Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.064
Filter
1.
Inflammation ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088122

ABSTRACT

The cGAS-STING-mediated antiviral response plays an important role in the defense against DNA virus infection. Tripartite motif protein 35 (TRIM35), an E3 ubiquitin ligase, was identified as a positive regulator of RLR-mediated antiviral signaling in our previous study, but the effect of TRIM35 on the cGAS-STING signaling pathway has not been elucidated. Herein, we showed that TRIM35 negatively regulates the cGAS-STING signaling pathway by directly targeting STING. TRIM35 overexpression significantly inhibited the cGAMP-triggered phosphorylation of TBK1 and IRF3, attenuating IFN-ß expression and the downstream antiviral response. Mechanistically, TRIM35 colocalized and directly interacted with STING in the cytoplasm. TRM35 removed K63-linked ubiquitin from STING through the C36 and C44 sites in the RING domain, which impaired the interaction of STING with TBK1 or IKKε. In addition, we demonstrated that the RING domain is a key region for the antiviral effects of TIRM35. These results collectively indicate that TRIM35 negatively regulates type I interferon (IFN-I) production by targeting and deubiquitinating STING. TRIM35 may be a potential therapeutic target for controlling viral infection.

2.
EMBO Rep ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112792

ABSTRACT

VE-cadherin is a major component of the cell adhesion machinery which provides integrity and plasticity of the barrier function of endothelial junctions. Here, we analyze whether ubiquitination of VE-cadherin is involved in the regulation of the endothelial barrier in inflammation in vivo. We show that histamine and thrombin stimulate ubiquitination of VE-cadherin in HUVEC, which is completely blocked if the two lysine residues K626 and K633 are replaced by arginine. Similarly, these mutations block histamine-induced endocytosis of VE-cadherin. We describe two knock-in mouse lines with endogenous VE-cadherin being replaced by either a VE-cadherin K626/633R or a VE-cadherin KallR mutant, where all seven lysine residues are mutated. Mutant mice are viable, healthy and fertile with normal expression levels of junctional VE-cadherin. Histamine- or LPS-induced vascular permeability in the skin or lung of both of these mutant mice are clearly and similarly reduced in comparison to WT mice. Additionally, we detect a role of K626/633 for lysosomal targeting. Collectively, our findings identify ubiquitination of VE-cadherin as important for the induction of vascular permeability in the inflamed skin and lung.

3.
Front Genet ; 15: 1431564, 2024.
Article in English | MEDLINE | ID: mdl-39100077

ABSTRACT

TRIM28 (tripartite motif protein 28) was initially believed to be a transcription inhibitor that plays an important role in DNA damage repair (DDR) and in maintaining cancer cellular stemness. As research has continued to deepen, several studies have found that TRIM28 not only has ubiquitin E3 ligase activity to promote degradation of substrates, but also can promote SUMOylation of substrates. Although TRIM28 is highly expressed in various cancer tissues and has oncogenic effects, there are still a few studies indicating that TRIM28 has certain anticancer effects. Additionally, TRIM28 is subject to complex upstream regulation. In this review, we have elaborated on the structure and regulation of TRIM28. At the same time, highlighting the functional role of TRIM28 in tumor development and emphasizing its impact on cancer treatment provides a new direction for future clinical antitumor treatment.

4.
FEBS Lett ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39108012

ABSTRACT

Hematopoietic stem cells (HSC) maintain blood production throughout life. Nevertheless, HSC functionality deteriorates upon physiological aging leading to the increased prevalence of haematological diseases and hematopoietic malignancies in the elderly. Deubiquitinating enzymes (DUBs) by reverting protein ubiquitination ensure proper proteostasis, a key process in HSC maintenance and fitness.

5.
Int J Biol Sci ; 20(10): 3802-3822, 2024.
Article in English | MEDLINE | ID: mdl-39113708

ABSTRACT

Chronic tissue injury triggers changes in the cell type and microenvironment at the site of injury and eventually fibrosis develops. Current research suggests that fibrosis is a highly dynamic and reversible process, which means that human intervention after fibrosis has occurred has the potential to slow down or cure fibrosis. The ubiquitin system regulates the biological functions of specific proteins involved in the development of fibrosis, and researchers have designed small molecule drugs to treat fibrotic diseases on this basis, but their therapeutic effects are still limited. With the development of molecular biology technology, researchers have found that non-coding RNA (ncRNA) can interact with the ubiquitin system to jointly regulate the development of fibrosis. More in-depth explorations of the interaction between ncRNA and ubiquitin system will provide new ideas for the clinical treatment of fibrotic diseases.


Subject(s)
Fibrosis , RNA, Untranslated , Ubiquitin , Humans , RNA, Untranslated/metabolism , RNA, Untranslated/genetics , Ubiquitin/metabolism , Fibrosis/metabolism , Animals
6.
Am J Cancer Res ; 14(7): 3404-3418, 2024.
Article in English | MEDLINE | ID: mdl-39113857

ABSTRACT

Prostate cancer is a major contributor to male mortality worldwide. In this study, we revealed that Ankyrin Repeat and SOCS Box Containing 1 (ASB1) expression was significantly decreased in prostate cancer tissues, correlating strongly with poor patient prognosis. Notably, the group with low ASB1 expression exhibited an increased proportion of M2 macrophages and showed resistance to immune checkpoint inhibitors and cisplatin, but remained sensitive to androgen-receptor-targeting drug bicalutamide. Silencing ASB1 enhanced prostate cancer cell proliferation, clonogenicity, and migration, whereas its overexpression exerted the opposite effects. Through quantitative mass spectrometry interactome analysis, we identified 37 novel proteins interacting with ASB1, including CHCHD3. Subsequent experiments including co-immunoprecipitation, cycloheximide treatment, and ubiquitination assays, revealed that ASB1 interacts with CHCHD3, promoting its degradation via K48-linked ubiquitination. Cell rescue experiments further demonstrated that ASB1 inhibits prostate cancer cell through the CHCHD3/reactive oxygen species (ROS) pathway. Taken together, our study indicated that ASB1 functions as a tumor suppressor by inhibiting CHCHD3/ROS signaling, thereby playing a vital part in prevention of prostate cancer proliferation, clonogenicity, and migration.

7.
Virology ; 599: 110199, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39116646

ABSTRACT

Hepatitis B virus is one of the leading causes behind the neoplastic transformation of liver tissue and associated mortality. Despite the availability of many therapies and vaccines, the pathogenic landscape of the virus remains elusive; urging the development of novel strategies based on the fundamental infectious and transformative modalities of the virus-host interactome. Ubiquitination is a widely observed post-translational modification of several proteins, which either regulates the proteins' turnover or impacts their functionalities. In recent years, ample amount of literature has accumulated regarding the ubiquitination dynamics of the HBV proteins as well as the host proteins during HBV infection and carcinogenesis; with direct and detailed characterization of the involvement of HBV in these processes. Interestingly, while many of these ubiquitination events restrict HBV life cycle and carcinogenesis, several others promote the emergence of hepatocarcinoma by putting the virus in an advantageous position. This review sums up the snowballing literature on ubiquitination-mediated regulation of the host-HBV crosstalk, with special emphasis on its influence on the establishment and progression of hepatocellular carcinoma on a molecular level. With the advent of cutting-edge ubiquitination-targeted therapeutic approaches, the findings emanating from this review may potentiate the identification of novel anti-HBV targets for the formulation of novel anticancer strategies to control the HBV-induced hepato-carcinogenic process on a global scale.

8.
Mol Cell ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39116872

ABSTRACT

Proteasome is essential for cell survival, and proteasome inhibition induces proteasomal gene transcription via the activated endoplasmic-reticulum-associated transcription factor nuclear factor erythroid 2-like 1 (Nrf1/NFE2L1). Nrf1 activation requires proteolytic cleavage by DDI2 and N-glycan removal by NGLY1. We previously showed that Nrf1 ubiquitination by SKP1-CUL1-F-box (SCF)FBS2/FBXO6, an N-glycan-recognizing E3 ubiquitin ligase, impairs its activation, although the molecular mechanism remained elusive. Here, we show that SCFFBS2 cooperates with the RING-between-RING (RBR)-type E3 ligase ARIH1 to ubiquitinate Nrf1 through oxyester bonds in human cells. Endo-ß-N-acetylglucosaminidase (ENGASE) generates asparagine-linked N-acetyl glucosamine (N-GlcNAc) residues from N-glycans, and N-GlcNAc residues on Nrf1 served as acceptor sites for SCFFBS2-ARIH1-mediated ubiquitination. We reconstituted the polyubiquitination of N-GlcNAc and serine/threonine residues on glycopeptides and found that the RBR-specific E2 enzyme UBE2L3 is required for the assembly of atypical ubiquitin chains on Nrf1. The atypical ubiquitin chains inhibited DDI2-mediated activation. The present results identify an unconventional ubiquitination pathway that inhibits Nrf1 activation.

9.
Front Mol Neurosci ; 17: 1446686, 2024.
Article in English | MEDLINE | ID: mdl-39135741

ABSTRACT

Mendelian disorders, arising from pathogenic variations within single genetic loci, often manifest as neurodevelopmental disorders (NDDs), affecting a significant portion of the pediatric population worldwide. These disorders are marked by atypical brain development, intellectual disabilities, and various associated phenotypic traits. Genetic testing aids in clinical diagnoses, but inconclusive results can prolong confirmation processes. Recent focus on epigenetic dysregulation has led to the discovery of DNA methylation signatures, or episignatures, associated with NDDs, accelerating diagnostic precision. Notably, TRIP12 and USP7, genes involved in the ubiquitination pathway, exhibit specific episignatures. Understanding the roles of these genes within the ubiquitination pathway sheds light on their potential influence on episignature formation. While TRIP12 acts as an E3 ligase, USP7 functions as a deubiquitinase, presenting contrasting roles within ubiquitination. Comparison of phenotypic traits in patients with pathogenic variations in these genes reveals both distinctions and commonalities, offering insights into underlying pathophysiological mechanisms. This review contextualizes the roles of TRIP12 and USP7 within the ubiquitination pathway, their influence on episignature formation, and the potential implications for NDD pathogenesis. Understanding these intricate relationships may unveil novel therapeutic targets and diagnostic strategies for NDDs.

10.
Int J Mol Sci ; 25(15)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39125654

ABSTRACT

Ubiquitin modification and alternative polyadenylation play crucial roles in the onset and progression of cancer. Hence, this study aims to comprehensively and deeply understand gene regulation and associated biological processes in lung adenocarcinoma (LUAD) by integrating both mechanisms. Alternative polyadenylation (APA)-related E3 ubiquitin ligases in LUAD were identified through multiple databases, and the association between selected genetic loci influencing gene expression (apaQTL-SNPs) and LUAD risk were evaluated through the GWAS database of the Female Lung Cancer Consortium in Asia (FLCCA). Subsequently, the interaction between RNF213 and ZBTB20, as well as their functional mechanisms in LUAD, were investigated using bioinformatics analysis, Western blot, co-immunoprecipitation, and colony formation experiments. A total of five apaQTL-SNPs (rs41301932, rs4494603, rs9890400, rs56066320, and rs41301932), located on RNF213, were significantly associated with LUAD risk (p < 0.05), and they inhibit tumor growth through ubiquitin-mediated degradation of ZBTB20.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Polyadenylation , Polymorphism, Single Nucleotide , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Polyadenylation/genetics , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Female , Ubiquitin/metabolism , Ubiquitin/genetics , Genome-Wide Association Study , Cell Line, Tumor , Transcription Factors/genetics , Transcription Factors/metabolism
11.
J Adv Res ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39128702

ABSTRACT

INTRODUCTION: Cetuximab (CTX) is an effective targeted drug for the treatment of metastatic colorectal cancer, but it is effective only in patients with wild-type KRAS genes. Even in this subset of patients, the sensitivity of CTX in patients with right hemi-colon cancer is much lower than that in patients with left hemi-colon cancer. This significantly limits its clinical application. Therefore, further elucidation of the underlying molecular mechanisms is needed. N-myc downstream-regulated gene 1 (NDRG1) plays an important role in solid tumor invasion and metastasis, but whether it can influence CTX sensitivity has not been thoroughly investigated. OBJECTIVE: Our study aimed to identify a novel mechanism by which NDRG1 affects CTX sensitivity. METHODS: Through mass spectrometry analysis of our previously constructed CTX-resistant RKO and HCT116 cells, we found that the signal transducer and activator of transcription-1 (Stat1) might be a potential target of NDRG1. By knocking out NDRG1 or/and Stat1 genes, we then applied the loss-of-function experiments to explore the regulatory relationship between NDRG1 and Stat1 and their roles in the cell cycle, epithelial-mesenchymal transition (EMT), and the sensitivity to CTX in these two colorectal cancer (CRC) cells. Finally, we used the nude-mouse transplanted tumor model and human CRC samples to verify the expression of NDRG1 and Stat1 and their impact on CTX sensitivity in vivo. RESULTS: Stat1 was upregulated in CTX-resistant cells, whereas NDRG1 was downregulated. Mechanically, NDRG1 was inversely correlated with Stat1 expression. It suppressed CRC cell proliferation, migration, and invasion, and promoted apoptosis and epithelial-mesenchymal transition (EMT) by inhibiting Stat1. In addition, NDRG1 directly interacted with Stat1 and promoted Smurf1-induced Stat1 ubiquitination. Importantly, this novel NDRG1-dependent regulatory loop also enhanced CTX sensitivity both in vitro and in vivo. CONCLUSION: Our study revealed that NDRG1 enhanced the sensitivity to Cetuximab by inhibiting Stat1 expression and promoting its ubiquitination in colorectal cancer, elucidating NDRG1 might be a potential therapeutic target for refractory CTX-resistant CRC tumors. But its clinical value still needs to be validated in a larger sample size as well as a different genetic background.

12.
Free Radic Biol Med ; 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39134162

ABSTRACT

The systemic inflammatory response syndrome (SIRS) represents a self-amplifying cascade of inflammatory reactions and pathophysiological states triggered by infectious or non-infectious factors. The identification of disease targets and differential proteins in the liver (the unique and important immune organ) of SIRS mice treated with the lead compound D1 was conducted using the Genecards database and proteomic analysis, respectively. Subsequently, NOTCH1 was identified as the potential hub target via an intersection analysis between the aforementioned differentially expressed proteins and disease targets. Based on our previous research on the structure-activity relationship, we designed and synthesized a series of SIRS-related derivatives, wherein butyl, halogen, and ester groups were incorporated into benzophenone, aiming at exploring the anti-inflammatory protective action from the perspective of macrophage polarization. Notably, these derivatives exhibited a direct binding capability to the O-glucosylation site (SER496) or its vicinities (such as SER492, VAL485) of NOTCH1 using docking, SPR, DARTS, and CETSA techniques. Mechanistically, derivative D6 exerted anti-inflammatory effects via the dual NOTCH pathway. Firstly, it could inhibit NOTCH1 nuclear transcriptional activity, attenuate the interaction between NICD and RBPJK, concurrently suppress NF-κB and NLRP3 inflammasome (NLRP3, ASC, and cleaved CASP1) activation, and promote NICD (NOTCH1 active fragments) ubiquitination metabolism (the nuclear transcriptional pathway). Secondly, it might possess the ability to increase PGC1α level, subsequently, enhance ATP and MMP levels, mitigate ROS production, increase mitochondrial numbers, and ameliorate mitochondrial inflammatory damage (the mitochondrial pathway). Importantly, the activator Jagged1 could effectively reverse the aforementioned effects, while the inhibitor DAPT exhibited a synergistic effect, suggesting that the nuclear transcriptional regulation and mitochondrial regulation were both in a NOTCH1-dependent manner. Subsequently, it effectively alleviated the inflammatory response and preserved organ function as evidenced by up-regulating M2-type macrophage-related anti-inflammatory cytokines (IL10, TGFß, CD206, and ARG1) and down-regulating M1-type macrophage-related pro-inflammatory cytokines (NO, IL6, IL18, iNOS, TNFα, CD86, and IL1ß). In a word, derivative D6 modulated macrophage polarization and effectively mitigated SIRS by targeting inhibition of the dual NOTCH pathway.

13.
J Gen Virol ; 105(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-39136113

ABSTRACT

Porcine deltacoronavirus (PDCoV), an enteropathogenic coronavirus, causes severe watery diarrhoea, dehydration and high mortality in piglets, which has the potential for cross-species transmission in recent years. Growth factor receptor-bound protein 2 (Grb2) is a bridging protein that can couple cell surface receptors with intracellular signal transduction events. Here, we investigated the reciprocal regulation between Grb2 and PDCoV. It is found that Grb2 regulates PDCoV infection and promotes IFN-ß production through activating Raf/MEK/ERK/STAT3 pathway signalling in PDCoV-infected swine testis cells to suppress viral replication. PDCoV N is capable of interacting with Grb2. The proline-rich motifs in the N- or C-terminal region of PDCoV N were critical for the interaction between PDCoV-N and Grb2. Except for Deltacoronavirus PDCoV N, the Alphacoronavirus PEDV N protein could interact with Grb2 and affect the regulation of PEDV replication, while the N protein of Betacoronavirus PHEV and Gammacoronavirus AIBV could not interact with Grb2. PDCoV N promotes Grb2 degradation by K48- and K63-linked ubiquitin-proteasome pathways. Overexpression of PDCoV N impaired the Grb2-mediated activated effect on the Raf/MEK/ERK/STAT3 signal pathway. Thus, our study reveals a novel mechanism of how host protein Grb2 protein regulates viral replication and how PDCoV N escaped natural immunity by interacting with Grb2.


Subject(s)
GRB2 Adaptor Protein , Nucleocapsid Proteins , Virus Replication , Animals , Swine , GRB2 Adaptor Protein/metabolism , GRB2 Adaptor Protein/genetics , Nucleocapsid Proteins/metabolism , Nucleocapsid Proteins/genetics , Swine Diseases/virology , Swine Diseases/metabolism , Deltacoronavirus/metabolism , Deltacoronavirus/genetics , MAP Kinase Signaling System , Coronavirus Infections/virology , Coronavirus Infections/metabolism , Humans , Signal Transduction , Cell Line , raf Kinases/metabolism , raf Kinases/genetics , HEK293 Cells
14.
Exp Neurol ; : 114916, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39122166

ABSTRACT

To investigate the changes in neuronal lipid droplet (LD) accumulation and lipid metabolism after acute spinal cord injury (SCI), we established a rat model of compressive SCI. Oil Red O staining, BODIPY 493/503 staining, and 4-hydroxynonenal immunofluorescence staining were performed to determine overall LD accumulation, neuronal LD accumulation, and lipid peroxidation. Lipidomics was conducted to identify the lipid components in the local SCI microenvironment. We focused on the expression and regulation of perilipin 2 (PLIN2) and knocked down PLIN2 in vivo by intrathecal injection of adeno-associated virus 9-synapsin-short-hairpin RNA-PLIN2 (AAV9-SYN-shPlin2). Motor function was assessed using the Basso-Beattie-Bresnahan score. Proteins that interacted with PLIN2 were screened by immunoprecipitation (IP) and qualitative shotgun proteomics, and confirmed by co-IP. A ubiquitination assay was performed to validate whether ubiquitination was involved in PLIN2 degradation. Oil Red O staining indicated that LDs steadily accumulated after SCI. Fluorescent staining indicated the accumulation of LDs in neurons with increased lipid peroxidation. Lipidomics revealed significant changes in lipid components after SCI. PLIN2 expression significantly increased following SCI, and knockdown of PLIN2 using AAV9-SYN-Plin2 reduced neuronal LD accumulation. This intervention improved the neuronal survival and motor function of injured rats. IP and qualitative shotgun proteomics identified tripartite motif-containing protein 21 (TRIM21) as a direct binding protein of PLIN2, and this interaction was confirmed by co-IP in vitro and immunofluorescence staining in vivo. By manipulating TRIM21 expression, we found it was negatively correlated with PLIN2 expression. In conclusion, PLIN2 is involved in neuronal LD accumulation following SCI. TRIM21 mediated the ubiquitination and degradation of PLIN2 in neurons. Inhibition of PLIN2 enhanced the recovery of motor function after SCI.

15.
Dig Dis Sci ; 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39126452

ABSTRACT

BACKGROUND: α-Crystallin B (CRYAB) is a chaperone member of the HSPs family that protects proteins with which it interacts from degradation. This study aims to investigate the effect of CRYAB on the progression of colorectal cancer (CRC) and its underlying mechanism. METHODS: CRYAB expression was evaluated in CRC tissues. Cell growth was tested by CCK-8 kit. Lipid reactive oxygen species (ROS) assays, lipid peroxidation assays, glutathione assays were used to assess the degree of cellular lipid peroxidation of CRC cells. The potential signal pathways of CRYAB were analyzed and verified by Western blot (WB) and immunoprecipitation (Co-IP). RESULTS: CRYAB expression was elevated in CRC tissues and exhibited sensitivity and specificity in predicting CRC. Functionally, knockdown of CRYAB induced ferroptosis in CRC cells. Mechanistically, CRYAB binding prevented from ß-catenin interacting with TRIM55, leading to an increase in ß-catenin protein stability, which desensitized CRC cells to ferroptosis and ultimately accelerated cancer progression. CONCLUSIONS: Targeting CRYAB might be a promising strategy to enhance ferroptosis and improve the efficacy of CRC therapy.

16.
FEBS J ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110129

ABSTRACT

CCAAT/enhancer-binding protein α (C/EBPα), a key myeloid transcription factor, drives myeloid differentiation from blast cells by regulating the expression of granulocyte colony stimulating factor receptor and C/EBPε as required for promoting granulocyte differentiation. Here, we show that serine/threonine-protein kinase NLK, also known as Nemo-like kinase, physically associates with C/EBPα and phosphorylates it at multiple sites, including Ser21, Thr226, Thr230 and S234, leading to its ubiquitin-mediated degradation. Individual phospho-point mutants of C/EBPα could be phosphorylated by NLK, but a mutant with all phosphorylatable residues replaced by alanine resisted phosphorylation and degradation by NLK, as did the single point mutants. Furthermore, although ectopic expression of NLK enhanced phosphorylation of C/EBPα levels, it markedly inhibited total C/EBPα protein levels. Conversely, NLK depletion inhibited endogenous C/EBPα phosphorylation but enhanced its total protein levels in several acute myeloid leukemia (AML) cell lines and in peripheral blood mononuclear cells isolated from number of AML patient samples. Importantly, NLK depletion in peripheral blood mononuclear cells from primary AML patients not only restored C/EBPα protein levels, but also induced myeloid differentiation, suggesting that NLK could be therapeutically targeted to restore C/EBPα to resolve differentiation arrest in AML.

17.
J Nanobiotechnology ; 22(1): 464, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095755

ABSTRACT

BACKGROUND: Doxorubicin (DOX) is a first-line chemotherapeutic drug for various malignancies that causes cardiotoxicity. Plant-derived exosome-like nanovesicles (P-ELNs) are growing as novel therapeutic agents. Here, we investigated the protective effects in DOX cardiotoxicity of ELNs from Momordica charantia L. (MC-ELNs), a medicinal plant with antioxidant activity. RESULTS: We isolated MC-ELNs using ultracentrifugation and characterized them with canonical mammalian extracellular vesicles features. In vivo studies proved that MC-ELNs ameliorated DOX cardiotoxicity with enhanced cardiac function and myocardial structure. In vitro assays revealed that MC-ELNs promoted cell survival, diminished reactive oxygen species, and protected mitochondrial integrity in DOX-treated H9c2 cells. We found that DOX treatment decreased the protein level of p62 through ubiquitin-dependent degradation pathway in H9c2 and NRVM cells. However, MC-ELNs suppressed DOX-induced p62 ubiquitination degradation, and the recovered p62 bound with Keap1 promoting Nrf2 nuclear translocation and the expressions of downstream gene HO-1. Furthermore, both the knockdown of Nrf2 and the inhibition of p62-Keap1 interaction abrogated the cardioprotective effect of MC-ELNs. CONCLUSIONS: Our findings demonstrated the therapeutic beneficials of MC-ELNs via increasing p62 protein stability, shedding light on preventive approaches for DOX cardiotoxicity.


Subject(s)
Cardiotoxicity , Doxorubicin , Exosomes , Momordica charantia , NF-E2-Related Factor 2 , Animals , Cardiotoxicity/prevention & control , Cardiotoxicity/metabolism , Momordica charantia/chemistry , Exosomes/metabolism , Rats , NF-E2-Related Factor 2/metabolism , Cell Line , Kelch-Like ECH-Associated Protein 1/metabolism , Reactive Oxygen Species/metabolism , Male , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Cell Survival/drug effects , Rats, Sprague-Dawley , Sequestosome-1 Protein/metabolism
18.
Epigenetics ; 19(1): 2381849, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39109527

ABSTRACT

Gametogenetin binding protein 2 (GGNBP2) was indispensable in normal spermatids for transformation into mature spermatozoa in mice, and when Gametogenetin binding protein 2 is bound to BRCC36 and RAD51, the complex participates in repairing DNA double-strand breaks (DSB) during the meiotic progression of spermatocytes. Ggnbp2 knockout resulted in the up-regulation of H2AK119ubi and down-regulation of H2BK120ubi in GC-2 cells (mouse spermatogonia-derived cell line) and postnatal day 18 testis lysate. Our results also demonstrated that Gametogenetin binding protein 2 inducedASXL1 to activate the deubiquitinating enzyme BAP1 in deubiquitinating H2A, while Gametogenetin binding protein 2 knockout disrupted the interaction between ASXL1 and BAP1, resulting in BAP1 localization change. Furthermore, the Gametogenetin binding protein 2 deletion reduced H2B ubiquitination by affecting E2 enzymes and E3 ligase binding. Gametogenetin binding protein 2 regulated H2A and H2B ubiquitination levels and controlled H3K27 and H3K79 methylation by PRC2 subunits and histone H3K79 methyltransferase. Altogether, our results suggest that Ggnbp2 knockout increased DNA damage response by promoting H2A ubiquitination and H3K27trimethylation (H3K27me3) and reduced nucleosome stability by decreasing H2B ubiquitination and H3K79 dimethylation (H3K79me2), revealing new mechanisms of epigenetic phenomenon during spermatogenesis. Gametogenetin binding protein 2 seems critical in regulating histone modification and chromatin structure in spermatogenesis.


Subject(s)
Histones , Spermatogenesis , Ubiquitination , Male , Animals , Spermatogenesis/genetics , Histones/metabolism , Mice , Methylation , Mice, Knockout , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Cell Line
19.
Plants (Basel) ; 13(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39124158

ABSTRACT

Post-translational modifications (PTMs) of proteins are involved in numerous biological processes, including signal transduction, cell cycle regulation, growth and development, and stress responses. WRKY transcription factors (TFs) play significant roles in plant growth, development, and responses to both biotic and abiotic stresses, making them one of the largest and most vital TF families in plants. Recent studies have increasingly highlighted the importance of PTMs of WRKY TFs in various life processes. This review focuses on the recent advancements in understanding the phosphorylation and ubiquitination of WRKY TFs, particularly their roles in resistance to biotic and abiotic stresses and in plant growth and development. Future research directions and prospects in this field are also discussed.

20.
Heliyon ; 10(13): e34032, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39091932

ABSTRACT

Thyroid cancer is the most common malignant tumor of the endocrine system, and evidence suggests that post-translational modifications (PTMs) and epigenetic alterations play an important role in its development. Recently, there has been increasing evidence linking dysregulation of ubiquitinating enzymes and deubiquitinases with thyroid cancer. This review aims to summarize our current understanding of the role of ubiquitination-modifying enzymes in thyroid cancer, including their regulation of oncogenic pathways and oncogenic proteins. The role of ubiquitination-modifying enzymes in thyroid cancer development and progression requires further study, which will provide new insights into thyroid cancer prevention, treatment and the development of novel agents.

SELECTION OF CITATIONS
SEARCH DETAIL