS: Development of soft conductive materials has enabled the promising future of wearable electronics for motion sensing. However, conventional soft conductive materials typically lack robust adhesive and on-demand removable properties for a target substrate. Therefore, it is believed that the integration of superior mechanical properties, electrical conductivity, and tunable adhesive properties into hydrogels would support and improve their reliable sensing performance. EXPERIMENTS: A hydrogel ionic conductor composed of cationic micelles crosslinked in the polyacrylamide (PAM) network was designed and fabricated. The viscoelastic, mechanical, adhesion, electrical, and antimicrobial properties of the hydrogel were systematically characterized. FINDINGS: The developed ionic conductor possesses a range of desirable properties including mechanical performances such as excellent stretchability (>1100%), toughness, elasticity (recovery from 1000% strain), conductivity (2.72 S·m-1), and antimicrobial property, owing to the multiple non-covalent supramolecular interactions (e.g., hydrogen bonding, hydrophobic, and π-π/cation-π interactions) present in the cross-linked network. Meanwhile, the developed hydrogel is incorporated with different stimuli-responsive polymers and exhibits a tunable adhesive property (triggerable attachment and on-demand removable capabilities) in adapt to the surrounding environmental conditions (i.e., pH, temperature). With all these significant features, the resulting hydrogel ionic conductor serves as a proof-of-concept motion-sensing system with excellent sensitivity and enhanced reliability for the detection of a wide range of motions.


Subject(s)
Anti-Infective Agents , Hydrogels , Adhesives/chemistry , Anti-Infective Agents/pharmacology , Electric Conductivity , Hydrogels/chemistry , Ions/chemistry , Reproducibility of Results
5.
ACS Appl Mater Interfaces ; 14(15): 17995-18003, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35389609

ABSTRACT

Microstructured surfaces with stimuli-responsive performances have aroused great attention in recent years, but it still remains a significant challenge to endow surfaces with precisely controlled morphological changes in microstructures, so as to get the precise control of regional properties (e.g., friction, adhesion). Herein, a kind of carbonyl iron particle-doped shape memory polyurethane micropillar with precisely controllable morphological changes is realized, upon remote near-infrared light (NIR) irradiation. Owing to the reversible transition of micropillars between bent and upright states, the micro-structured surface exhibits precisely controllable low-to-high friction transitions, together with the changes of friction coefficient ranging from ∼0.8 to ∼1.2. Hence, the changes of the surface friction even within an extremely small area can be precisely targeted, under local NIR laser irradiation. Moreover, the water droplet adhesion force of the surface can be reversibly switched between ∼160 and ∼760 µN, demonstrating the application potential in precisely controllable wettability. These features indicate that the smart stimuli-responsive micropillar arrays would be amenable to a variety of applications that require remote, selective, and on-demand responses, such as a refreshable Braille display system, micro-particle motion control, lab-on-a-chip, and microfluidics.

6.
Bioinspir Biomim ; 17(3)2022 03 10.
Article in English | MEDLINE | ID: mdl-35073538

ABSTRACT

Biological soft interfaces often exhibit complex microscale interlocking geometries to ensure sturdy and flexible connections. If needed, the interlocking can rapidly be released on demand leading to an abrupt decrease of interfacial adhesion. Here, inspired by lizard tail autotomy where such apparently tunable interfacial fracture behavior can be observed, we hypothesized an interlocking mechanism between the tail and body based on the muscle-actuated mushroom-shaped microinterlocks along the fracture planes. To mimic the fracture behavior of the lizard tail, we developed a soft bilayer patch that consisted of a dense array of soft hemispherical microstructures in the upper layer acting as mechanical interlocks with the counter body part. The bottom control layer contained a microchannel that allowed to deflect the upper layer when applying the negative pressure, thus mimicking muscle contraction. In the microinterlocked condition, the biomimetic tail demonstrated a 2.7-fold and a three-fold increase in adhesion strength and toughness, respectively, compared to the pneumatically released microinterlocks. Furthermore, as per the computational analysis, the subsurface microchannel in the control layer enabled augmented adhesion by rendering the interface more compliant as a dissipative matrix, decreasing contact opening and strain energy dissipation by 50%. The contrasting features between the microinterlocked and released cases demonstrated a highly tunable adhesion of our biomimetic soft patch. The potential applications of our study are expected in soft robotics and prosthetics.


Subject(s)
Lizards , Animals , Biomimetics , Lizards/physiology , Muscle Contraction , Tail/physiology
7.
Soft Robot ; 9(2): 189-200, 2022 04.
Article in English | MEDLINE | ID: mdl-33481683

ABSTRACT

Within the field of robotics, stiffness tuning technologies have potential for a variety of applications-perhaps most notably for robotic grasping. Many stiffness tuning grippers have been developed that can grasp fragile or irregularly shaped objects without causing damage and while still accommodating large loads. In addition to limiting gripper deformation when lifting an object, increasing gripper stiffness after contact formation improves load sharing at the interface and enhances adhesion. In this study, we present a novel stiffness and adhesion tuning gripper, enabled by the thermally induced phase change of a thermoplastic composite material embedded within a silicone contact pad. The gripper operates by bringing the pad into contact with an object while in its heated, soft state, and then allowing the pad to cool and stiffen to form a strong adhesive bond before lifting the object. Pull-off tests conducted using the gripper show that transitioning from a soft to stiff state during grasping enables up to 6 × increase in adhesion strength. Additionally, a finite element model is developed to simulate the behavior of the gripper. Finally, pick-and-place demonstrations are performed, which highlight the gripper's ability to delicately grasp objects of various shapes, sizes, and weights.


Subject(s)
Robotics , Equipment Design , Hand Strength , Phase Transition , Physical Phenomena
8.
ACS Appl Mater Interfaces ; 13(42): 50451-50460, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34652895

ABSTRACT

Pressure-sensitive adhesives (PSAs) are extensively used in diverse applications such as semiconductor manufacturing, labeling, and healthcare because of their quick and viscoelasticity-driven physical adhesion to dry surfaces. However, most of the existing PSAs normally fail to maintain or even establish adhesion under harsh conditions, particularly underwater, due to the lack of robust chemical functionalities for chemistry-based adhesion. Meanwhile, these PSAs are incapable of altering the adhesion in response to external stimuli, limiting their employment in applications requiring dynamic adhesion. Here, we develop a chemically functionalized PSA (f-PSA) with enhanced and phototunable underwater adhesion by incorporating an underwater adhesion enhancer (i.e., mussel-inspired catechol) and a photoresponsive functionality (i.e., anthracene) into a standard acrylic PSA matrix. The synergistic coupling of viscoelasticity-driven physical adhesion originating from the matrix with catechol-enabled chemical adhesion secures sufficient interfacial molecular interactions and leads to enhanced underwater adhesion. The efficient dimerization of anthracene via light-triggered cycloaddition facilely mediates the viscoelastic property of f-PSA, rendering the phototunable adhesion. We envision that this f-PSA can open up more opportunities for applications such as underwater manipulation, transfer printing, and medical adhesives.

9.
Nanomaterials (Basel) ; 11(6)2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34205225

ABSTRACT

Superhydrophobic coatings with intelligent properties have attracted much attention because of their wide application in many fields. However, there is a limited amount of literature on superhydrophobic coatings whose wettability and adhesion can be adjusted by UV irradiation and calcination at the same time. In this study, amorphous SiO2 microspheres (A-SiO2) and nano-TiO2 particles (N-TiO2) were used to fabricate A-SiO2/N-TiO2 composites by wet grinding, and then, they were modified with polydimethylsiloxane (PDMS) and sprayed onto substrate surfaces to obtain a tunable adhesive superhydrophobic A-SiO2/N-TiO2@PDMS coating. It is worth noting that the wettability and adhesion of the coating to water droplets could be adjusted by UV irradiation and calcination. The mechanisms of the aforementioned phenomena were studied. Moreover, methyl orange solution could be degraded by the coating due to its photocatalysis. The as-prepared coating had good adaptation to different substrates and outdoor environments. Moreover, the surfaces of these coatings exhibited the same liquid repellency towards different droplets. This research provides an environmental strategy to prepare advanced self-cleaning coatings.

10.
Adv Healthc Mater ; 10(19): e2100784, 2021 10.
Article in English | MEDLINE | ID: mdl-34050632

ABSTRACT

Multifunctional hydrogels acting as wound dressing have received extensive attention in soft tissue repair; however, it is still a challenge to develop a non-antibiotic-dependent antibacterial hydrogel that has tunable adhesion and deformation to achieve on-demand removal. Herein, an asymmetric adhesive hydrogel with near-infrared (NIR)-triggered tunable adhesion, self-deformation, and bacterial eradication is designed. The hydrogel is prepared by the crosslinking polymerization of N-isopropylacrylamide and acrylic acid, during the sedimentation of conductive PPy-PDA nanoparticles based on the polymerization of pyrrole (Py) and dopamine (DA). Due to the conversion capacity from NIR light into heat for PPy-PDA NPs, the formed temperature-sensitive hydrogel exhibits tissue adhesive as well as NIR-triggered tunable adhesion and self-deformation property, which can achieve an on-demand dressing refreshing. Systematically in vitro/in vivo antibacterial experiments indicate that the hydrogel shows excellent disinfection capability to both Gram-negative and Gram-positive bacteria. The in vivo experiments in a full-layer cutaneous wound model demonstrate that the hydrogel has a good treatment effect to promote wound healing. Overall, the asymmetric hydrogel with tunable adhesion, self-deformation, conductive, and photothermal antibacterial activity may be a promising candidate to fulfill the functions of adhesion on skin tissue, easy removing on-demand, and accelerating the wound healing process.


Subject(s)
Bacteria , Hydrogels , Anti-Bacterial Agents/pharmacology , Gram-Positive Bacteria , Wound Healing
11.
Adv Sci (Weinh) ; 7(18): 2000772, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32999834

ABSTRACT

Dynamic control of liquid wetting behavior on smart surfaces has attracted considerable concern owing to their important applications in directional motion, confined wetting and selective separation. Despite much progress in this regard, there still remains challenges in dynamic liquid droplet manipulation with fast response, no loss and anti-contamination. Herein, a strategy to achieve dynamic droplet manipulation and transportation on the electric field adaptive superhydrophobic elastomer surface is demonstrated. The superhydrophobic elastomer surface is fabricated by combining the micro/nanostructured clusters of hydrophobic TiO2 nanoparticles with the elastomer film, on which the micro/nanostructure can be dynamically and reversibly tuned by electric field due to the electric field adaptive deformation of elastomer film. Accordingly, fast and reversible transition of wetting state between Cassie state and Wenzel state and tunable adhesion on the surface via electric field induced morphology transformation can be obtained. Moreover, the motion states of the surface droplets can be controlled dynamically and precisely, such as jumping and pinning, catching and releasing, and controllable liquid transfer without loss and contamination. Thus this work would open the avenue for dynamic liquid manipulation and transportation, and gear up the broad application prospects in liquid transfer, selective separation, anti-fog, anti-ice, microfluidics devices, etc.

12.
Natl Sci Rev ; 7(2): 296-304, 2020 Feb.
Article in English | MEDLINE | ID: mdl-34692045

ABSTRACT

Transfer printing, as an important assembly technique, has attracted much attention due to its valuable merits to develop novel forms of electronics such as stretchable inorganic electronics requiring the heterogeneous integration of inorganic materials with soft elastomers. Here, we report on a laser-driven programmable non-contact transfer printing technique via a simple yet robust design of active elastomeric microstructured stamp that features cavities filled with air and embedded under the contacting surface, a micro-patterned surface membrane that encapsulates the air cavities and a metal layer on the inner-cavity surfaces serving as the laser-absorbing layer. The micro-patterned surface membrane can be inflated dynamically to control the interfacial adhesion, which can be switched from strong state to weak state by more than three orders of magnitude by local laser heating of the air in the cavity with a temperature increase below 100°C. Theoretical and experimental studies reveal the fundamental aspects of the design and fabrication of the active elastomeric microstructured stamp and the operation of non-contact transfer printing. Demonstrations in the programmable transfer printing of micro-scale silicon platelets and micro-scale LED chips onto various challenging receivers illustrate the extraordinary capabilities for deterministic assembly that are difficult to address by existing printing schemes, thereby creating engineering opportunities in areas requiring the heterogeneous integration of diverse materials such as curvilinear electronics and MicroLED displays.

13.
Micromachines (Basel) ; 9(10)2018 Oct 18.
Article in English | MEDLINE | ID: mdl-30424462

ABSTRACT

With the rapid development of bio-integrated devices and tissue adhesives, tunable adhesion to soft biological tissues started gaining momentum. Strong adhesion is desirable when used to efficiently transfer vital signals or as wound dressing and tissue repair, whereas weak adhesion is needed for easy removal, and it is also the essential step for enabling repeatable use. Both the physical and chemical properties (e.g., moisture level, surface roughness, compliance, and surface chemistry) vary drastically from the skin to internal organ surfaces. Therefore, it is important to strategically design the adhesive for specific applications. Inspired largely by the remarkable adhesion properties found in several animal species, effective strategies such as structural design and novel material synthesis were explored to yield adhesives to match or even outperform their natural counterparts. In this mini-review, we provide a brief overview of the recent development of tunable adhesives, with a focus on their applications toward bio-integrated devices and tissue adhesives.

14.
ACS Appl Mater Interfaces ; 10(7): 6747-6754, 2018 Feb 21.
Article in English | MEDLINE | ID: mdl-29359914

ABSTRACT

Spatially controlled layouts of elasticity can provide enhanced adhesion over homogeneous systems. Emerging techniques in kirigami, where designed cuts in materials impart highly tunable stiffness and geometry, offer an intriguing approach to create well-defined layouts of prescribed elastic regions. Here, we show that kirigami-inspired structures at interfaces provide a new mechanism to spatially control and enhance adhesion strength while providing directional characteristics for smart interfaces. We use kirigami-inspired cuts to define stiff and compliant regions, where above a critical, material-defined length scale, bending rigidity and contact width can be tuned to enhance adhesive force capacity by a factor of ∼100 across a spatially patterned adhesive sheet. The directional nature of these designs also imparts anisotropic responses, where peeling in different directions results in anisotropic adhesion ratios of ∼10. Experimental results are well-supported by theoretical predictions in which the bending rigidity and contact width of kirigami-inspired structures and interconnects control the adhesive capacity. These new interfacial structures and design criteria provide diverse routes for advanced adhesive functionality, including spatially controlled systems, wearable kirigami-inspired electronics, and anisotropic kirigami-inspired bandages that enable strong adhesive capacity while maintaining easy release.

15.
J Colloid Interface Sci ; 505: 49-58, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28558292

ABSTRACT

Superhydrophobic membranes with tunable adhesion have attracted intense interests for various engineering applications. In this work, superhydrophobic sustainable poly (lactic acid) (PLA) porous membrane with tunable adhesive force from 101µN to 29µN was successfully fabricated via one-step phase separation method. The incorporation of Perfluoro-1-decene (PFD) into the PLLA/PDLA membrane via the in situ polymerization can facilely tune the PLLA/PDLA stereocomplex crystallization during phase inversion, which consequently caused the unique morphology blooming evolution from bud to full-blown state. The resulted membrane showed tunable pore size, porosity, surface area, surface roughness and superhydrophobicity, which enabled the membrane with controlled-release of oil soluble drugs.


Subject(s)
Cod Liver Oil/chemistry , Membranes, Artificial , Polyesters/chemistry , Polymers/chemistry , Adhesiveness , Delayed-Action Preparations , Hydrophobic and Hydrophilic Interactions
16.
ACS Appl Mater Interfaces ; 9(21): 18322-18327, 2017 May 31.
Article in English | MEDLINE | ID: mdl-28440627

ABSTRACT

Interfaces with enhanced and tunable adhesion have applications in a broad range of fields, including microtransfer printing of semiconductors, grippers on robots, and component handling in manufacturing. Here, a composite post structure with a stiff core and a compliant shell is used to achieve an enhanced adhesion under normal loading. Loading the composite structure in shear significantly reduces the effective adhesion strength, thus providing tunability. The composite posts can be used as stamps in microtransfer printing processes or as building blocks of large-area tunable surfaces composed of arrays of posts. Experimental measurements on composite posts with diameters of 200 µm show a peak adhesion strength of 1.5 MPa, a 9 times enhancement in adhesion relative to a homogeneous post under normal loading, and also that the adhesion can be reduced by nearly a factor of 7 through the application of shear. The adhesion behavior of these composite structures was also examined using finite element analysis, which provides an understanding of the mechanics of detachment. Finally, the composite adhesive posts were used as stamps in a microtransfer printing process in which 5 µm thick silicon membranes were retrieved and subsequently printed.

17.
ACS Appl Mater Interfaces ; 9(1): 1036-1044, 2017 Jan 11.
Article in English | MEDLINE | ID: mdl-27997118

ABSTRACT

The benefits of synthetic fibrillar dry adhesives for temporary and reversible attachment to hard objects with smooth surfaces have been successfully demonstrated in previous studies. However, surface roughness induces a dramatic reduction in pull-off stresses and necessarily requires revised design concepts. Toward this aim, we introduce cylindrical two-phase single pillars, which are composed of a mechanically stiff stalk and a soft tip layer. Adhesion to smooth and rough substrates is shown to exceed that of conventional pillar structures. The adhesion characteristics can be tuned by varying the thickness of the soft tip layer, the ratio of the Young's moduli and the curvature of the interface between the two phases. For rough substrates, adhesion values similar to those obtained on smooth substrates were achieved. Our concept of composite pillars overcomes current practical limitations caused by surface roughness and opens up fields of application where roughness is omnipresent.

18.
ACS Appl Mater Interfaces ; 7(36): 20410-7, 2015 Sep 16.
Article in English | MEDLINE | ID: mdl-26307917

ABSTRACT

Controlling liquid adhesion on special wetting surface is significant in many practical applications. In this paper, an easy self-assembled monolayer technique was advanced to modify nanostructured copper substrates, and tunable adhesive underwater superoleophobic surfaces were prepared. The surface adhesion can be regulated by simply varying the chain length of the n-alkanoic acids, and the tunable adhesive properties can be ascribed to the combined action of surfaces nanostructures and related variation in surface chemistry. Meanwhile, the tunable ability is universal, and the oil-adhesion controllability is suitable to various oils including silicon oil, n-hexane, and chloroform. Finally, on the basis of the special tunable adhesive properties, some applications of our surfaces including droplet storage, transfer, mixing, and so on are also discussed. The paper offers a novel and simple method to prepare underwater superoleophobic surfaces with regulated adhesion, which can potentially be applied in numerous fields, for instance, biodetection, microreactors, and microfluidic devices.


Subject(s)
Copper/chemistry , Oils/chemistry , Adsorption , Chloroform/chemistry , Hexanes/chemistry , Hydrophobic and Hydrophilic Interactions , Microscopy, Atomic Force , Nanostructures/chemistry , Nanostructures/ultrastructure , Silicon/chemistry , Surface Properties , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL