Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Neuroimage ; 300: 120789, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39159702

ABSTRACT

Interpersonal emotion regulation (IER) is a crucial ability for effectively recovering from negative emotions through social interaction. It has been emphasized that the empathy network, cognitive control network, and affective generation network sustain the deployment of IER. However, the temporal dynamics of functional connectivity among these networks of IER remains unclear. This study utilized IER task-fMRI and sliding window approach to examine both the stationary and dynamic functional connectivity (dFC) of IER. Fifty-five healthy participants were recruited for the present study. Through clustering analysis, four distinct brain states were identified in dFC. State 1 demonstrated situation modification stage of IER, with strong connectivity between affective generation and visual networks. State 2 exhibited pronounced connectivity between empathy network and both cognitive control and affective generation networks, reflecting the empathy stage of IER. Next, a 'top-down' pattern is observed between the connectivity of cognitive control and affective generation networks during the cognitive control stage of state 3. The affective response modulation stage of state 4 mainly involved connections between empathy and affective generation networks. Specifically, the degree centrality of the left middle temporal gyrus (MTG) mediated the association between one's IER tendency and the regulatory effects in state 2. The betweenness centrality of the left ventrolateral prefrontal cortex (VLPFC) mediated the association between one's IER efficiency and the regulatory effects in state 3. Altogether, these findings revealed that dynamic connectivity transitions among empathy, cognitive control, and affective generation networks, with the left VLPFC and MTG playing dominant roles, evident across the IER processing.

2.
J Psychiatr Res ; 175: 170-182, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735262

ABSTRACT

BACKGROUND: Ending a romantic relationship is one of the most painful losses an adult experience. Neuroimaging studies suggest that there is a neuropsychological link between breakup experiences and bereaved individuals, and that specific prefrontal regions are involved. The aim of this study was to determine whether enhancement of left DLPFC and right VLPFC activity with a novel intensified anodal transcranial direct current stimulation protocol reduces core symptoms of love trauma syndrome (LTS) and improves treatment-related variables. METHODS: In this randomized, sham-controlled, single-blind parallel trial, we assessed the efficacy of an intensified anodal stimulation protocol (20 min, twice-daily sessions with 20 min intervals, 5 consecutive days) with two montages (left DLPFC vs right VLPFC) to reduce love trauma symptoms. 36 participants with love trauma syndrome were randomized in three tDCS condition (left DLPFC, right VLPFC, sham stimulation). LTS symptoms, treatment-related outcome variables (depressive state, anxiety, emotion regulation, positive and negative affect), and cognitive functions were assessed before, right after, and one month after intervention. RESULTS: Both DLPFC and VLPFC protocols significantly reduced LTS symptoms, and improved depressive state and anxiety after the intervention, as compared to the sham group. The improving effect of the DLPFC protocol on love trauma syndrome was significantly larger than that of the VLPFC protocol. For emotion regulation and positive and negative affect, improved regulation of emotions and positive affect and reduced negative affect were revealed after intervention in the two real stimulation conditions compared to the sham. For cognitive functions, no significant difference was observed between the groups, but again a positive effect of intervention within groups in the real stimulation conditions (DLPFC and VLPFC) was found for most components of the cognitive tasks. CONCLUSIONS: Enhancement of left DLPFC and right VLPFC activity with intensified stimulation improves LTS symptoms and treatment-related variables. For LTS symptoms, DLPFC stimulation was more efficient than VLPFC stimulation., For the other variables, no significant difference was observed between these two stimulation groups. These promising results require replication in larger trials.


Subject(s)
Prefrontal Cortex , Transcranial Direct Current Stimulation , Humans , Adult , Female , Single-Blind Method , Male , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiopathology , Young Adult , Dorsolateral Prefrontal Cortex/physiology , Love , Psychological Trauma/therapy , Psychological Trauma/physiopathology , Middle Aged , Outcome Assessment, Health Care , Emotional Regulation/physiology
3.
J Affect Disord ; 338: 74-82, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37269884

ABSTRACT

BACKGROUND: Implicit emotion regulation (ER), a form of ER, is essential for protecting mental health in the process of social interaction. Both the ventrolateral prefrontal cortex (VLPFC) and the dorsolateral prefrontal cortex (DLPFC) have been shown to be involved in ER processes, including explicit ER of social pain, but whether they play a role in implicit ER is unclear. METHODS: We investigated whether anodal high-definition transcranial direct current stimulation (HD-tDCS) of the right VLPFC (rVLPFC) or the right DLPFC (rDLPFC) influences implicit ER. In total, 63 healthy participants completed an emotion priming task, which measures the implicit ER of social pain, before and after receiving active or sham HD-tDCS (2 mA for 20 min, 10 consecutive days). Event-related potentials (ERPs) were recorded during task performance. RESULTS: Combined with the results of the behavioral and electrophysiological indices indicated that stimulation of both the rVLPFC and the rDLPFC by anodic HD-tDCS could significantly reduce the affective responses caused by social exclusion. The further results also suggested that rDLPFC activation may contribute to promoting the involvement of early cognitive resources in the implicit ER process of social pain, thus helping to reduce the subjective negative experience of individuals. LIMITATIONS: There were no dynamic interactive emotional stimuli to induce social pain, and only static images of social exclusion were used. CONCLUSION: Our study provides cognitive and neurological evidence that expands our knowledge of the role of the rDLPFC and the rVLPFC in social ER. It can also serve as a reference for targeted intervention of implicit ER in social pain.


Subject(s)
Emotional Regulation , Transcranial Direct Current Stimulation , Humans , Transcranial Direct Current Stimulation/methods , Prefrontal Cortex/physiology , Emotions/physiology , Pain
4.
Brain Sci ; 12(3)2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35326305

ABSTRACT

Cognitive conflict effects are well characterized within unimodality. However, little is known about cross-modal conflicts and their neural bases. This study characterizes the two types of visual and auditory cross-modal conflicts through working memory tasks and brain activities. The participants consisted of 31 healthy, right-handed, young male adults. The Paced Auditory Serial Addition Test (PASAT) and the Paced Visual Serial Addition Test (PVSAT) were performed under distractor and no distractor conditions. Distractor conditions comprised two conditions in which either the PASAT or PVSAT was the target task, and the other was used as a distractor stimulus. Additionally, oxygenated hemoglobin (Oxy-Hb) concentration changes in the frontoparietal regions were measured during tasks. The results showed significantly lower PASAT performance under distractor conditions than under no distractor conditions, but not in the PVSAT. Oxy-Hb changes in the bilateral ventrolateral prefrontal cortex (VLPFC) and inferior parietal cortex (IPC) significantly increased in the PASAT with distractor compared with no distractor conditions, but not in the PVSAT. Furthermore, there were significant positive correlations between Δtask performance accuracy and ΔOxy-Hb in the bilateral IPC only in the PASAT. Visual cross-modal conflict significantly impairs auditory task performance, and bilateral VLPFC and IPC are key regions in inhibiting visual cross-modal distractors.

5.
Brain Sci ; 12(2)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35203963

ABSTRACT

Aggressive behaviour is at the basis of many harms in society, such as violent crime. The efforts to explain, study, and possibly reduce aggression span various disciplines, including neuroscience. The specific brain networks which are involved in the modulation of aggressive behaviour include cortical asymmetry and brain areas such as the dorsolateral prefrontal cortex (DLPFC), the ventrolateral prefrontal cortex (VLPFC), and the ventromedial prefrontal cortex (VMPFC). Recent non-invasive brain stimulation (NIBS) research suggests that both transcranial direct current stimulation (tDCS) and continuous theta burst stimulation (cTBS) can play a role in the modulation of aggressive behaviour by directly changing brain activity. In this review, we systematically explore and discuss 11 experimental studies that aimed to modulate aggressive behaviour or self-reported aggression using NIBS. Out of these 11 studies, nine significantly up- or downregulated aggression by using tDCS or cTBS targeting the DLPFC, VLPFC or VMPFC. The potential applications of these findings span both the clinical and the forensic psychological domains. However, the results are limited by the methodological heterogeneity in the aggression measures used across the studies, and by their generally small sample sizes. Future research should consider improving the localization and specificity of NIBS by employing neuro-navigational instruments and standardized scoring methods.

6.
Brain Stimul ; 13(2): 302-309, 2020.
Article in English | MEDLINE | ID: mdl-31676301

ABSTRACT

BACKGROUND: The prefrontal cortex is crucial for top-down regulation of aggression, but the neural underpinnings of aggression are still poorly understood. Past research showed the transcranial direct current stimulation (tDCS) over the ventrolateral prefrontal cortex (VLPFC) modulates aggression following exposure to risk factors for aggression (e.g., social exclusion, violent media). Although frustration is a key risk factor for aggression, no study to date has examined the modulatory role of tDCS on frustration-induced aggression. OBJECTIVES: By exploring the VLPFC involvement in frustration-aggression link, we tested the hypothesis that the anodal tDCS over right and left VLPFC modulates frustration-induced aggression. We also explored whether tDCS interacts with gender to influence frustration-induced aggression. METHODS: 90 healthy participants (45 men) were randomly assigned to receive anodal or sham tDCS over the right or left VLPFC before being frustrated by an accomplice. To increase reliability, several tasks were used to measure aggression. RESULTS: We found that anodal tDCS over the left VLPFC, compared to sham stimulation, increased aggression. Unexpectedly, no main effect was found following tDCS of right VLPFC. However, we also found a significant interaction between gender and tDCS, showing that males were more aggressive than females following sham stimulation, but females became as aggressive as males following active tDCS. CONCLUSION: Overall, these results shed light on the neural basis of frustration-induced aggression, providing further evidence for the involvement of VLPFC in modulating aggressive responses, and on gender differences in aggression. Future research should further investigate the role of stimulating the VLPFC on frustration-induced aggression.


Subject(s)
Aggression , Frustration , Prefrontal Cortex/physiology , Transcranial Direct Current Stimulation/methods , Adolescent , Adult , Humans , Male
7.
J Psychiatr Res ; 91: 26-35, 2017 08.
Article in English | MEDLINE | ID: mdl-28292650

ABSTRACT

While the efficacy and tolerability of electroconvulsive therapy (ECT) for depression has been well established, the acute effects of ECT on brain function remain unclear. Particularly, although cognitive dysfunction has been consistently observed after ECT, little is known about the extent and time course of ECT-induced brain functional changes, as observed during cognitive tasks. Considering the acute antidepressant effects of ECT on depression, aberrant brain functional responses during cognitive tasks in patients with depression may improve immediately after this treatment. To clarify changes in cortical functional responses to cognitive tasks following ECT, we used task-related functional near-infrared spectroscopy (NIRS) to assess 30 patients with major depressive disorder or bipolar depression before and after an ECT series, as well as 108 healthy controls. Prior to ECT, patients exhibited significantly smaller [oxy-Hb] values in the bilateral frontal cortex during a letter verbal fluency task (VFT) compared with healthy controls. We found a significant increase in [oxy-Hb] values in the bilateral frontal cortex during the VFT after ECT in the patient group. A decrease in depression severity was significantly correlated with an increase in [oxy-Hb] values in the right ventrolateral prefrontal cortex following ECT. This is the first NIRS study to evaluate brain functional changes before vs. after ECT. Impaired functional responses, observed during the cognitive task in depressed patients, were normalized after ECT. Thus, recovery from abnormal functional responses to cognitive tasks in the frontal brain regions may be associated with the acute therapeutic effects of ECT for depression.


Subject(s)
Depression/therapy , Electroconvulsive Therapy/methods , Frontal Lobe/physiopathology , Recovery of Function/physiology , Temporal Lobe/physiopathology , Aged , Brain Mapping , Electroencephalography , Female , Frontal Lobe/metabolism , Hemoglobins/metabolism , Humans , Longitudinal Studies , Male , Mental Status Schedule , Middle Aged , Neuropsychological Tests , Spectroscopy, Near-Infrared/methods , Statistics as Topic , Temporal Lobe/metabolism
8.
Neuroimage ; 148: 219-229, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28089676

ABSTRACT

The amygdala is one of the most extensively studied human brain regions and undisputedly plays a central role in many psychiatric disorders. However, an outstanding question is whether connectivity of amygdala subregions, specifically the centromedial (CM), laterobasal (LB) and superficial (SF) nuclei, are modulated by brain state (i.e., task vs. rest). Here, using a multimodal approach, we directly compared meta-analytic connectivity modeling (MACM) and specific co-activation likelihood estimation (SCALE)-derived estimates of CM, LB and SF task-based co-activation to the functional connectivity of these nuclei as assessed by resting state fmri (rs-fmri). Finally, using a preexisting resting state functional connectivity-derived cortical parcellation, we examined both MACM and rs-fmri amygdala subregion connectivity with 17 large-scale networks, to explicitly address how the amygdala interacts with other large-scale neural networks. Analyses revealed strong differentiation of CM, LB and SF connectivity patterns with other brain regions, both in task-dependent and task-independent contexts. All three regions, however, showed convergent connectivity with the right ventrolateral prefrontal cortex (VLPFC) that was not driven by high base rate levels of activation. Similar patterns of connectivity across rs-fmri and MACM were observed for each subregion, suggesting a similar network architecture of amygdala connectivity with the rest of the brain across tasks and resting state for each subregion, that may be modified in the context of specific task demands. These findings support animal models that posit a parallel model of amygdala functioning, but importantly, also modify this position to suggest integrative processing in the amygdala.


Subject(s)
Amygdala/diagnostic imaging , Amygdala/physiology , Neural Pathways/diagnostic imaging , Neural Pathways/physiology , Adult , Brain Mapping , Cerebral Cortex/diagnostic imaging , Female , Humans , Likelihood Functions , Magnetic Resonance Imaging , Male , Models, Neurological , Multimodal Imaging , Nerve Net/diagnostic imaging , Nerve Net/physiology , Neuroimaging , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiology , Rest
9.
J Anxiety Disord ; 32: 81-8, 2015 May.
Article in English | MEDLINE | ID: mdl-25890287

ABSTRACT

Functional neuroimaging studies have consistently demonstrated abnormalities in fear and threat processing systems in youth with anxiety disorders; however, the structural neuroanatomy of these systems in children and adolescents remains largely unknown. Using voxel-based morphometry (VBM), gray matter volumes were compared between 38 medication-free patients with anxiety disorders (generalized anxiety disorder; social phobia; separation anxiety disorder, mean age: 14.4±3 years) and 27 comparison subjects (mean age: 14.8±4 years). Compared to healthy subjects, youth with anxiety disorders had larger gray matter volumes in the dorsal anterior cingulate and had decreased gray matter volumes in the inferior frontal gyrus (ventrolateral prefrontal cortex), postcentral gyrus, and cuneus/precuneus. These data suggest the presence of structural differences in regions previously implicated in the processing and regulation of fear in pediatric patients with anxiety disorders.


Subject(s)
Anxiety Disorders/pathology , Gray Matter/pathology , Adolescent , Case-Control Studies , Child , Cohort Studies , Fear/physiology , Female , Frontal Lobe/pathology , Gyrus Cinguli/pathology , Humans , Magnetic Resonance Imaging , Male , Organ Size , Phobic Disorders/pathology , Prefrontal Cortex/pathology
SELECTION OF CITATIONS
SEARCH DETAIL