Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.135
Filter
1.
Methods Mol Biol ; 2829: 227-235, 2024.
Article in English | MEDLINE | ID: mdl-38951338

ABSTRACT

Virus-like particles (VLPs) of the adeno-associated virus (AAV) can be produced using the baculovirus expression vector system. Insertion of small peptides on the surface of the AAV or AAV VLPs has been used to redirect the AAV to different target tissues and for vaccine development. Usually, the VLPs self-assemble intracellularly, and an extraction step must be performed before purification. Here, we describe the method we have used to extract AAV VLPs from insect cells successfully with peptide insertions on their surface.


Subject(s)
Dependovirus , Peptides , Dependovirus/genetics , Animals , Peptides/chemistry , Peptides/genetics , Genetic Vectors/genetics , Virion/genetics , Baculoviridae/genetics , Sf9 Cells , Humans , Cell Line , Capsid Proteins/genetics , Capsid Proteins/isolation & purification
2.
Methods Mol Biol ; 2829: 237-246, 2024.
Article in English | MEDLINE | ID: mdl-38951339

ABSTRACT

Virus-like particles (VLP) of the cowpea chlorotic mottle virus (CCMV), a plant virus, have been shown to be safe and noncytotoxic vehicles for delivering various cargos, including nucleic acids and peptides, and as scaffolds for presenting epitopes. Thus, CCMV-VLP have acquired increasing attention to be used in fields such as gene therapy, drug delivery, and vaccine development. Regardless of their production method, most reports purify CCMV-VLP through a series of ultracentrifugation steps using sucrose density gradient ultracentrifugation, which is a complex and time-consuming process. Here, the use of anion exchange chromatography is described as a one-step protocol for purification of CCMV-VLP produced by the insect cell-baculovirus expression vector system (IC-BEVS).


Subject(s)
Bromovirus , Bromovirus/genetics , Animals , Baculoviridae/genetics , Genetic Vectors/genetics , Chromatography, Ion Exchange/methods , Virion/isolation & purification , Virion/genetics , Virion/metabolism
3.
Microb Pathog ; : 106795, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019122

ABSTRACT

Feline coronavirus (FCoV) infection is a leading cause of death in cats. In this study, we produced FCoV-I virus-like particles (VLPs) containing E, M, N, and S proteins using a baculovirus expression system and mixed VLPs with the adjuvants MF59 and CpG 55.2 to prepare an VLP/MF59/CpG vaccine. After immunization of mice with the vaccine, IgG specific antibodies titers against S and N proteins increased to 1:12,800, and IFN-γ+ and IL-4+ splenocytes were significantly increased. Following immunization of FCoV-negative cats, the S protein antibodies in immunized cats (5/5) increased significantly, with a peak of 1:12,800. Notably, after booster vaccination in FCoV-positive cats, a significant reduction in viral load was observed in the feces of partial cats (4/5), and the FCoV-I negative conversion was found in two immunized cats (2/5). Therefore, the VLP/MF59/CpG vaccine is a promising candidate vaccine to prevent the FCoV infection.

4.
ACS Appl Mater Interfaces ; 16(28): 37275-37287, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38959130

ABSTRACT

Titanium dioxide (TiO2) shows significant potential as a self-cleaning material to inactivate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and prevent virus transmission. This study provides insights into the impact of UV-A light on the photocatalytic inactivation of adsorbed SARS-CoV-2 virus-like particles (VLPs) on a TiO2 surface at the molecular and atomic levels. X-ray photoelectron spectroscopy, combined with density functional theory calculations, reveals that spike proteins can adsorb on TiO2 predominantly via their amine and amide functional groups in their amino acids blocks. We employ atomic force microscopy and grazing-incidence small-angle X-ray scattering (GISAXS) to investigate the molecular-scale morphological changes during the inactivation of VLPs on TiO2 under light irradiation. Notably, in situ measurements reveal photoinduced morphological changes of VLPs, resulting in increased particle diameters. These results suggest that the denaturation of structural proteins induced by UV irradiation and oxidation of the virus structure through photocatalytic reactions can take place on the TiO2 surface. The in situ GISAXS measurements under an N2 atmosphere reveal that the virus morphology remains intact under UV light. This provides evidence that the presence of both oxygen and UV light is necessary to initiate photocatalytic reactions on the surface and subsequently inactivate the adsorbed viruses. The chemical insights into the virus inactivation process obtained in this study contribute significantly to the development of solid materials for the inactivation of enveloped viruses.


Subject(s)
SARS-CoV-2 , Titanium , Ultraviolet Rays , Titanium/chemistry , Titanium/radiation effects , SARS-CoV-2/radiation effects , SARS-CoV-2/chemistry , Virus Inactivation/radiation effects , Virus Inactivation/drug effects , Humans , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , COVID-19/virology , COVID-19/prevention & control , Adsorption , Surface Properties
6.
Front Cell Infect Microbiol ; 14: 1406091, 2024.
Article in English | MEDLINE | ID: mdl-38988812

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has incurred devastating human and economic losses. Vaccination remains the most effective approach for controlling the COVID-19 pandemic. Nonetheless, the sustained evolution of SARS-CoV-2 variants has provoked concerns among the scientific community regarding the development of next-generation COVID-19 vaccines. Among these, given their safety, immunogenicity, and flexibility to display varied and native epitopes, virus-like particle (VLP)-based vaccines represent one of the most promising next-generation vaccines. In this review, we summarize the advantages and characteristics of VLP platforms, strategies for antigen display, and current clinical trial progress of SARS-CoV-2 vaccines based on VLP platforms. Importantly, the experience and lessons learned from the development of SARS-CoV-2 VLP vaccines provide insights into the development of strategies based on VLP vaccines to prevent future coronavirus pandemics and other epidemics.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Vaccines, Virus-Like Particle , Humans , COVID-19 Vaccines/immunology , Vaccines, Virus-Like Particle/immunology , COVID-19/prevention & control , COVID-19/immunology , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Animals , Clinical Trials as Topic
7.
Int J Nanomedicine ; 19: 6931-6943, 2024.
Article in English | MEDLINE | ID: mdl-39005960

ABSTRACT

Purpose: Over the past three years, extensive research has been dedicated to understanding and combating COVID-19. Targeting the interaction between the SARS-CoV-2 Spike protein and the ACE2 receptor has emerged as a promising therapeutic strategy against SARS-CoV-2. This study aimed to develop ACE2-coated virus-like particles (ACE2-VLPs), which can be utilized to prevent viral entry into host cells and efficiently neutralize the virus. Methods: Virus-like particles were generated through the utilization of a packaging plasmid in conjunction with a plasmid containing the ACE2 envelope sequence. Subsequently, ACE2-VLPs and ACE2-EVs were purified via ultracentrifugation. The quantification of VLPs was validated through multiple methods, including Nanosight 3000, TEM imaging, and Western blot analysis. Various packaging systems were explored to optimize the ACE2-VLP configuration for enhanced neutralization capabilities. The evaluation of neutralization effectiveness was conducted using pseudoviruses bearing different spike protein variants. Furthermore, the study assessed the neutralization potential against the Omicron BA.1 variant in Vero E6 cells. Results: ACE2-VLPs showed a high neutralization capacity even at low doses and demonstrated superior efficacy in in vitro pseudoviral assays compared to extracellular vesicles carrying ACE2. ACE2-VLPs remained stable under various environmental temperatures and effectively blocked all tested variants of concern in vitro. Notably, they exhibited significant neutralization against Omicron BA.1 variant in Vero E6 cells. Given their superior efficacy compared to extracellular vesicles and proven success against live virus, ACE2-VLPs stand out as crucial candidates for treating SARS-CoV-2 infections. Conclusion: This novel therapeutic approach of coating VLPs with receptor particles provides a proof-of-concept for designing effective neutralization strategies for other viral diseases in the future.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2/metabolism , Animals , Vero Cells , Chlorocebus aethiops , Humans , COVID-19/virology , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/chemistry , Antibodies, Neutralizing/pharmacology , HEK293 Cells , Virus Internalization/drug effects
8.
J Photochem Photobiol B ; 258: 112979, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39003970

ABSTRACT

Bioluminescence resonance energy transfer photodynamic therapy, which uses light generated by bioluminescent proteins to activate photosensitizers and produce reactive oxygen species without the need for external irradiation, has shown promising results in cancer models. However, the characterization of delivery systems that can incorporate the components of this therapy for preferential delivery to the tumor remains necessary. In this work, we have characterized parvovirus B19-like particles (B19V-VLPs) as a platform for a photosensitizer and a bioluminescent protein. By chemical and biorthogonal conjugation, we conjugated rose Bengal photosensitizer and firefly luciferase to B19V-VLPs and a protein for added specificity. The results showed that B19V-VLPs can withstand decoration with all three components without affecting its structure or stability. The conjugated luciferase showed activity and was able to activate rose Bengal to produce singlet oxygen without the need for external light. The photodynamic reaction generated by the functionalized VLPs-B19 can decrease the viability of tumor cells in vitro and affect tumor growth and metastasis in the 4 T1 model. Treatment with functionalized VLPs-B19 also increased the percentage of CD4 and CD8 cell populations in the spleen and in inguinal lymph nodes compared to vehicle-treated mice. Our results support B19V-VLPs as a delivery platform for bioluminescent photodynamic therapy components to solid tumors.

9.
Int J Mol Sci ; 25(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39000536

ABSTRACT

Immune engineering and modulation are the basis of a novel but powerful tool to treat immune diseases using virus-like particles (VLPs). VLPs are formed by the viral capsid without genetic material making them non-infective. However, they offer a wide variety of possibilities as antigen-presenting platforms, resulting in high immunogenicity and high efficacy in immune modulation, with low allergenicity. Both animal and plant viruses are being studied for use in the treatment of food allergies. These formulations are combined with adjuvants, T-stimulatory epitopes, TLR ligands, and other immune modulators to modulate or enhance the immune response toward the presented allergen. Here, the authors present an overview of VLP production systems, their immune modulation capabilities, and the applicability of actual VLP-based formulations targeting allergic diseases.


Subject(s)
Allergens , Vaccines, Virus-Like Particle , Humans , Vaccines, Virus-Like Particle/immunology , Animals , Allergens/immunology , Food Hypersensitivity/therapy , Food Hypersensitivity/immunology , Hypersensitivity/therapy , Hypersensitivity/immunology , Adjuvants, Immunologic
10.
Adv Healthc Mater ; : e2401416, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848734

ABSTRACT

Therapeutic cancer vaccines have the potential to induce regression of established tumors, eradicate microscopic residual lesions, and prevent metastasis and recurrence, but their efficacy is limited by the low antigenicity of soluble antigens and the immunosuppressive tumor-associated macrophages (TAMs) that promote tumor growth. In this study, a novel strategy is reported for overcoming these defenses: a dual-targeting nano-vaccine (NV) based on hepatitis B core antigen (HBcAg) derived virus-like particles (VLPs), N-M2T-gp100 HBc NV, equipped with both SIGNR+ dendritic cells (DCs)/TAMs-targeting ability and high-density display of tumor-associated antigen (TAA). N-M2T-gp100 HBc NVs-based immunotherapy has demonstrated an optimal interaction between tumor-associated antigens (TAAs) and the immune composition of the tumor microenvironment. In a melanoma model, N-M2T-gp100 HBc VLPs significantly reducing in situ and abscopal tumor growth, and provide long-term immune protection. This remarkable anti-tumor effect is achieved by efficiently boosting of T cells and repolarizing of M2-like TAMs. This work opens exciting avenues for the development of personalized tumor vaccines targeting not just melanoma but potentially a broad range of cancer types based on functionalized VLPs.

11.
Heliyon ; 10(11): e31905, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38868026

ABSTRACT

Biocontainment regulations restrict the research on NiV to BSL-4 laboratories, thus limiting the mechanistic studies related to viral entry and allied pathogenesis. Understanding the precise process of viral-particle production and host cell entry is critical for designing targeted therapies or particle-based vaccines. In this study, we have synthesized HiBiT-tagged-NiV-VLPs to ease in-vitro BSL-2 particle handling. We propose a simple yet effective approach of generating substantial amount of HiBiT-tagged NiV-VLPs in vitro by co-expressing viral structural proteins in HEK293T cells. Though homologous to parent virus, the incapacitated replication potential facilitates a BSL-2 handling of these particles. The inclusion of a highly sensitive HiBiT tag on these VLPs allows for a quick detection of viral binding and entry, as well as in assessing the efficiency of neutralizing antibodies in vitro using the NanoBiT technology. The HiBiT-tag binds in high affinity with LgBiT (Large BiT an 18 kDa fusion protein and complementary subunit of HiBiT peptide), and the resultant complex elicits high intensity luminescence in the presence of substrate. The VLPs produced were morphologically and functionally identical to the native virus, and the HiBiT-tag permitted their quick application in viral binding, entry, and antibody neutralization assays. "Thus, we report a simple setting for generating HiBiT-NiV VLPs which can be utilized in a BSL-2 laboratory, to concurrently quantify features of NiV assembly, binding and entry. This also offers an alternate-safe and effective platform for viral based antibody neutralization assays in vitro".

12.
Front Bioeng Biotechnol ; 12: 1399938, 2024.
Article in English | MEDLINE | ID: mdl-38882637

ABSTRACT

Virus-like particles (VLPs) are a promising class of biopharmaceuticals for vaccines and targeted delivery. Starting from clarified lysate, VLPs are typically captured by selective precipitation. While VLP precipitation is induced by step-wise or continuous precipitant addition, current monitoring approaches do not support the direct product quantification, and analytical methods usually require various, time-consuming processing and sample preparation steps. Here, the application of Raman spectroscopy combined with chemometric methods may allow the simultaneous quantification of the precipitated VLPs and precipitant owing to its demonstrated advantages in analyzing crude, complex mixtures. In this study, we present a Raman spectroscopy-based Process Analytical Technology (PAT) tool developed on batch and fed-batch precipitation experiments of Hepatitis B core Antigen VLPs. We conducted small-scale precipitation experiments providing a diversified data set with varying precipitation dynamics and backgrounds induced by initial dilution or spiking of clarified Escherichia coli-derived lysates. For the Raman spectroscopy data, various preprocessing operations were systematically combined allowing the identification of a preprocessing pipeline, which proved to effectively eliminate initial lysate composition variations as well as most interferences attributed to precipitates and the precipitant present in solution. The calibrated partial least squares models seamlessly predicted the precipitant concentration with R 2 of 0.98 and 0.97 in batch and fed-batch experiments, respectively, and captured the observed precipitation trends with R 2 of 0.74 and 0.64. Although the resolution of fine differences between experiments was limited due to the observed non-linear relationship between spectral data and the VLP concentration, this study provides a foundation for employing Raman spectroscopy as a PAT sensor for monitoring VLP precipitation processes with the potential to extend its applicability to other phase-behavior dependent processes or molecules.

13.
J Colloid Interface Sci ; 674: 92-107, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38917715

ABSTRACT

Remarkable progress has been made in tumour immunotherapy in recent decades. However, the clinical outcomes of therapeutic interventions remain unpredictable, largely because of inefficient immune responses. To address this challenge and optimise immune stimulation, we present a novel administration route for enhancing the bioavailability of immunotherapeutic drugs. Our approach involves the development of an oral tumour vaccine utilising virus-like particles derived from the Hepatitis B virus core (HBc) antigen. The external surfaces of these particles are engineered to display the model tumour antigen OVA, whereas the interiors are loaded with cytosine phosphoguanosine oligodeoxynucleotide (CpG ODN), resulting in a construct called CpG@OVAHBc with enhanced antigenicity and immune response. For oral delivery, CpG@OVAHBc is encapsulated in a crosslinked dextran hydrogel called CpG@OVAHBc@Dex. The external hydrogel shield safeguards the biomimetic virus particles from degradation by gastric acid and proteases. Upon exposure to intestinal flora, the hydrogel disintegrates, releasing CpG@OVAHBc at the intestinal mucosal site. Owing to its virus-like structure, CpG@OVAHBc exhibits enhanced adhesion to the mucosal surface, facilitating uptake by microfold cells (M cells) and subsequent transmission to antigen-presenting cells. The enzyme-triggered release of this oral hydrogel ensures the integrity of the tumour vaccine within the digestive tract, allowing targeted release and significantly improving bioavailability. Beyond its efficacy, this oral hydrogel vaccine streamlines drug administration, alleviates patient discomfort, and enhances treatment compliance without the need for specialised injection methods. Consequently, our approach expands the horizons of vaccine development in the field of oral drug administration.

14.
Vaccines (Basel) ; 12(6)2024 May 21.
Article in English | MEDLINE | ID: mdl-38932290

ABSTRACT

At times of pandemics, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the situation demands rapid development and production timelines of safe and effective vaccines for delivering life-saving medications quickly to patients. Typical biologics production relies on using the lengthy and arduous approach of stable single-cell clones. Here, we used an alternative approach, a stable cell pool that takes only weeks to generate compared to a stable single-cell clone that needs several months to complete. We employed the membrane, envelope, and highly immunogenic spike proteins of SARS-CoV-2 to produce virus-like particles (VLPs) using the HEK293-F cell line as a host system with an economical transfection reagent. The cell pool showed the stability of protein expression for more than one month. We demonstrated that the production of SARS-CoV-2 VLPs using this cell pool was scalable up to a stirred-tank 2 L bioreactor in fed-batch mode. The purified VLPs were properly assembled, and their size was consistent with the authentic virus. Our particles were functional as they specifically entered the cell that naturally expresses ACE-2. Notably, this work reports a practical and cost-effective manufacturing platform for scalable SARS-CoV-2 VLPs production and chromatographic purification.

15.
Vaccines (Basel) ; 12(6)2024 May 26.
Article in English | MEDLINE | ID: mdl-38932309

ABSTRACT

During the multi-dose formulation development of recombinant vaccine candidates, protein antigens can be destabilized by antimicrobial preservatives (APs). The degradation mechanisms are often poorly understood since available analytical tools are limited due to low protein concentrations and the presence of adjuvants. In this work, we evaluate different analytical approaches to monitor the structural integrity of HPV16 VLPs adsorbed to Alhydrogel™ (AH) in the presence and absence of APs (i.e., destabilizing m-cresol, MC, or non-destabilizing chlorobutanol, CB) under accelerated conditions (pH 7.4, 50 °C). First, in vitro potency losses displayed only modest correlations with the results from two commonly used methods of protein analysis (SDS-PAGE, DSC). Next, results from two alternative analytical approaches provided a better understanding of physicochemical events occurring under these same conditions: (1) competitive ELISA immunoassays with a panel of mAbs against conformational and linear epitopes on HPV16 VLPs and (2) LC-MS peptide mapping to evaluate the accessibility/redox state of the 12 cysteine residues within each L1 protein comprising the HPV16 VLP (i.e., with 360 L1 proteins per VLP, there are 4320 Cys residues per VLP). These methods expand the limited analytical toolset currently available to characterize AH-adsorbed antigens and provide additional insights into the molecular mechanism(s) of AP-induced destabilization of vaccine antigens.

16.
Vaccines (Basel) ; 12(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38932390

ABSTRACT

T help (Th), stimulation of toll-like receptors (pathogen-associated molecular patterns, PAMPs), and antigen organization and repetitiveness (pathogen-associated structural patterns, PASPs) were shown numerous times to be important in driving B-cell and antibody responses. In this study, we dissected the individual contributions of these parameters using newly developed "Immune-tag" technology. As model antigens, we used eGFP and the third domain of the dengue virus 1 envelope protein (DV1 EDIII), the major target of virus-neutralizing antibodies. The respective proteins were expressed alone or genetically fused to the N-terminal fragment of the cucumber mosaic virus (CMV) capsid protein-nCMV, rendering the antigens oligomeric. In a step-by-step manner, RNA was attached as a PAMP, and/or a universal Th-cell epitope was genetically added for additional Th. Finally, a PASP was added to the constructs by displaying the antigens highly organized and repetitively on the surface of CMV-derived virus-like particles (CuMV VLPs). Sera from immunized mice demonstrated that each component contributed stepwise to the immunogenicity of both proteins. All components combined in the CuMV VLP platform induced by far the highest antibody responses. In addition, the DV1 EDIII induced high levels of DENV-1-neutralizing antibodies only if displayed on VLPs. Thus, combining multiple cues typically associated with viruses results in optimal antibody responses.

17.
Vaccines (Basel) ; 12(6)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38932406

ABSTRACT

Approved COVID-19 vaccines primarily induce neutralizing antibodies targeting the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein. However, the emergence of variants of concern with RBD mutations poses challenges to vaccine efficacy. This study aimed to design a next-generation vaccine that provides broader protection against diverse coronaviruses, focusing on glycan-free S2 peptides as vaccine candidates to overcome the low immunogenicity of the S2 domain due to the N-linked glycans on the S antigen stalk, which can mask S2 antibody responses. Glycan-free S2 peptides were synthesized and attached to SARS-CoV-2 virus-like particles (VLPs) lacking the S antigen. Humoral and cellular immune responses were analyzed after the second booster immunization in BALB/c mice. Enzyme-linked immunosorbent assay revealed the reactivity of sera against SARS-CoV-2 variants, and pseudovirus neutralization assay confirmed neutralizing activities. Among the S2 peptide-conjugated VLPs, the S2.3 (N1135-K1157) and S2.5 (A1174-L1193) peptide-VLP conjugates effectively induced S2-specific serum immunoglobulins. These antisera showed high reactivity against SARS-CoV-2 variant S proteins and effectively inhibited pseudoviral infections. S2 peptide-conjugated VLPs activated SARS-CoV-2 VLP-specific T-cells. The SARS-CoV-2 vaccine incorporating conserved S2 peptides and CoV-2 VLPs shows promise as a universal vaccine capable of generating neutralizing antibodies and T-cell responses against SARS-CoV-2 variants.

18.
Methods Mol Biol ; 2822: 387-410, 2024.
Article in English | MEDLINE | ID: mdl-38907930

ABSTRACT

Plant viruses such as brome mosaic virus and cowpea chlorotic mottle virus are effectively purified through PEG precipitation and sucrose cushion ultracentrifugation. Increasing ionic strength and an alkaline pH cause the viruses to swell and disassemble into coat protein subunits. The coat proteins can be reassembled into stable virus-like particles (VLPs) that carry anionic molecules at low ionic strength and through two-step dialysis from neutral pH to acidic buffer. VLPs have been extensively studied due to their ability to protect and deliver cargo, particularly RNA, while avoiding degradation under physiological conditions. Furthermore, chemical functionalization of the surface of VLPs allows for the targeted drug delivery. VLPs derived from plants have demonstrated great potential in nanomedicine by offering a versatile platform for drug delivery, imaging, and therapeutic applications.


Subject(s)
Plant Viruses , Plant Viruses/genetics , Capsid Proteins/chemistry , Capsid Proteins/genetics , Capsid Proteins/metabolism , Virion/chemistry , Virion/genetics , Bromovirus/chemistry , Bromovirus/genetics , RNA/chemistry , Hydrogen-Ion Concentration , RNA, Viral/genetics
19.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928403

ABSTRACT

Despite the recognized potential of nanoparticles, only a few formulations have progressed to clinical trials, and an even smaller number have been approved by the regulatory authorities and marketed. Virus-like particles (VLPs) have emerged as promising alternatives to conventional nanoparticles due to their safety, biocompatibility, immunogenicity, structural stability, scalability, and versatility. Furthermore, VLPs can be surface-functionalized with small molecules to improve circulation half-life and target specificity. Through the functionalization and coating of VLPs, it is possible to optimize the response properties to a given stimulus, such as heat, pH, an alternating magnetic field, or even enzymes. Surface functionalization can also modulate other properties, such as biocompatibility, stability, and specificity, deeming VLPs as potential vaccine candidates or delivery systems. This review aims to address the different types of surface functionalization of VLPs, highlighting the more recent cutting-edge technologies that have been explored for the design of tailored VLPs, their importance, and their consequent applicability in the medical field.


Subject(s)
Vaccines, Virus-Like Particle , Humans , Vaccines, Virus-Like Particle/immunology , Nanoparticles/chemistry , Animals , Virion/chemistry , Drug Delivery Systems/methods
20.
Macromol Biosci ; : e2400088, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864315

ABSTRACT

The phenomenon of RNA virus self-organization, first observed in the mid-20th century in tobacco mosaic virus, is the subject of extensive research. Efforts to comprehend this process intensify due to its potential for producing vaccines or antiviral compounds as well as nanocarriers and nanotemplates. However, direct observation of the self-assembly is hindered by its prevalence within infected host cells. One of the approaches involves in vitro and in silico research using model viruses featuring a ssRNA(+) genome enclosed within a capsid made up of a single type protein. While various pathways are proposed based on these studies, their relevance in vivo remains uncertain. On the other hand, the development of advanced microscopic methods provide insights into the events within living cells, where following viral infection, specialized compartments form to facilitate the creation of nascent virions. Intriguingly, a growing body of evidence indicates that the primary function of packaging signals in viral RNA is to effectively initiate the virion self-assembly. This is in contrast to earlier opinions suggesting a role in marking RNA for encapsidation. Another noteworthy observation is that many viruses undergo self-assembly within membraneless liquid organelles, which are specifically induced by viral proteins.

SELECTION OF CITATIONS
SEARCH DETAIL
...