Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Neurosci ; 44(15)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38453468

ABSTRACT

The comorbidity of chronic pain and depression poses tremendous challenges for the treatment of either one because they exacerbate each other with unknown mechanisms. As the posterior insular cortex (PIC) integrates multiple somatosensory and emotional information and is implicated in either chronic pain or depression, we hypothesize that the PIC and its projections may contribute to the pathophysiology of comorbid chronic pain and depression. We show that PIC neurons were readily activated by mechanical, thermal, aversive, and stressful and appetitive stimulation in naive and neuropathic pain male mice subjected to spared nerve injury (SNI). Optogenetic activation of PIC neurons induced hyperalgesia and conditioned place aversion in naive mice, whereas inhibition of these neurons led to analgesia, conditioned place preference (CPP), and antidepressant effect in both naive and SNI mice. Combining neuronal tracing, optogenetics, and electrophysiological techniques, we found that the monosynaptic glutamatergic projections from the PIC to the basolateral amygdala (BLA) and the ventromedial nucleus (VM) of the thalamus mimicked PIC neurons in pain modulation in naive mice; in SNI mice, both projections were enhanced accompanied by hyperactivity of PIC, BLA, and VM neurons and inhibition of these projections led to analgesia, CPP, and antidepressant-like effect. The present study suggests that potentiation of the PIC→BLA and PIC→VM projections may be important pathophysiological bases for hyperalgesia and depression-like behavior in neuropathic pain and reversing the potentiation may be a promising therapeutic strategy for comorbid chronic pain and depression.


Subject(s)
Chronic Pain , Neuralgia , Mice , Male , Animals , Hyperalgesia , Chronic Pain/complications , Depression , Insular Cortex , Amygdala/metabolism , Neuralgia/metabolism , Comorbidity , Thalamus , Antidepressive Agents/therapeutic use
2.
Brain Res ; 1542: 85-92, 2014 Jan 13.
Article in English | MEDLINE | ID: mdl-24161824

ABSTRACT

Prolyl carboxypeptidase (PRCP), a serine protease, is widely expressed in the body including liver, lung, kidney and brain, with a variety of known substrates such as plasma prekallikrein, bradykinin, angiotensins II and III, and α-MSH, suggesting its role in the processing of tissue-specific substrates. In the brain, PRCP has been shown to inactivate hypothalamic α-MSH, thus modulating melanocortin signaling in the control of energy metabolism. While its expression pattern has been reported in the hypothalamus, little is known on the distribution of PRCP throughout the mouse brain. This study was undertaken to determine PRCP expression in the mouse brain. Radioactive in situ hybridization was performed to determine endogenous PRCP mRNA expression. In addition, using a gene-trap mouse model for PRCP deletion, X-gal staining was performed to further determine PRCP distribution. Results from both approaches showed that PRCP gene is broadly expressed in the brain.


Subject(s)
Brain/enzymology , Carboxypeptidases/genetics , Carboxypeptidases/metabolism , RNA, Messenger/metabolism , Animals , Galactosides/metabolism , Gene Expression , Indoles/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL