Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 215
Filter
1.
Proc Biol Sci ; 291(2028): 20241293, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39137888

ABSTRACT

The separation of closely related terrestrial or freshwater species by vast marine barriers represents a biogeographical riddle. Such cases can provide evidence for vicariance, a process whereby ancient geological events like continental rifting divided ancestral geographical ranges. With an evolutionary history extending tens of millions of years, freshwater ecology, and distribution encompassing widely separated southern landmasses, osteoglossid bonytongue fishes are a textbook case of vicariance attributed to Mesozoic fragmentation of the Gondwanan supercontinent. Largely overlooked fossils complicate the clean narrative invoked for extant species by recording occurrences on additional continents and in marine settings. Here, we present a new total-evidence phylogenetic hypothesis for bonytongue fishes combined with quantitative models of range evolution and show that the last common ancestor of extant osteoglossids was likely marine, and that the group colonized freshwater settings at least four times when both extant and extinct lineages are considered. The correspondence between extant osteoglossid relationships and patterns of continental fragmentation therefore represents a striking example of biogeographical pseudocongruence. Contrary to arguments against vicariance hypotheses that rely only on temporal or phylogenetic evidence, these results provide direct palaeontological support for enhanced dispersal ability early in the history of a group with widely separated distributions in the modern day.


Subject(s)
Animal Distribution , Biological Evolution , Fishes , Fossils , Phylogeny , Animals , Fossils/anatomy & histology , Fishes/anatomy & histology
2.
Mol Phylogenet Evol ; 200: 108176, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39128794

ABSTRACT

Silkmoths (Bombycidae) have a disjunct distribution predominantly in the Southern Hemisphere and Asia. Here we reconstruct the phylogenetic history of the family to test competing hypotheses on their origin and assess how vicariance and long-distance dispersal shaped their current distribution. We sequenced up to 5,074 base pairs from six loci (COI, EF1-α, wgl, CAD, GAPDH, and RpS5) to infer the historical biogeography of Bombycidae. The multilocus dataset covering 20 genera (80 %) of the family, including 17 genera (94 %) of Bombycinae and 3 genera (43 %) of Epiinae, was used to estimate phylogenetic patterns, divergence times and biogeographic reconstruction. Dating estimates extrapolated from secondary calibration sources indicate the Bombycidae stem-group originated approximately 64 Mya. The subfamilies Epiinae (South America) and Bombycinae (Australia, Asia, East Palaearctic, and Africa) were reciprocally monophyletic, diverging at c. 56 Mya (95 % credibility interval: 66-46 Mya). The 'basal' lineage of Bombycinae - Gastridiota + Elachyophtalma - split from the rest of Bombycinae c. 53 Mya (95 % credibility interval: 63-43 Mya). Gastridiota is a monobasic genus with a relictual distribution in subtropical forests of eastern Australia. The Oriental and African genera comprised a monophyletic group: the Oriental region was inferred to have been colonized from a long-distance dispersal event from Australia to South-East Asia c. 53 Mya or possibly later (c. 36-26 Mya); Africa was subsequently colonized by dispersal from Asia c. 16 Mya (95 % credibility interval: 21-12 Mya). Based on the strongly supported phylogenetic relationships and estimates of divergence times, we conclude that Bombycidae had its origin in the fragment of Southern Gondwana consisting of Australia, Antarctica and South America during the Paleocene. The disjunction between South America (Epiinae) and Australia (Bombycinae) is best explained by vicariance in the Eocene, whereas the disjunct distribution in Asia and Africa is best explained by more recent dispersal events.


Subject(s)
Phylogeny , Phylogeography , Animals , Bayes Theorem , Sequence Analysis, DNA , DNA, Mitochondrial/genetics , Moths/genetics , Moths/classification , Evolution, Molecular , Models, Genetic
3.
Article in English | MEDLINE | ID: mdl-39032008

ABSTRACT

Biogeographers have often been puzzled by several unusual features in the Juan Fernández Islands (JFI) biota. These include the very high endemism density, multiple endemics that are older than the current islands, close biogeographic affinities with the central and West Pacific, and affinities with the diverse Coast Range of central Chile. We review aspects of biogeography in the JFI and the Coast Range in light of recent geological studies. These have examined the mantle below the East Pacific and South America, and have produced radical, new ideas on tectonic history. A long-lived, intraoceanic archipelago ~9000 km long is now thought to have existed in the East Pacific (passing between the JFI hotspot and mainland Chile) until the mid-Cretaceous. At this time, South America, which was moving westward with the opening of the Atlantic, collided with the archipelago. The assumption that the JFI biota is no older than its current islands is questionable, as taxa would have survived on prior islands produced at the JFI hotspot. We propose a new interpretation of evolution in the region based on tectonics rather than on island age and incorporating the following factors: the newly described East Pacific Archipelago; a long history for the JFI hotspot; metapopulation dynamics, including metapopulation vicariance; and formation of the Humboldt Current in the Cretaceous. The model accounts for many distinctive features of the JFI and Coast Range biota.

4.
Mol Phylogenet Evol ; 199: 108146, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38986756

ABSTRACT

The contributions of divergent selection and spatial isolation to population divergence are among the main focuses of evolutionary biology. Here we employed integrated methods to explore genomic divergence, demographic history and calling-song differentiation in the cicada Subpsaltria yangi, and compared the genotype and calling-song phenotype of different populations occurring in distinct habitats. Our results indicate that this species comprises four main lineages with unique sets of haplotypes and calling-song structure, which are distinctly associated with geographic isolation and habitats. The populations occurring on the Loess Plateau underwent substantial expansion at âˆ¼0.130-0.115 Ma during the Last Interglacial. Geographic distance and host shift between pairs of populations predict genomic divergence, with geographic distance and acoustical signal together explaining > 60% of the divergence among populations. Differences in calling songs could reflect adaptation of populations to novel environments with different host plants, habitats and predators, which may have resulted from neutral divergence at the molecular level followed by natural selection. Geomorphic barriers and climate oscillations associated with Pleistocene glaciation may have been primary factors in shaping the population genetic structure of this species. Ultimately this may couple with a host shift in leading toward allopatric speciation in S. yangi, i.e., isolation by distance. Our findings improve understanding of divergence in allopatry of herbivorous insects, and may inform future studies on the molecular mechanisms underlying the association between genetic/phenotypic changes and adaptation of insects to novel niches and host plants.


Subject(s)
Genetics, Population , Hemiptera , Animals , Hemiptera/genetics , Hemiptera/classification , Ecosystem , Selection, Genetic , Genetic Speciation , Haplotypes , Phylogeography , Vocalization, Animal , Genetic Variation
5.
J Hum Evol ; 191: 103547, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781711

ABSTRACT

Historical biogeography provides crucial insights into understanding the evolutionary history of hominins. We applied maximum-likelihood and biogeographical stochastic mapping to infer the ancestral ranges of hominins and estimate the frequency of biogeographical events. These events were inferred using two time-calibrated phylogenetic trees that differ in the position of Australopithecus sediba. Results suggest that regardless of which phylogeny was selected, Northcentral Africa was the preferred ancestral region for the ancestor of the Homo-Pan clade, as well as the ancestor of Sahelanthropus and later hominins. The northern and middle part of eastern Africa was the preferred ancestral region for several clades originating at subsequent deep nodes of the trees (∼5-4 Ma). The choice of tree topology had one important effect on results: whether hominin ancestors appearing after ∼4 Ma were widespread or endemic. These different patterns highlight the biogeographic significance of the phylogenetic relationships of A. sediba. Overall, the results showed that dispersal, local extinction, and sympatry played vital roles in creating the hominin distribution, whereas vicariance and jump dispersal were not as common. The results suggested symmetry in the directionality of dispersals. Distance probably influenced how rapidly taxa colonized a new region, and dispersals often followed the closest path. These findings are potentially impacted by the imperfection of the fossil record, suggesting that the results should be interpreted cautiously.


Subject(s)
Hominidae , Phylogeny , Animals , Biological Evolution , Fossils , Phylogeography , Animal Distribution
6.
J Plant Res ; 137(4): 561-574, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38520483

ABSTRACT

There is mounting evidence that reproductively isolated, but morphologically weakly differentiated species (so-called cryptic species) represent a substantial part of biological diversity, especially in bryophytes. We assessed the evolutionary history and ecological differentiation of a species pair, Dicranum brevifolium and D. septentrionale, which have overlapping ranges in the Holarctic. Despite their morphological similarity, we found similar genetic differentiation as between morphologically well-differentiated Dicranum species. Moreover, we detected gene tree discordance between plastid and nuclear markers, but neither of the two datasets resolved the two as sister species. The signal in trnL-trnF better reflects the morphological and ecological affinities and indicates a close relationship while ITS sequence data resolved the two taxa as phylogenetically distantly related. The discordance is probably unrelated to the ecological differentiation of D. septentrionale to colonise subneutral to alkaline substrates (vs. acidic in D. brevifolium), because this ability is rare in the genus and shared with D. acutifolium. This taxon is the closest relative of D. septentrionale according to the trnL-trnF data and does not share the discordance in ITS. We furthermore demonstrate that beside D. acutifolium, both D. septentrionale and D. brevifolium occur in the Alps but D. brevifolium is most likely rarer. Based on morphological analyses including factor analysis for mixed data of 45 traits we suggest treating the latter two as near-cryptic species and we recommend verifying morphological determinations molecularly.


Subject(s)
Phylogeny , Bryophyta/genetics , Bryophyta/anatomy & histology , Genetic Variation , Ecosystem , DNA, Plant/genetics , Plastids/genetics , Sequence Analysis, DNA
7.
Ecol Evol ; 14(3): e11066, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38435016

ABSTRACT

Lepidoziaceae are the third-largest family of liverworts, with about 860 species distributed on all continents. The evolutionary history of this family has not been satisfactorily resolved, with taxa such as Micropterygioideae yet to be included in phylogenetic analyses. We inferred a dated phylogeny of Lepidoziaceae using a data set consisting of 13 genetic markers, sampled from 147 species. Based on our phylogenetic estimate, we used statistical dispersal-vicariance analysis to reconstruct the biogeographic history of the family. We inferred a crown age of 197 Ma (95% credible interval 157-240 Ma) for the family in the Australian region, with most major lineages also originating in the same region. Micropterygioideae are placed as the sister group to Lembidioideae, with these two lineages diverging from each other about 132 Ma in the South American-Australian region. With South America and Australia being connected through Antarctica at the time, our results suggest a circum-Antarctic link between Micropterygioideae and the rest of the family. Crown Micropterygioideae were inferred to have arisen 45 Ma in South America before the continent separated from Antarctica. Extinction from southern temperate regions might explain the present-day restriction of Micropterygioideae to the Neotropics. Our study reveals the influence of past geological events, such as continental drift, on the evolution and distribution of a widespread and diverse family of liverworts.

8.
Biol Rev Camb Philos Soc ; 99(3): 901-927, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38205676

ABSTRACT

In biogeography, vicariance and long-distance dispersal are often characterised as competing scenarios. However, they are related concepts, both relying on collective geological, ecological, and phylogenetic evidence. This is illustrated by freshwater fishes, which may immigrate to islands either when freshwater connections are temporarily present and later severed (vicariance), or by unusual means when ocean gaps are crossed (long-distance dispersal). Marine barriers have a strong filtering effect on freshwater fishes, limiting immigrants to those most capable of oceanic dispersal. The roles of vicariance and dispersal are debated for freshwater fishes of the Greater Antilles. We review three active hypotheses [Cretaceous vicariance, Greater Antilles-Aves Ridge (GAARlandia), long-distance dispersal] and propose long-distance dispersal to be an appropriate model due to limited support for freshwater fish use of landspans. Greater Antillean freshwater fishes have six potential source bioregions (defined from faunal similarity): Northern Gulf of México, Western Gulf of México, Maya Terrane, Chortís Block, Eastern Panamá, and Northern South America. Faunas of the Greater Antilles are composed of taxa immigrating from many of these bioregions, but there is strong compositional disharmony between island and mainland fish faunas (>90% of Antillean species are cyprinodontiforms, compared to <10% in Northern Gulf of México and Northern South America, and ≤50% elsewhere), consistent with a hypothesis of long-distance dispersal. Ancestral-area reconstruction analysis indicates there were 16 or 17 immigration events over the last 51 million years, 14 or 15 of these by cyprinodontiforms. Published divergence estimates and evidence available for each immigration event suggests they occurred at different times and by different pathways, possibly with rafts of vegetation discharged from rivers or washed to sea during storms. If so, ocean currents likely provide critical pathways for immigration when flowing from one landmass to another. On the other hand, currents create dispersal barriers when flowing perpendicularly between landmasses. In addition to high salinity tolerance, cyprinodontiforms collectively display a variety of adaptations that could enhance their ability to live with rafts (small body size, viviparity, low metabolism, amphibiousness, diapause, self-fertilisation). These adaptations likely also helped immigrants establish island populations after arrival and to persist long term thereafter. Cichlids may have used a pseudo bridge (Nicaragua Rise) to reach the Greater Antilles. Gars (Lepisosteidae) may have crossed the Straits of Florida to Cuba, a relatively short crossing that is not a barrier to gene flow for several cyprinodontiform immigrants. Indeed, widespread distributions of Quaternary migrants (Cyprinodon, Gambusia, Kryptolebias), within the Greater Antilles and among neighbouring bioregions, imply that long-distance dispersal is not necessarily inhibitory for well-adapted species, even though it appears to be virtually impossible for all other freshwater fishes.


Subject(s)
Animal Distribution , Fishes , Fresh Water , Animals , Fishes/physiology , Fishes/genetics , Fishes/classification , Phylogeography
9.
Mol Phylogenet Evol ; 190: 107955, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37898294

ABSTRACT

The numerous naturally-fragmented sky islands (SIs) in the Hengduan Mountains Region (HMR) of southwestern China constitute discontinuous landscapes where montane habitats are isolated by dry-hot valleys which have fostered exceptional species diversification and endemicity. However, studies documenting the crucial role of SI on the speciation dynamics of native freshwater organisms are scarce. Here we used a novel set of comprehensive genetic markers (24 nuclear DNA sequences and complete mitogenomes), morphological characters, and biogeographical information to reveal the evolutionary history and speciation mechanisms of a group of small-bodied montane potamids in the genus Tenuipotamon. Our results provide a robustly supported phylogeny, and suggest that the vicariance events of these montane crabs correlate well with the emergence of SIs due to the uplift of the HMR during the Late Oligocene. Furthermore, ancestrally, mountain ridges provided corridors for the dispersal of these montane crabs that led to the colonization of moist montane-specific habitats, aided by past climatic conditions that were the crucial determinants of their evolutionary history. The present results illustrated that the mechanisms isolating SIs are reinforced by the harsh-dry isolating climatic features of dry-hot valleys separating SIs and continue to affect local diversification. This offers insights into the causes of the high biodiversity and endemism shown by the freshwater crabs of the HMR-SIs in southwestern China.


Subject(s)
Brachyura , Animals , Phylogeny , Brachyura/genetics , China , Biodiversity , Fresh Water
10.
J Biogeogr, v. 51, n. 5, p. 878-893, mai. 2024
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5254

ABSTRACT

Aim The widespread megadiverse Neotropical snake family Dipsadidae occurs in a large range of diverse habitats. Therefore, it represents an excellent model to study the diversification of Neotropical biota. Herein, by generating a time-calibrated species-level phylogeny, we investigate the origin and historical biogeography of Dipsadidae and test if its two main Neotropical subfamilies, Xenodontinae and Dipsadinae, have different geographical origins. Location Neotropical region. Taxon Dipsadidae (Serpentes). Methods We generated a new Bayesian time-calibrated phylogeny based on published sequences from six genes for 344 species, including 287 species of Dipsadidae. We subsequently estimated ancestral areas of distribution by comparing models in BioGeoBEARS: DEC (subset sympatry, narrow vicariance), DIVALIKE (narrow and wide vicariance), BAYAREALIKE (no vicariance and widespread sympatry), also testing jump dispersal. We also estimated shifts in the diversification of this group using BAMM, exploring possible relationships with its historical biogeography. Results The best models show that Dipsadidae likely originated approximately 50 million years ago (mya) in Asia. Dispersal was a fundamental process in its historical biogeography. The DEC model with jump dispersal indicated that this family underwent a range extension from Asia and posterior vicariance of North and Central America ancestors. Both Xenodontinae and Dipsadinae originated in Central America and dispersed to South America during Middle Eocene, but did so to different regions (cis and trans-Andean South America, respectively). Xenodontinae entered cis-Andean South America around 39 mya and jump dispersed to the West Indies around 33 mya, while Dipsadinae entered trans-Andean South America multiple times 20–38 mya. The diversification rate decreased through time, except for a clade within Dipsadinae composed of the Dipsadini tribe and the Atractus and Geophis genera. Main Conclusions Our results show that Dipsadidae has an Asian origin and that the two main Neotropical subfamilies originated in Central America, later dispersing to South America in different time periods. This difference is also reflected in the higher diversification rate for the ‘goo-eaters’ in the Dipsadinae subfamily. The current biogeographical patterns of the family Dipsadidae, the most species-rich snake family in the world, have likely been shaped by complex evolutionary and geological processes such as Eocene land bridges, Andean uplift and the formation of the Panama isthmus.

11.
PeerJ ; 11: e16529, 2023.
Article in English | MEDLINE | ID: mdl-38077409

ABSTRACT

Recent phylogeographic studies of poorly-dispersing coastal invertebrates in highly biodiverse regions have led to the discovery of high levels of cryptic diversity and complex phylogeographic patterns that suggest isolation, geological, and ecological processes have shaped their biodiversity. Studies of southern African coastal invertebrates have uncovered cryptic diversity for various taxa and phylogeographic patterns that, although sharing some similarities across taxa, do differ. These findings underscore the need for additional studies to better understand the biodiversity levels, distributional patterns, and processes responsible for producing coastal biodiversity in that region. The coastal isopod Deto echinata is of particular interest, as its complex taxonomic history, poor dispersal capabilities, and broad geographic distribution suggest the potential for cryptic diversity. We use mitochondrial and nuclear sequences to characterize D. echinata individuals from localities ranging from northern Namibia to Glentana, about 2,500 km along the coastline on the south coast of South Africa. These are used to assess whether D. echinata harbors cryptic genetic diversity and whether phylogeographic distributional patterns correlate with those previously documented for other coastal isopods in the region. Analysis of mitochondrial and nuclear sequences revealed two deeply-divergent lineages that exhibit a distributional break in the Cape Peninsula region. These findings suggest D. echinata is a cryptic species complex in need of taxonomic revision and highlight the need for further taxonomic and phylogeographic studies of similarly poorly-dispersing coastal invertebrates in southern Africa.


Subject(s)
Isopoda , Humans , Animals , Isopoda/genetics , Phylogeny , Phylogeography , Africa, Southern , Mitochondria
12.
Psychol Res Behav Manag ; 16: 2913-2929, 2023.
Article in English | MEDLINE | ID: mdl-37551394

ABSTRACT

Purpose: According to social interaction theory, the psychology and behavior of individuals are influenced by others, especially these significant or intimate others. This classical social phenomenon, "Be a rascal among rascal", which explains the influence of others' behavior on an individual's behavior, has also been observed in pro-environmental behavior. In recent years, environmental psychologists have termed this interesting phenomenon as the "vicarious moral self-regulation effect", in which the prior environmental behavior of significant or intimate others influences an individual's subsequent environmental behavior. However, the stability and psychological mechanisms of the vicarious moral self-regulation effect are still not well understood. Therefore, this study aims to verify the vicarious moral self-regulation effect in pro-environmental behavior through four studies. Methods and Results: In Study 1, 90 participants were randomly assigned to one of three groups (a stronger green credentials manipulation, a weaker green credentials manipulation, or a control group about a close friend), and results showed that participants in both stronger and less green credential groups made fewer carbon-neutral choices than those in the control group in the carbon emissions task. In Study 2 (120 participants), compared to the control group, participants in the group imagining both environmentally friendly and unfriendly behavior of close friends made fewer carbon-neutral choices. This finding also was observed in Study 3 (93 participants), where participants under the group of free recalling both environmentally friendly and unfriendly behavior of close friends made fewer green purchasing choices. In Study 4 (75 participants), compared to the control group, participants in the group of both imagining and free recalling the environmentally friendly behavior of a close friend made fewer carbon-neutral choices, and participants in the group of both imagining and free recalling the environmentally unfriendly behavior of close friend made fewer green purchasing choices. Conclusion: Results suggest that the environmentally friendly behavior of a close friend induces the vicarious moral licensing effect (those who handle vermilion are not reddened), and the environmentally unfriendly behavior of a close friend induces the vicarious moral identity effect (those who touch ink are blackened). Environmental behaviors of intimate others induce the obvious fluctuating changes in college students' subsequent pro-environmental behaviors. This vicarious moral self-regulation effect can be explained by the mechanism of self-other overlap and provide scientific references for promoting pro-environmental behaviors among college students.

13.
Mol Phylogenet Evol ; 187: 107873, 2023 10.
Article in English | MEDLINE | ID: mdl-37429334

ABSTRACT

Biogeographic disjunctions, including intercontinental disjunctions, are frequent across plant lineages and have been of considerable interest to biologists for centuries. Their study has been reinvigorated by molecular dating and associated comparative methods. One of the "classic" disjunction patterns is that between Eastern Asia and North America. It has been speculated that this pattern is the result of vicariance following the sundering of a widespread Acrto-Teritary flora. Subtribe Nepetinae in the mint family (Lamiaceae) is noteworthy because it contains three genera with this disjunction pattern: Agastache, Dracocephalum, and Meehania. These disjunctions are ostensibly the result of three separate events, allowing for concurrent testing of the tempo, origin, and type of each biogeographic event. Using four plastid and four nuclear markers, we estimated divergence times and analyzed the historical biogeography of Nepetinae, including comprehensive sampling of all major clades for the first time. We recover a well-supported and largely congruent phylogeny of Nepetinae between genomic compartments, although several cases of cyto-nuclear discordance are evident. We demonstrate that the three disjunctions are pseudo-congruent, with unidirectional movement from East Asia at slightly staggered times during the late Miocene and early Pliocene. With the possible exception of Meehania, we find that vicariance is likely the underlying driver of these disjunctions. The biogeographic history of Meehania in North America may be best explained by long-distance dispersal, but a more complete picture awaits deeper sampling of the nuclear genome and more advanced biogeographical models.


Subject(s)
Lamiaceae , Humans , Asia, Eastern , East Asian People , Lamiaceae/genetics , North America , Phylogeny , Phylogeography , Genes, Plant
14.
BMC Biol ; 21(1): 129, 2023 05 29.
Article in English | MEDLINE | ID: mdl-37248474

ABSTRACT

BACKGROUND: Common seadragons (Phyllopteryx taeniolatus, Syngnathidae) are an emblem of the diverse endemic fauna of Australia's southern rocky reefs, the newly recognized "Great Southern Reef." A lack of assessments spanning this global biodiversity hotspot in its entirety is currently hampering an understanding of the factors that have contributed to its diversity. The common seadragon has a wide range across Australia's entire temperate south and includes a geogenetic break over a former land bridge, which has called its status as a single species into question. As a popular aquarium display that sells for high prices, common seadragons are also vulnerable to illegal capture. RESULTS: Here, we provide range-wide nuclear sequences (986 variable Ultraconserved Elements) for 198 individuals and mitochondrial genomes for 140 individuals to assess species status, identify genetic units and their diversity, and trace the source of two poached individuals. Using published data of the other two seadragon species, we found that lineages of common seadragons have diverged relatively recently (< 0.63 Ma). Within common seadragons, we found pronounced genetic structure, falling into three major groups in the western, central, and eastern parts of the range. While populations across the Bassian Isthmus were divergent, there is also evidence for secondary contact since the passage opened. We found a strong cline of genetic diversity from the range center tapering symmetrically towards the range peripheries. Based on their genetic similarities, the poached individuals were inferred to have originated from around Albany in southwestern Australia. CONCLUSIONS: We conclude that common seadragons constitute a single species with strong geographic structure but coherence through gene flow. The low genetic diversity on the east and west coasts is concerning given that these areas are projected to face fast climate change. Our results suggest that in addition to their life history, geological events and demographic expansions have all played a role in shaping populations in the temperate south. These insights are an important step towards understanding the historical determinants of the diversity of species endemic to the Great Southern Reef.


Subject(s)
Metagenomics , Smegmamorpha , Humans , Animals , Phylogeny , Biodiversity , Australia , Genetic Variation
15.
Biol Rev Camb Philos Soc ; 98(5): 1583-1606, 2023 10.
Article in English | MEDLINE | ID: mdl-37142264

ABSTRACT

Despite discussions extending back almost 160 years, the means by which Madagascar's iconic land vertebrates arrived on the island remains the focus of active debate. Three options have been considered: vicariance, range expansion across land bridges, and dispersal over water. The first assumes that a group (clade/lineage) occupied the island when it was connected with the other Gondwana landmasses in the Mesozoic. Causeways to Africa do not exist today, but have been proposed by some researchers for various times in the Cenozoic. Over-water dispersal could be from rafting on floating vegetation (flotsam) or by swimming/drifting. A recent appraisal of the geological data supported the idea of vicariance, but found nothing to justify the notion of past causeways. Here we review the biological evidence for the mechanisms that explain the origins of 28 of Madagascar's land vertebrate clades [two other lineages (the geckos Geckolepis and Paragehyra) could not be included in the analysis due to phylogenetic uncertainties]. The podocnemid turtles and typhlopoid snakes are conspicuous for they appear to have arisen through a deep-time vicariance event. The two options for the remaining 26 (16 reptile, five land-bound-mammal, and five amphibian), which arrived between the latest Cretaceous and the present, are dispersal across land bridges or over water. As these would produce very different temporal influx patterns, we assembled and analysed published arrival times for each of the groups. For all, a 'colonisation interval' was generated that was bracketed by its 'stem-old' and 'crown-young' tree-node ages; in two instances, the ranges were refined using palaeontological data. The synthesis of these intervals for all clades, which we term a colonisation profile, has a distinctive shape that can be compared, statistically, to various models, including those that assume the arrivals were focused in time. The analysis leads us to reject the various land bridge models (which would show temporal concentrations) and instead supports the idea of dispersal over water (temporally random). Therefore, the biological evidence is now in agreement with the geological evidence, as well as the filtered taxonomic composition of the fauna, in supporting over-water dispersal as the mechanism that explains all but two of Madagascar's land-vertebrate groups.


Subject(s)
Mammals , Animals , Madagascar , Phylogeny , Water
16.
J Plant Res ; 136(3): 277-290, 2023 May.
Article in English | MEDLINE | ID: mdl-36905462

ABSTRACT

The formation of the Baja California Peninsula (BCP) has impacted the microevolutionary dynamics of different species in ways that depend on biological traits such as dispersal capacity. Plants with relatively low levels of vagility have exhibited high genetic divergence between the BCP and Continental mainland. Brahea armata (Arecaceae) is a palm species inhabiting the northern part of the BCP and Sonora; its distribution occurs in isolated oases of vegetation. We aimed to evaluate the influence of the formation of the BCP on the genetic structure of B. armata using nuclear microsatellites and chloroplast markers (cpDNA) to compare patterns of genetic diversity and structure with previous published studies. Because gene flow through seeds is usually more limited compared to pollen flow, we expect to find stronger genetic structure at (cpDNA) than at nuclear markers. Moreover, larger genetic structure might also be explained by the smaller effective population size of cpDNA. We analyzed six microsatellite markers and two cpDNA regions. The main results indicated high levels of genetic differentiation among isolated populations located in the BCP, while low genetic differentiation was found between southern populations of the BCP and Sonora, suggesting long distance gene flow. In contrast, chloroplast markers indicated high levels of genetic structure between BCP and Sonora populations, suggesting asymmetrical gene flow between pollen (measured by nuclear microsatellites) and seed (cpDNA markers). This study provides valuable information on genetic diversity of B. armata that can be relevant for conservation and management; and develops microsatellites markers that can be transferred to other Brahea species.


Subject(s)
Arecaceae , Gene Flow , Mexico , DNA, Chloroplast/genetics , Genetic Structures , Genetic Variation , Microsatellite Repeats
17.
Mol Phylogenet Evol ; 178: 107647, 2023 01.
Article in English | MEDLINE | ID: mdl-36273758

ABSTRACT

Opiliones (harvestmen) have come to be regarded as an abundant source of model groups for study of historical biogeography, due to their ancient age, poor dispersal capability, and high fidelity to biogeographic terranes. One of the least understood harvestman groups is the Paleotropical Assamiidae, one of the more diverse families of Opiliones. Due to a labyrinthine taxonomy, poorly established generic and subfamilial boundaries, and the lack of taxonomic keys for the group, few efforts have been undertaken to decipher relationships within this arachnid lineage. Neither the monophyly of the family, nor its exact placement in the harvestman phylogeny, have been established. Here, we assessed the internal phylogeny of Assamiidae using a ten-locus Sanger dataset, sampling key lineages putatively ascribed to this family for five of the ten markers. Our analyses recovered Assamiidae as a monophyletic group, in a clade with the primarily Afrotropical Pyramidopidae and the southeast Asian Beloniscidae. Internal relationships of assamiids disfavored the systematic validity of subfamilies, with biogeography reflecting much better phylogenetic structure than the existing higher-level taxonomy. To assess whether the Asian assamiids came to occupy Indo-Pacific terranes via rafting on the Indian subcontinent, we performed divergence dating to infer the age of the family. Our results show that Indo-Pacific clades are ancient, originating well before the Cretaceous and therefore predate a vicariant mechanism commonly encountered for Paleotropical taxa.


Subject(s)
Arachnida , Animals , Phylogeny , Arachnida/genetics , Asia, Southeastern
18.
Biology (Basel) ; 11(12)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36552303

ABSTRACT

The Dermaptera are an insect order exhibiting their highest diversity in the tropical areas of the southern hemisphere. This pattern has been considered a reflection of a Gondwanan origin. However, this hypothesis has not been tested through analytical methods. In this paper, the world distribution of earwigs was analysed by using the 'Cladistic Analysis of Distributions and Endemism' (CADE), a method which groups areas of endemism on the basis of shared distributions and phylogenetic relationships among taxa. In addition, clustering techniques were applied to depict biotic relationships based on similarity indices. Results of CADE support the idea that Gondwanan fragmentation exerted a crucial role in shaping the current distribution of the main clades of earwigs. However, the relationships between India with South East Asia suggested a biotic interchange occurred after the Indian collision with the Eurasian plate. The overall scenario emerging from cluster analyses revealed a strong influence of dispersal events. Overall, the distribution of earwig major clades indicates that their biogeographical history was mainly characterized by vicariance events (led by the break-up of Gondwana) followed by large scale dispersal processes constrained by the Himalayan orogenesis and the presence of colder temperatures, which have largely hampered the colonization of the northern hemisphere.

19.
Int J Mol Sci ; 23(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36499259

ABSTRACT

The evolutionary histories of ornamental plants have been receiving only limited attention. We examined the origin and divergence processes of an East Asian endemic ornamental plant, Conandron ramondioides. C. ramondioides is an understory herb occurring in primary forests, which has been grouped into two varieties. We reconstructed the evolutionary and population demography history of C. ramondioides to infer its divergence process. Nuclear and chloroplast DNA sequences were obtained from 21 Conandron populations on both sides of the East China Sea (ECS) to explore its genetic diversity, structure, and population differentiation. Interestingly, the reconstructed phylogeny indicated that the populations should be classified into three clades corresponding to geographical regions: the Japan (Honshu+Shikoku) clade, the Taiwan-Iriomote clade, and the Southeast China clade. Lineage divergence between the Japan clade and the Taiwan-Iriomote and Southeast China clades occured 1.14 MYA (95% HPD: 0.82-3.86), followed by divergence between the Taiwan-Iriomote and Southeast China clades approximately 0.75 MYA (95% HPD: 0.45-1.3). Furthermore, corolla traits (floral lobe length to tube length ratios) correlated with geographical distributions. Moreover, restricted gene flow was detected among clades. Lastly, the lack of potential dispersal routes across an exposed ECS seafloor during the last glacial maximum suggests that migration among the Conandron clades was unlikely. In summary, the extant Conandron exhibits a disjunct distribution pattern as a result of vicariance rather than long-distance dispersal. We propose that allopatric divergence has occurred in C. ramondioides since the Pleistocene. Our findings highlight the critical influence of species' biological characteristics on shaping lineage diversification of East Asian relic herb species during climate oscillations since the Quaternary.


Subject(s)
Evolution, Molecular , Biological Evolution , DNA, Chloroplast/genetics , Phylogeny , Phylogeography , Plants
20.
Front Genet ; 13: 955382, 2022.
Article in English | MEDLINE | ID: mdl-36171893

ABSTRACT

Montane systems provide excellent opportunities to study the rapid radiation influenced by geological and climatic processes. We assessed the role of Pleistocene climatic oscillations and mountain building on the evolution history of Triplophysa robusta, a cold-adapted species restricted to high elevations in China. We found seven differentiated sublineages of T. robusta, which were established during the Mid Pleistocene 0.87-0.61 Mya. The species distribution modeling (SDM) showed an expansion of T. robusta during the Last Glacial Maximum (LGM) and a considerable retraction during the Last Interglacial (LIG). The deep divergence between Clade I distributed in Qinling Mountains and Clade II in Northeastern Qinghai-Tibet Plateau (QTP) was mainly the result of a vicariance event caused by the rapid uplifting of Qinling Mountains during the Early Pleistocene. While the middling to high level of historical gene flow among different sublineages could be attributed to the dispersal events connected to the repetition of the glacial period during the Pleistocene. Our findings suggested that frequent range expansions and regressions due to Pleistocene glaciers likely have been crucial for driving the phylogeographic pattern of T. robusta. Finally, we urge a burning question in future conservation projection on the vulnerable cold-adapted species endemic to high elevations, as they would be negatively impacted by the recent rapid climate warming.

SELECTION OF CITATIONS
SEARCH DETAIL