Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 231
Filter
1.
Psychol Sci ; 35(9): 1035-1047, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39222160

ABSTRACT

Statistical learning is a powerful mechanism that enables the rapid extraction of regularities from sensory inputs. Although numerous studies have established that statistical learning serves a wide range of cognitive functions, it remains unknown whether statistical learning impacts conscious access. To address this question, we applied multiple paradigms in a series of experiments (N = 153 adults): Two reaction-time-based breaking continuous flash suppression (b-CFS) experiments showed that probable objects break through suppression faster than improbable objects. A preregistered accuracy-based b-CFS experiment showed higher localization accuracy for suppressed probable (versus improbable) objects under identical presentation durations, thereby excluding the possibility of processing differences emerging after conscious access (e.g., criterion shifts). Consistent with these findings, a supplemental visual-masking experiment reaffirmed higher localization sensitivity to probable objects over improbable objects. Together, these findings demonstrate that statistical learning alters the competition for scarce conscious resources, thereby potentially contributing to established effects of statistical learning on higher-level cognitive processes that require consciousness.


Subject(s)
Awareness , Reaction Time , Humans , Awareness/physiology , Adult , Male , Female , Young Adult , Reaction Time/physiology , Learning/physiology , Consciousness/physiology , Visual Perception/physiology , Adolescent
2.
Neuroimage ; 299: 120799, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39182710

ABSTRACT

A long-standing question concerns whether sensory input can reach semantic stages of processing in the absence of attention and awareness. Here, we examine whether the N400, an event related potential associated with semantic processing, can occur under conditions of inattentional blindness. By employing a novel three-phase inattentional blindness paradigm designed to maximise the opportunity for detecting an N400, we found no evidence for it when participants were inattentionally blind to the eliciting stimuli (related and unrelated word pairs). In contrast, participants noticed the same task-irrelevant word pairs when minimal attention was allocated to them, and a small N400 became evident. When the same stimuli were fully attended and relevant to the task, a robust N400 was observed. In addition to univariate ERP measures, multivariate decoding analyses were unable to classify related from unrelated word pairs when observers were inattentionally blind to the words, with decoding reaching above-chance levels only when the words were (at least minimally) attended. By comparison, decoding reached above-chance levels when contrasting word pairs with non-word stimuli, even when participants were inattentionally blind to these stimuli. Our results also replicated several previous studies by finding a "visual awareness negativity" (VAN) that distinguished task-irrelevant stimuli that participants noticed compared with those that were not perceived, and a P3b (or "late positivity") that was evident only when the stimuli were task relevant. Together, our findings suggest that semantic processing might require at least a minimal amount of attention.


Subject(s)
Attention , Electroencephalography , Evoked Potentials , Semantics , Humans , Male , Female , Attention/physiology , Young Adult , Electroencephalography/methods , Adult , Evoked Potentials/physiology , Brain/physiology
3.
Neuroimage ; 298: 120805, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39173692

ABSTRACT

The study of the neural substrates that serve conscious vision is one of the unsolved questions of cognitive neuroscience. So far, consciousness literature has endeavoured to disentangle which brain areas and in what order are involved in giving rise to visual awareness, but the problem of consciousness still remains unsolved. Availing of two different but complementary sources of data (i.e., Fast Optical Imaging and EEG), we sought to unravel the neural dynamics responsible for the emergence of a conscious visual experience. Our results revealed that conscious vision is characterized by a significant increase of activation in extra-striate visual areas, specifically in the Lateral Occipital Complex (LOC), and that, more interestingly, such activity occurred in the temporal window of the ERP component commonly thought to represent the electrophysiological signature of visual awareness, i.e., the Visual Awareness Negativity (VAN). Furthermore, Granger causality analysis, performed to further investigate the flow of activity occurring in the investigated areas, unveiled that neural processes relating to conscious perception mainly originated in LOC and subsequently spread towards visual and motor areas. In general, the results of the present study seem to advocate for an early contribution of LOC in conscious vision, thus suggesting that it could represent a reliable neural correlate of visual awareness. Conversely, striate visual areas, showing awareness-related activity only in later stages of stimulus processing, could be part of the cascade of neural events following awareness emergence.


Subject(s)
Consciousness , Electroencephalography , Occipital Lobe , Visual Perception , Humans , Consciousness/physiology , Visual Perception/physiology , Male , Female , Adult , Young Adult , Occipital Lobe/physiology , Occipital Lobe/diagnostic imaging , Primary Visual Cortex/physiology , Primary Visual Cortex/diagnostic imaging , Brain Mapping , Evoked Potentials, Visual/physiology , Visual Cortex/physiology , Visual Cortex/diagnostic imaging , Awareness/physiology
4.
Front Hum Neurosci ; 18: 1441915, 2024.
Article in English | MEDLINE | ID: mdl-39175660

ABSTRACT

The human brain is sensitive to threat-related information even when we are not aware of this information. For example, fearful faces attract gaze in the absence of visual awareness. Moreover, information in different sensory modalities interacts in the absence of awareness, for example, the detection of suppressed visual stimuli is facilitated by simultaneously presented congruent sounds or tactile stimuli. Here, we combined these two lines of research and investigated whether threat-related sounds could facilitate visual processing of threat-related images suppressed from awareness such that they attract eye gaze. We suppressed threat-related images of cars and neutral images of human hands from visual awareness using continuous flash suppression and tracked observers' eye movements while presenting congruent or incongruent sounds (finger snapping and car engine sounds). Indeed, threat-related car sounds guided the eyes toward suppressed car images, participants looked longer at the hidden car images than at any other part of the display. In contrast, neither congruent nor incongruent sounds had a significant effect on eye responses to suppressed finger images. Overall, our results suggest that only in a danger-related context semantically congruent sounds modulate eye movements to images suppressed from awareness, highlighting the prioritisation of eye responses to threat-related stimuli in the absence of visual awareness.

5.
J Cogn ; 7(1): 59, 2024.
Article in English | MEDLINE | ID: mdl-39035071

ABSTRACT

Within the realm of consciousness research, different methods of measuring the content of visual awareness are used: On the one hand, subjective measures require a report of sensory experiences related to a stimulus. On the other hand, objective measures rely on the observer's performance to accurately detect or discriminate the stimulus. The most appropriate measure of awareness is currently debated. To contribute to this debate, we review findings on the relation between subjective and objective measures of awareness. Although subjective measures sometimes lag behind objective measures, a substantial number of studies demonstrates a convergence of measures. Based on the reviewed studies, we identify five aspects relevant for achieving a convergence of measures. Future research could then identify and empirically test the boundary conditions, under which a convergence or divergence of subjective and measures of awareness is observed.

6.
Neuroimage ; 297: 120699, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38944172

ABSTRACT

After more than 30 years of extensive investigation, impressive progress has been made in identifying the neural correlates of consciousness (NCC). However, the functional role of spatiotemporally distinct consciousness-related neural activity in conscious perception is debated. An influential framework proposed that consciousness-related neural activities could be dissociated into two distinct processes: phenomenal and access consciousness. However, though hotly debated, its authenticity has not been examined in a single paradigm with more informative intracranial recordings. In the present study, we employed a visual awareness task and recorded the local field potential (LFP) of patients with electrodes implanted in cortical and subcortical regions. Overall, we found that the latency of visual awareness-related activity exhibited a bimodal distribution, and the recording sites with short and long latencies were largely separated in location, except in the lateral prefrontal cortex (lPFC). The mixture of short and long latencies in the lPFC indicates that it plays a critical role in linking phenomenal and access consciousness. However, the division between the two is not as simple as the central sulcus, as proposed previously. Moreover, in 4 patients with electrodes implanted in the bilateral prefrontal cortex, early awareness-related activity was confined to the contralateral side, while late awareness-related activity appeared on both sides. Finally, Granger causality analysis showed that awareness-related information flowed from the early sites to the late sites. These results provide the first LFP evidence of neural correlates of phenomenal and access consciousness, which sheds light on the spatiotemporal dynamics of NCC in the human brain.


Subject(s)
Awareness , Consciousness , Humans , Consciousness/physiology , Male , Female , Adult , Awareness/physiology , Visual Perception/physiology , Electrocorticography , Brain/physiology , Young Adult , Electrodes, Implanted , Prefrontal Cortex/physiology
7.
Conscious Cogn ; 122: 103709, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38781813

ABSTRACT

Conscious visual experiences are enriched by concurrent auditory information, implying audiovisual interactions. In the present study, we investigated how prior conscious experience of auditory and visual information influences the subsequent audiovisual temporal integration under the surface of awareness. We used continuous flash suppression (CFS) to render perceptually invisible a ball-shaped object constantly moving and bouncing inside a square frame window. To examine whether audiovisual temporal correspondence facilitates the ball stimulus to enter awareness, the visual motion was accompanied by click sounds temporally congruent or incongruent with the bounces of the ball. In Experiment 1, where no prior experience of the audiovisual events was given, we found no significant impact of audiovisual correspondence on visual detection time. However, when the temporally congruent or incongruent bounce-sound relations were consciously experienced prior to CFS in Experiment 2, congruent sounds yielded faster detection time compared to incongruent sounds during CFS. In addition, in Experiment 3, explicit processing of the incongruent bounce-sound relation prior to CFS slowed down detection time when the ball bounces became later congruent with sounds during CFS. These findings suggest that audiovisual temporal integration may take place outside of visual awareness though its potency is modulated by previous conscious experiences of the audiovisual events. The results are discussed in light of the framework of multisensory causal inference.


Subject(s)
Auditory Perception , Awareness , Consciousness , Visual Perception , Humans , Auditory Perception/physiology , Female , Male , Visual Perception/physiology , Adult , Young Adult , Awareness/physiology , Consciousness/physiology , Unconscious, Psychology , Reaction Time/physiology , Motion Perception/physiology , Photic Stimulation , Acoustic Stimulation
8.
Brain Sci ; 14(5)2024 May 20.
Article in English | MEDLINE | ID: mdl-38790496

ABSTRACT

This study addresses an issue in attentional distribution in a binocular visual system using RSVP tasks under Attentional Blink (AB) experimental protocols. In Experiment 1, we employed dichoptic RSVP to verify whether, under interocular competition, attention may be captured by a monocular channel. Experiment 2 was a control experiment, where a monoptic RSVP assessed by both or only one eye determines whether Experiment 1 monocular condition results were due to an allocation of attention to one eye. Experiment 3 was also a control experiment designed to determine whether Experiment 1 results were due to the effect of interocular competition or to a diminished visual contrast. Results from Experiment 1 revealed that dichoptic presentations caused a delay in the type stage of the Wyble's eSTST model, postponing the subsequent tokenization process. The delay in monocular conditions may be further explained by a visual attenuation, due to fusion of target and an empty frame. Experiment 2 evidenced the attentional allocation to monocular channels when forced by eye occlusion. Experiment 3 disclosed that monocular performance in Experiment 1 differs significantly from conditions with interocular competition. While both experiments revealed similar performance in monocular conditions, rivalry conditions exhibit lower detection rates, suggesting that competing stimuli was not responsible for Experiment 1 results. These findings highlight the differences between dichoptic and monoptic presentations of stimuli, particularly on the AB effect, which appears attenuated or absent in dichoptic settings. Furthermore, results suggest that monoptic presentation and binocular fusion stages were a necessary condition for the attentional allocation.

9.
Sci Rep ; 14(1): 10593, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719939

ABSTRACT

Previous research on the neural correlates of consciousness (NCC) in visual perception revealed an early event-related potential (ERP), the visual awareness negativity (VAN), to be associated with stimulus awareness. However, due to the use of brief stimulus presentations in previous studies, it remains unclear whether awareness-related negativities represent a transient onset-related response or correspond to the duration of a conscious percept. Studies are required that allow prolonged stimulus presentation under aware and unaware conditions. The present ERP study aimed to tackle this challenge by using a novel stimulation design. Male and female human participants (n = 62) performed a visual task while task-irrelevant line stimuli were presented in the background for either 500 or 1000 ms. The line stimuli sometimes contained a face, which needed so-called visual one-shot learning to be seen. Half of the participants were informed about the presence of the face, resulting in faces being perceived by the informed but not by the uninformed participants. Comparing ERPs between the informed and uninformed group revealed an enhanced negativity over occipitotemporal electrodes that persisted for the entire duration of stimulus presentation. Our results suggest that sustained visual awareness negativities (SVAN) are associated with the duration of stimulus presentation.


Subject(s)
Consciousness , Electroencephalography , Evoked Potentials , Visual Perception , Humans , Male , Female , Consciousness/physiology , Visual Perception/physiology , Adult , Young Adult , Evoked Potentials/physiology , Photic Stimulation , Awareness/physiology , Evoked Potentials, Visual/physiology
10.
Neuroscience ; 546: 143-156, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38574798

ABSTRACT

Identifying the neural correlates of consciousness (NCCs) is an important way to understand the fundamental nature of consciousness. By recording event-related potentials (ERPs) using EEG, researchers have found three potential electrophysiological NCCs: early positive correlate of consciousness (enhanced P1), visual awareness negativity (VAN), and late positivity (LP). However, LP may reflect post-perceptual processing associated with subjective reports rather than consciousness per se. The present experiment investigated the relationship between LP and subjective reports. We adopted two subjective reporting tasks that differed in the requirement for subjective reports. In the low-frequency reporting task, participants needed to report whether they saw the target picture in 25% of trials, whereas in the high-frequency reporting task, participants needed to report whether they saw the target picture in each trial. Behavioral results showed that the hit rates were lower and false alarm rates were higher on reporting trials in low-frequency reporting tasks than on reporting trials in high-frequency reporting tasks. Unexpectedly, VAN was larger on reporting trials in the low-frequency reporting task than on reporting trials in the high-frequency reporting task. Importantly, our ERP results showed that LP was larger on reporting trials in the high-frequency reporting task than on reporting trials in the low-frequency reporting task. Thus, our findings indicated that when the frequency of reports was increased, the task relevance of the stimuli increased, which led to larger LP amplitudes. These findings suggest that LP correlates with subjective reports.


Subject(s)
Electroencephalography , Evoked Potentials , Humans , Female , Male , Electroencephalography/methods , Young Adult , Evoked Potentials/physiology , Adult , Consciousness/physiology , Visual Perception/physiology , Photic Stimulation/methods , Brain/physiology , Awareness/physiology
11.
Neuropsychologia ; 198: 108864, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38521150

ABSTRACT

Early visual cortex (V1-V3) is believed to be critical for normal visual awareness by providing the necessary feedforward input. However, it remains unclear whether visual awareness can occur without further involvement of early visual cortex, such as re-entrant feedback. It has been challenging to determine the importance of feedback activity to these areas because of the difficulties in dissociating this activity from the initial feedforward activity. Here, we applied single-pulse transcranial magnetic stimulation (TMS) over the left posterior parietal cortex to elicit phosphenes in the absence of direct visual input to early visual cortex. Immediate neural activity after the TMS pulse was assessed using the event-related optical signal (EROS), which can measure activity under the TMS coil without artifacts. Our results show that: 1) The activity in posterior parietal cortex 50 ms after TMS was related to phosphene awareness, and 2) Activity related to awareness was observed in a small portion of V1 140 ms after TMS, but in contrast (3) Activity in V2 was a more robust correlate of awareness. Together, these results are consistent with interactive models proposing that sustained and recurrent loops of activity between cortical areas are necessary for visual awareness to emerge. In addition, we observed phosphene-related activations of the anteromedial cuneus and lateral occipital cortex, suggesting a functional network subserving awareness comprising these regions, the parietal cortex and early visual cortex.


Subject(s)
Awareness , Phosphenes , Transcranial Magnetic Stimulation , Visual Cortex , Humans , Male , Female , Awareness/physiology , Adult , Visual Cortex/physiology , Young Adult , Phosphenes/physiology , Visual Perception/physiology , Photic Stimulation , Parietal Lobe/physiology , Brain Mapping , Visual Pathways/physiology
12.
Acta Psychol (Amst) ; 244: 104192, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38377873

ABSTRACT

Calorie content and hunger are two fundamental cues acting upon the processing of visually presented food items. However, whether and to which extent they affect visual awareness is still an open question. Here, high- and low-calorie food images administered to hungry or satiated participants were confronted in a breaking-Continuous Flash Suppression paradigm (Experiment 1), measuring the time required to access to visual awareness, and in a Binocular Rivalry paradigm (Experiment 2), quantifying the dominance time in visual awareness. Experiment 1 showed that high-calorie food accessed faster visual awareness, but mostly in satiated participants. Experiment 2 indicated that high-calorie food dominated longer visual awareness, regardless the degree of hunger. We argued that the unconscious advantage (Experiment 1) would represent a default state of the visual system towards highest-energy nutrients, yet the advantage is lost in hunger so to be tuned towards an increased need for any nutritional category. On the other hand, the conscious advantage of high-calorie food (Experiment 2) would represent a conscious perceptual and attentional bias towards highest energy-dense food useful for the actual detection of these stimuli in the environment.


Subject(s)
Food , Hunger , Humans , Energy Intake , Cues , Satiation , Awareness
13.
Conscious Cogn ; 119: 103670, 2024 03.
Article in English | MEDLINE | ID: mdl-38422759

ABSTRACT

The debate over the independence of attention and consciousness is ongoing. Prior studies have established that invisible spatial cues can direct attention. However, our exploration extends beyond spatial dimensions to temporal information as a potent guide for attention. A intriguing question arises: Can unconscious temporal cues trigger attentional orienting? To investigate, we employed a modified reaction-time task in Experiments 1 and 2, using Gabor stimuli or human facial stimuli as temporal cues rendered invisible through continuous flash suppression. We aimed to uncover temporal expectation effects (TE effects) without conscious awareness. Moreover, Experiments 3 and 4 probed the boundaries of this unconscious processing, assessing whether conscious temporal cues could modulate TE effects. Our results confirm that invisible temporal cues can induce TE effects, and these effects can be overridden by conscious temporal cues. This dissociation between temporal attention and consciousness provide a new perspective on our understanding of their relationship.


Subject(s)
Consciousness , Cues , Humans , Motivation , Awareness , Reaction Time
14.
Curr Biol ; 34(5): 1048-1058.e4, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38377998

ABSTRACT

Whether prestimulus oscillatory brain activity contributes to the generation of post-stimulus-evoked neural responses has long been debated, but findings remain inconclusive. We first investigated the hypothesized relationship via EEG recordings during a perceptual task with this correlational evidence causally probed subsequently by means of online rhythmic transcranial magnetic stimulation. Both approaches revealed a close link between prestimulus individual alpha frequency (IAF) and P1 latency, with faster IAF being related to shorter latencies, best explained via phase-reset mechanisms. Moreover, prestimulus alpha amplitude predicted P3 size, best explained via additive (correlational and causal evidence) and baseline shift mechanisms (correlational evidence), each with distinct prestimulus alpha contributors. Finally, in terms of performance, faster prestimulus IAF and shorter P1 latencies were both associated with higher task accuracy, while lower prestimulus alpha amplitudes and higher P3 amplitudes were associated with higher confidence ratings. Our results are in favor of the oscillatory model of ERP genesis and modulation, shedding new light on the mechanistic relationship between prestimulus oscillations and functionally relevant evoked components.


Subject(s)
Alpha Rhythm , Transcranial Magnetic Stimulation , Transcranial Magnetic Stimulation/methods , Alpha Rhythm/physiology , Photic Stimulation , Electroencephalography/methods , Visual Perception/physiology
15.
Neurosci Conscious ; 2024(1): niad027, 2024.
Article in English | MEDLINE | ID: mdl-38292024

ABSTRACT

Motion aftereffects (MAEs), illusory motion experienced in a direction opposed to real motion experienced during prior adaptation, have been used to assess audiovisual interactions. In a previous study from our laboratory, we demonstrated that a congruent direction of auditory motion presented concurrently with visual motion during adaptation strengthened the consequent visual MAE, compared to when auditory motion was incongruent in direction. Those judgments of MAE strength, however, could have been influenced by expectations or response bias from mere knowledge of the state of audiovisual congruity during adaptation. To prevent such knowledge, we now employed continuous flash suppression to render visual motion perceptually invisible during adaptation, ensuring that observers were completely unaware of visual adapting motion and only aware of the motion direction of the sound they were hearing. We found a small but statistically significant congruence effect of sound on adaptation strength produced by invisible adaptation motion. After considering alternative explanations for this finding, we conclude that auditory motion can impact the strength of visual processing produced by translational visual motion even when that motion transpires outside of awareness.

16.
Psychophysiology ; 61(6): e14529, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38279560

ABSTRACT

The visual system has long been considered equivalent across hemispheres. However, an increasing amount of data shows that functional differences may exist in this regard. We therefore tried to characterize the emergence of visual perception and the spatiotemporal dynamics resulting from the stimulation of visual cortices in order to detect possible interhemispheric asymmetries. Eighteen participants were tested. Each of them received 360 transcranial magnetic stimulation (TMS) pulses at phosphene threshold intensity over left and right early visual areas while electroencephalography was being recorded. After each single pulse, participants had to report the presence or absence of a phosphene. Local mean field power analysis of TMS-evoked potentials showed an effect of both site (left vs. right TMS) of stimulation and hemisphere (ipsilateral vs. contralateral to the TMS): while right TMS determined early stronger activations, left TMS determined later stronger activity in contralateral electrodes. The interhemispheric signal propagation index revealed differences in how TMS-evoked activity spreads: left TMS-induced activity diffused contralaterally more than right stimulation. With regard to phosphenes perception, distinct electrophysiological patterns were found to reflect similar perceptual experiences: left TMS-evoked phosphenes are associated with early occipito-parietal and frontal activity followed by late central activity; right TMS-evoked phosphenes determine only late, fronto-central, and parietal activations. Our results show that left and right occipital TMS elicits differential electrophysiological patterns in the brain, both per se and as a function of phosphene perception. These distinct activation patterns may suggest a different role of the two hemispheres in processing visual information and giving rise to perception.


Subject(s)
Electroencephalography , Functional Laterality , Transcranial Magnetic Stimulation , Visual Perception , Humans , Male , Female , Adult , Functional Laterality/physiology , Visual Perception/physiology , Young Adult , Visual Cortex/physiology , Phosphenes/physiology , Evoked Potentials, Visual/physiology , Brain Mapping
17.
Cogn Emot ; 38(2): 267-275, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37997901

ABSTRACT

This study explored how congruency between facial mimicry and observed expressions affects the stability of conscious facial expression representations. Focusing on the congruency effect between proprioceptive/sensorimotor signals and visual stimuli for happy expressions, participants underwent a binocular rivalry task displaying neutral and happy faces. Mimicry was either facilitated with a chopstick or left unrestricted. Key metrics included Initial Percept (bias indicator), Onset Resolution Time (time from onset to Initial Percept), and Cumulative Time (content stabilization measure). Results indicated that mimicry manipulation significantly impacted Cumulative Time for happy faces, highlighting the importance of congruent mimicry in stabilizing conscious awareness of facial expressions. This supports embodied cognition models, showing the integration of proprioceptive information significantly biases conscious visual perception of facial expressions.


Subject(s)
Facial Expression , Happiness , Humans , Visual Perception , Face , Emotions
18.
Atten Percept Psychophys ; 86(2): 482-502, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37821745

ABSTRACT

Visual scenes are too complex for one to immediately perceive all their details. As suggested by Gestalt psychologists, grouping similar scene elements and perceiving their summary statistics provides one shortcut for evaluating scene gist. Perceiving ensemble statistics overcomes processing, attention, and memory limits, facilitating higher-order scene understanding. Ensemble perception spans simple/complex dimensions (circle size, face emotion), including various statistics (mean, range), and inherently spans space and/or time, when sets are presented scattered across the visual scene, and/or sequentially in rapid series. Furthermore, ensemble perception occurs explicitly, when observers are asked to judge set mean, and also automatically/implicitly, when observers are engaged in an orthogonal task. We now study relationships among these ensemble-perception phenomena, testing explicit and implicit ensemble perception; for sets varying in circle size, line orientation, or disc brightness; and with spatial, temporal or spatio-temporal presentation. Following ensemble set presentation, observers were asked if a test image, or which of two test images, had been present in the set. Confirming previous results, responses reflected implicit mean perception, depending on test image distance from the mean, and on its being within or outside ensemble range. Subsequent experiments asked the same observers to explicitly judge whether test images were larger, more clockwise, or brighter than the set mean, or which of two test images was closer to the mean. Comparing implicit and explicit mean perception, we find that explicit ensemble averaging is more precise than implicit mean perception-for each ensemble variable and presentation mode. Implications are discussed regarding possible separate mechanisms for explicit versus implicit ensemble perception.


Subject(s)
Attention , Emotions , Humans , Attention/physiology , Perception , Visual Perception/physiology
19.
Chem Senses ; 492024 01 01.
Article in English | MEDLINE | ID: mdl-37642223

ABSTRACT

A growing body of research suggests that emotional chemosignals in others' body odor (BO), particularly those sampled during fearful states, enhance emotional face perception in conscious and preconscious stages. For instance, emotional faces access visual awareness faster when presented with others' fear BOs. However, the effect of these emotional signals in self-BO, that is, one's own BO, is still neglected in the literature. In the present work, we sought to determine whether emotional self-BOs modify the access to visual awareness of emotional faces. Thirty-eight women underwent a breaking-Continuous Flash Suppression task in which they were asked to detect fearful, happy, and neutral faces, as quickly and accurately as possible, while being exposed to their fear, happiness, and neutral self-BOs. Self-BOs were previously collected and later delivered via an olfactometer, using an event-related design. Results showed a main effect of emotional faces, with happy faces being detected significantly faster than fearful and neutral faces. However, our hypothesis that fear self-BOs would lead to faster emotional face detection was not confirmed, as no effect of emotional self-BOs was found-this was confirmed with Bayesian analysis. Although caution is warranted when interpreting these results, our findings suggest that emotional face perception is not modulated by emotional self-BOs, contrasting with the literature on others' BOs. Further research is needed to understand the role of self-BOs in visual processing and emotion perception.


Subject(s)
Body Odor , Facial Expression , Humans , Female , Bayes Theorem , Emotions , Fear
20.
Neurosci Res ; 201: 39-45, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37696449

ABSTRACT

The nature of subjective conscious experience, which accompanies us throughout our waking lives, and how it is generated, remain elusive. One of the challenges in studying subjective experience is disentangling the brain activity related to the sensory stimulus processing and stimulus-guided behavior from those associated with subjective perception. Blindsight, a phenomenon characterized by the retained visual discrimination performance but impaired visual consciousness due to damage to the primary visual cortex, becomes a special entry point to address this question. However, to fully understand the underlying neural mechanism, relying on studies involving human patients alone is insufficient. In this paper, we tried to address this issue, by first introducing the well-known cases of blindsight, especially the reports on subjective experience in both human and monkey subjects. And then we described how the impaired visual awareness of blindsight monkeys has been discovered and further studied by specifically designed tasks, as verbal reporting is not possible for these animals. Our previous studies also demonstrated that many complex visually guided cognitive processes were still retained despite the impairment of visual awareness. Further investigation needs to be conducted to explore the relationship between visually guided behavior, visual awareness and brain activity in blindsight subjects.


Subject(s)
Visual Cortex , Animals , Humans , Awareness , Visual Perception , Consciousness , Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL