Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Drug Resist Updat ; 76: 101118, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39094301

ABSTRACT

AIMS: Resistance to targeted therapy is one of the critical obstacles in cancer management. Resistance to trastuzumab frequently develops in the treatment for HER2+ cancers. The role of protein tyrosine phosphatases (PTPs) in trastuzumab resistance is not well understood. In this study, we aim to identify pivotal PTPs affecting trastuzumab resistance and devise a novel counteracting strategy. METHODS: Four public datasets were used to screen PTP candidates in relation to trastuzumab responsiveness in HER2+ breast cancer. Tyrosine kinase (TK) arrays were used to identify kinases that linked to protein tyrosine phosphate receptor type O (PTPRO)-enhanced trastuzumab sensitivity. The efficacy of small activating RNA (saRNA) in trastuzumab-conjugated silica nanoparticles was tested for PTPRO upregulation and resistance mitigation in cell models, a transgenic mouse model, and human cancer cell line-derived xenograft models. RESULTS: PTPRO was identified as the key PTP which influences trastuzumab responsiveness and patient survival. PTPRO de-phosphorated several TKs, including the previously overlooked substrate ERBB3, thereby inhibiting multiple oncogenic pathways associated with drug resistance. Notably, PTPRO, previously deemed "undruggable," was effectively upregulated by saRNA-loaded nanoparticles. The upregulated PTPRO simultaneously inhibited ERBB3, ERBB2, and downstream SRC signaling pathways, thereby counteracting trastuzumab resistance. CONCLUSIONS: Antibody-conjugated saRNA represents an innovative approach for targeting "undruggable" PTPs.


Subject(s)
Breast Neoplasms , Drug Resistance, Neoplasm , Nanoparticles , Receptor, ErbB-2 , Trastuzumab , Xenograft Model Antitumor Assays , Trastuzumab/pharmacology , Humans , Drug Resistance, Neoplasm/drug effects , Animals , Mice , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/antagonists & inhibitors , Cell Line, Tumor , Nanoparticles/chemistry , Mice, Transgenic , Antineoplastic Agents, Immunological/pharmacology , Receptor-Like Protein Tyrosine Phosphatases, Class 3/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 3/antagonists & inhibitors , Receptor-Like Protein Tyrosine Phosphatases, Class 3/genetics , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL