Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 283
Filter
1.
Int J Biol Macromol ; 275(Pt 1): 133567, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38950799

ABSTRACT

The purpose of this research was to evaluate the efficacy of sodium lignosulfonate (LS) as a dye adsorbent in the removal of methylene blue (MB) from water by polymer-enhanced ultrafiltration. Various parameters were evaluated, such as membrane molecular weight cut-off, pH, LS dose, MB concentration, applied pressure, and the effect of interfering ions. The results showed that the use of LS generated a significant increase in MB removal, reaching an elimination of up to 98.0 % with 50.0 mg LS and 100 mg L-1 MB. The maximum MB removal capacity was 21 g g-1 using the enrichment method. In addition, LS was reusable for up to four consecutive cycles of dye removal-elution. The removal test in a simulated liquid industrial waste from the textile industry was also effective, with a MB removal of 97.2 %. These findings indicate that LS is highly effective in removing high concentrations of MB dye, suggesting new prospects for its application in water treatment processes.


Subject(s)
Lignin , Methylene Blue , Ultrafiltration , Water Pollutants, Chemical , Water Purification , Methylene Blue/chemistry , Lignin/chemistry , Lignin/analogs & derivatives , Ultrafiltration/methods , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Hydrogen-Ion Concentration , Coloring Agents/chemistry , Coloring Agents/isolation & purification , Adsorption , Polymers/chemistry
2.
Heliyon ; 10(12): e33101, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39021971

ABSTRACT

The main objective of this study was to evaluate the impact of the length and retention time of a tubular helical flow flocculator (THFF) on the elimination of turbidity and color from raw water, to obtain quality treated water for consumption in areas rural. For this, a large-scale field experimental system was used, the THFF was built with 4-inch diameter polyethylene hose and coupled to a sedimentation and filtration process. For the different experimental tests, aluminum sulfate was chosen as the coagulant. To find the optimal dose of coagulant, jar tests were previously carried out. For the tests the length of the THFF was varied (50 m and 75 m), flow rates of 0.25, 0.5, 0.75, 1 and 2 L/s and turbidity ranges of <10, 10-20, 21-50, 51-100 and > 100 NTU of raw water were tested. An evaluation of the hydraulic behavior of the THFF was carried out through an analysis of the temporal distribution curve of the concentration of a tracer, applying the Wolf-Resnick model. The average results revealed a haze and color removal efficiency of 98.07 % and 98.50 %, respectively. The residence time and velocity gradient exhibited variations in a range of 2.25-35.0 min and 3.64 to 56.94 s-1, respectively. It was evident that the operation and effectiveness of THFF are directly influenced by the turbidity of the raw water, the residence time and the velocity gradient. These findings indicate that THFF could play a valuable role as a flocculation unit in a purification system, mainly the existence of a plug-type flow was observed. The findings indicate that THFF, complemented by settling and filtration processes, could be a valuable tool for implementation in rural areas.

3.
J Environ Manage ; 366: 121930, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39053376

ABSTRACT

The sonochemical system is highly effective at degrading hydrophobic substances but has limitations when it comes to eliminating hydrophilic compounds. This study examines the impact of organic and inorganic additives on improving the sonochemical degradation of hydrophilic pollutants in water. The effects of adding an organic substance (CCl4) and two inorganic ions (Fe2+ and HCO3-) were tested. The treatment was focused on a representative hydrophilic antibiotic, cefadroxil (CDX). Initially, the sonodegradation of CDX without additives was assessed and compared with two reference pollutants more hydrophobic than CDX: dicloxacillin (DCX) and methyl orange (MO). The results highlighted the limitations of ultrasound alone in degrading CDX. Subsequently, the impact of the additives on enhancing the removal of this recalcitrant pollutant was evaluated at two frequencies (375 and 990 kHz). A significant improvement in the CDX degradation was observed with the presence of CCl4 and Fe2+ at both frequencies. Increasing CCl4 concentration led to greater CDX elimination, whereas a high Fe2+ concentration had detrimental effects. To identify the reactive sites on CDX towards the species generated with the additives, theoretical calculations (i.e. Fukui indices and HOMO-LUMO gaps) were performed. These analyses indicated that the ß-lactam and dihydrothiazine rings on CDX are highly reactive towards oxidizing species. This research enhances our understanding of the relationship between the structural characteristics of contaminants and the sonochemical frequency in the action of additives having diverse nature.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry
4.
Environ Pollut ; 358: 124514, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38986762

ABSTRACT

Pesticides has transformed the agricultural industry, primarily by enhancing productivity. However, the indiscriminate use of such compounds can adversely affect human health and disrupt ecosystem balance. Limited knowledge exists regarding the removal of these compounds from water, particularly for organophosphate pesticides when employing conventional treatment technologies. Therefore, this study aimed to assess the removal of acephate (ACE) and methamidophos (MET) - considered priority pesticides in Brazil - from waters with high and low turbidity during the clarification process carried out with aluminum sulfate (AS) and ferric chloride (FC), either alone or combined with powdered activated carbon (PAC) adsorption. All water samples were submitted to solid phase extraction (SPE C18 cartridges) prior to acephate and methamidophos analysis by HPLC MS/MS. The clarification process with either AS or FC coagulant did not efficiently remove acephate or methamidophos and maximum average removal (27 %) was observed with waters of high turbidity when using ferric chloride as coagulant. Addition of mineral PAC was also ineffective for removing both pesticides. However, the use of vegetable PAC (10 mg/L) resulted in better removal percentages, up to 80%, but only for methamidophos. The limited removal rates were attributed to the high hydrophilicity of acephate and methamidophos, along with their neutral charge at coagulation pH. These factors hinder the interaction of such organophosphorus pesticides with the flocs formed during coagulation as well as with PAC surface.


Subject(s)
Organothiophosphorus Compounds , Phosphoramides , Water Pollutants, Chemical , Water Purification , Organothiophosphorus Compounds/chemistry , Water Pollutants, Chemical/analysis , Adsorption , Water Purification/methods , Ferric Compounds/chemistry , Brazil , Alum Compounds/chemistry , Solid Phase Extraction/methods , Pesticides , Chlorides
5.
J Hazard Mater ; 474: 134552, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38823105

ABSTRACT

Contamination of water bodies with heavy metals poses a significant threat to human health and the environment, requiring the development of effective treatment techniques. In this context, aluminosilicates emerge as promising sorbents due to their cost-effectiveness and natural abundance. This review provides a clear, in-depth, and comprehensive description of the structure, properties, and characteristics of aluminosilicates, supporting their application as adsorbents and highlighting their diversity and adaptability to different matrices and analytes. Furthermore, the functionalization of these materials is thoroughly addressed, detailing the techniques currently used, exposing the advantages and disadvantages of each approach, and establishing comparisons and evaluations of the performances of various functionalized aluminosilicates in the extraction of heavy metals in aqueous matrices. This work aims not only to comprehensively review numerous studies from recent years but also to identify trends in the study of such materials and inspire future research and applications in the field of contaminant removal using aluminosilicates.

6.
Environ Geochem Health ; 46(6): 190, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695943

ABSTRACT

A magnetic nanocomposite of hydroxyapatite and biomass (HAp-CM) was synthesized through a combined ultrasonic and hydrothermal method, aiming for efficient adsorption of arsenic (As) and fluoride (F-) from drinking water in natural environments. The characterization of HAp-CM was carried out using TG, FTIR, XRD, SEM, SEM-EDS, and TEM techniques, along with the determination of pHpzc charge. FTIR analysis suggested that coordinating links are the main interactions that allow the formation of the nanocomposite. XRD data indicated that the crystalline structure of the constituent materials remained unaffected during the formation of HAp-CM. SEM-EDS analysis revelated a Ca/P molar ratio of 1.78. Adsorption assays conducted in batches demonstrated that As and F- followed a PSO kinetic model. Furthermore, As adsorption fitting well to the Langmuir model, while F- adsorption could be explained by both Langmuir and Freundlich models. The maximum adsorption capacity of HAp-CM was found to be 5.0 mg g-1 for As and 10.2 mg g-1 for F-. The influence of sorbent dosage, pH, and the presence of coexisting species on adsorption capacity was explored. The pH significantly affected the nanocomposite's efficiency in removing both pollutants. The presence of various coexisting species had different effects on F- removal efficiency, while As adsorption efficiency was generally enhanced, except in the case of PO43-. The competitive adsorption between F- and As on HAp-CM was also examined. The achieved results demonstrate that HAp-CM has great potential for use in a natural environment, particularly in groundwater remediation as a preliminary treatment for water consumption.


Subject(s)
Arsenic , Durapatite , Fluorides , Nanocomposites , Water Pollutants, Chemical , Water Purification , Fluorides/chemistry , Adsorption , Nanocomposites/chemistry , Durapatite/chemistry , Water Pollutants, Chemical/chemistry , Arsenic/chemistry , Water Purification/methods , Hydrogen-Ion Concentration , Biomass , Kinetics , Drinking Water/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
7.
Int J Phytoremediation ; 26(10): 1556-1563, 2024.
Article in English | MEDLINE | ID: mdl-38584512

ABSTRACT

Chile, the world's leading copper producer, generates significant volumes of mining waters, some of which cannot be recirculated into the production process. These mining waters are characterized by elevated sulfate (SO42-) concentrations, requiring sustainable management strategies for potential reuse. This study aims to evaluate the rhizofiltration technique using Carpobrotus chilensis for treating mining waters with a high SO42- concentration. Initially, the mining waters exhibited a pH of 7.97 ± 0.16 and a SO42- concentration of 2,743 ± 137 mg L-1, while the control water had a pH of 7.88 ± 0.08 and a SO42- concentration of 775 ± 19.0 mg L-1. The plants were hydroponically cultivated in 40 L containers with mining waters and drinking water as a control. Over an 8-week period, the pH of the mining water decreased to 3.12 ± 0.01, and the SO42- concentration declined to 2,200 ± 110 mg L-1. Notably, the fresh weight of roots was significantly higher in plants grown in mining water (22.2 ± 6.66 g) compared to those in the control treatment (14.3 ± 4.28 g). However, an undesirable increase in the acidity was observed in the mining waters after rhizofiltration, which was attributed to hydrogen sulfate (HSO4-) and/or root exudates. Despite the unexpected increase in acidity, C. chilensis effectively reduced the concentration of SO42- in mining waters by 20%. Additionally, the C. chilensis roots accumulated 4.84 ± 1.40% of sulfur (S), a level comparable to thiophore plants. This study provides evidence that this non-aquatic plant can be used in sulfate rhizofiltration.


Caprobrotus chilensis is a good candidate for sulfate rhizolfiltration in mining waters.The accumulation of sulfur by the roots of Carpobrotus chilensis reached 4.84%Mining waters with a high concentration of sulfates require control of the redox potential.


Subject(s)
Biodegradation, Environmental , Mining , Sulfates , Water Pollutants, Chemical , Sulfates/metabolism , Water Pollutants, Chemical/metabolism , Filtration , Water Purification/methods
8.
Environ Sci Pollut Res Int ; 31(22): 32614-32636, 2024 May.
Article in English | MEDLINE | ID: mdl-38656718

ABSTRACT

The water treatment depends exclusively on the identification of residues containing toxic chemical elements accumulated in NPs (nanoparticles), and ultrafine particles sourced from waste piles located at old, abandoned sulfuric acid factories containing phosphogypsum requires global attention. The general objective of this study is to quantify and analyze the hazardous chemical elements present in the leachate of waste from deactivated sulfuric acid factories, coupled in NPs and ultrafine particles, in the port region of the city of Imbituba, Santa Catarina, Brazil. Samples were collected in 2020, 2021, and 2022. Corresponding images from the Sentinel-3B OLCI satellite, taken in the same general vicinity, detected the levels of absorption coefficient of Detritus and Gelbstoff (ADG443_NN) in 443 m-1, chlorophyll-a (CHL_NN (m-3)), and total suspended matter (TSM_NN (g m-3) at 72 points on the marine coast of the port region. The results of inductively coupled plasma atomic-emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS) demonstrate that the leaching occurring in waste piles at the port area of Imbituba was the likely source of hazardous chemical elements (e.g., Mg, Sr, Nd, and Pr) in the environment. These leachates were formed due to the presence of coal pyrite and Fe-acid sulfates in said waste piles. The mobility of hazardous chemical elements potentiates changes in the marine ecosystem, in relation to ADG443_NN (m-1), CHL_NN (m-3), and TSM NN (g m-3), with values greater than 20 g m-3 found in 2021 and 2022. This indicated changes in the natural conditions of the marine ecosystem up to 30 km from the coast in the Atlantic Ocean, justifying public initiatives for water treatment on a global scale.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , Water Quality , Environmental Monitoring/methods , Brazil , Water Pollutants, Chemical/analysis
9.
Environ Monit Assess ; 196(5): 439, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592554

ABSTRACT

In this study, the Quantitative Microbial Risk Assessment (QMRA) methodology was applied to estimate the annual risk of Giardia and Cryptosporidium infection associated with a water treatment plant in southern Brazil. The efficiency of the treatment plant in removing protozoa and the effectiveness of the Brazilian legislation on microbiological protection were evaluated, emphasizing the relevance of implementing the QMRA in this context. Two distinct approaches were employed to estimate the mechanical removal of protozoa: The definitions provided by the United States Environmental Protection Agency (USEPA), and the model proposed by Neminski and Ongerth. Although the raw water collected had a higher concentration of Giardia cysts than Cryptosporidium oocysts, the estimated values for the annual risk of infection were significantly higher for Cryptosporidium than for Giardia. From a general perspective, the risk values of protozoa infection were either below or very near the limit set by the World Health Organization (WHO). In contrast, all the risk values of Cryptosporidium infection exceeded the threshold established by the USEPA. Ultimately, it was concluded that the implementation of the QMRA methodology should be considered by the Brazilian authorities, as the requirements and guidelines provided by the Brazilian legislation proved to be insufficient to guarantee the microbiological safety of drinking water. In this context, the QMRA application can effectively contribute to the prevention and investigation of outbreaks of waterborne disease.


Subject(s)
Cryptosporidiosis , Cryptosporidium , United States , Humans , Cryptosporidiosis/epidemiology , Brazil/epidemiology , Environmental Monitoring , Giardia , Risk Assessment
10.
Environ Technol ; : 1-12, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38449387

ABSTRACT

Incidents of mining dam failure have compromised the water quality, threatening the water supply. Different strategies are sought to restore the impacted area and to guarantee the water supply. One example is water treatment plants that treat high-polluted waters within the required limits for their multiple usages. The current study assesses the integration of reverse osmosis (RO) to a river water treatment plant (RWTP) installed in Brumadinho (Minas Gerais, Brazil) to treat the water from the Ferro-Carvão stream impacted by the B1 dam rupture in 2019. The RWTP started eleven months after the mining dam rupture and is equipped with eight coagulation-flocculation tanks followed by eight pressurised filters. A pilot RO plant was installed to polish the water treated by the RWTP. Water samples were collected at different points of the water treatment plant and were characterised by their physical, chemical, and biological parameters (160 in total). The results were compared with the historical data (1997-2022) to reveal the alterations in the water quality after the rupture event. The compliance with both parameters was only achieved after the RO treatment, which acted as an additional barrier to 30 contaminants. The water quality indexes (WQI) suggested that the raw surface water, even eleven months after the incident, was unfit for consumption (WQI: 133.9) whereas the reverse osmosis permeate was ranked as excellent in the rating grid (WQI: 23.7).

11.
Int J Biol Macromol ; 266(Pt 2): 131110, 2024 May.
Article in English | MEDLINE | ID: mdl-38522694

ABSTRACT

Chitosan (CS) and sodium alginate (SA)-based biocomposites (CSA) were prepared with the in-situ generation of Calcium Carbonate (CSAX_Ca) through a simple, straightforward, economical, and eco-friendly procedure. Different drying conditions (X) were tested to achieve suitable structural and surface characteristics to enhance adsorption capacity: freeze-dried (L), vacuum-dried with methanol (M), and freeze-dried + vacuum-dried with methanol (LM). Temperature and adsorbent dosage effects on the adsorption capacity of Cu2+ or Pb2+ were examined. Results showed that the higher-yielding biocomposite (CSALM_Ca) exhibited rapid adsorption and good diffusion properties, achieving removal above 90 % within contaminant initial concentration ranges of 10-100 mg/L. At 35 °C, a pseudo-second-order kinetic and the Langmuir model effectively described kinetics and isotherms, revealing maximum adsorption (qe, max) of 429 mgCu2+/L and 1742 mgPb2+/g. Characterization through FTIR, XRD, and SEM of the as-prepared adsorbents confirmed the presence of CaCO3 in vaterite and calcite forms and the influence of drying conditions on the material morphology. Post-adsorption material characterization, in combination with adsorption findings, revealed chemisorption processes involving Ca2+ ion exchange for Cu2+ or Pb2+, resulting in surface-insoluble compounds. The best-performing material showed that after three reuse cycles, the removal of Cu2+ and Pb2+ decreased to 75 % and 62 %, respectively.


Subject(s)
Alginates , Calcium Carbonate , Chitosan , Copper , Lead , Water Pollutants, Chemical , Water Purification , Chitosan/chemistry , Copper/chemistry , Alginates/chemistry , Lead/chemistry , Adsorption , Calcium Carbonate/chemistry , Water Pollutants, Chemical/chemistry , Kinetics , Water Purification/methods , Water/chemistry , Surface Properties , Temperature
12.
J Environ Manage ; 353: 120175, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38281424

ABSTRACT

This study delves into the critical nexus between wastewater treatment, energy consumption, and greenhouse gas emissions. Wastewater treatment is a linchpin of sustainable development, yet its energy-intensive processes contribute significantly to greenhouse gas emissions. The research focuses on wastewater treatment plants (WWTPs) in Mexico City (CDMX) and the Metropolitan Area of Barcelona (AMB), exploring the disparities between a developed country and a developing country. The study examines how factors such as water treatment technologies and electricity sources influence carbon emissions. The AMB exhibits superior performance by treating all wastewater, cogenerating energy from the biomass contained in the wastewater and generating 10% fewer emissions, in stark contrast to CDMX, which does not capture the CH4 produced during water treatment, on top of only treating the water of 14% of the city's agglomeration. It underscores the critical implications of WWTP efficiency on climate change and progress toward UN Sustainable Development Goals. Given the limited attention to the Global South, this research serves as a vital contribution to the discourse on sustainability and development.


Subject(s)
Greenhouse Gases , Water Purification , Greenhouse Gases/analysis , Wastewater , Mexico , Greenhouse Effect
13.
Environ Sci Pollut Res Int ; 31(5): 6782-6814, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38165540

ABSTRACT

This study presents a systematic review of the scientific and technological production related to the use of systems based on UV, H2O2, and Cl2 for the elimination of antibiotic-resistant bacteria (ARB) and genes associated with antibiotic resistance (ARGs). Using the Pro Know-C (Knowledge Development Process-Constructivist) methodology, a portfolio was created and analyzed that includes 19 articles and 18 patents published between 2011 and 2022. The results show a greater scientific-technological production in UV irradiation systems (8 articles and 5 patents) and the binary combination UV/H2O2 (9 articles and 4 patents). It was emphasized that UV irradiation alone focuses mainly on the removal of ARB, while the addition of H2O2 or Cl2, either individually or in binary combinations with UV, enhances the removal of ARB and ARG. The need for further research on the UV/H2O2/Cl2 system is emphasized, as gaps in the scientific-technological production of this system (0 articles and 2 patents), especially in its electrochemically assisted implementation, have been identified. Despite the gaps identified, there are promising prospects for the use of combined electrochemically assisted UV/H2O2/Cl2 disinfection systems. This is demonstrated by the effective removal of a wide range of contaminants, including ARB, fungi, and viruses, as well as microorganisms resistant to conventional disinfectants, while reducing the formation of toxic by-products.


Subject(s)
Hydrogen Peroxide , Water Purification , Angiotensin Receptor Antagonists , Water Purification/methods , Chlorine , Angiotensin-Converting Enzyme Inhibitors , Drug Resistance, Microbial/genetics , Bacteria/genetics , Disinfection/methods , Ultraviolet Rays
14.
Int J Biol Macromol ; 254(Pt 2): 127826, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37926324

ABSTRACT

This paper explores the application of cross-linked cellulose beads as a sustainable and cost-effective support for the ZnO/SnO2/carbon xerogel hybrid photocatalyst. The application of the developed photocatalytic beads, named CB-Cat, was directed at a simultaneous adsorption/photocatalysis process, which was carried out under simulated sunlight. The characterization of the CB-Cat indicated a good dispersion of the photocatalyst of choice throughout the cellulose matrix, confirming its incorporation into the cellulose beads. Furthermore, it is possible to observe the presence of the photocatalyst on the surface of the CB-Cat, confirming its availability for the photonic activation process. The results showed that the simultaneous adsorption/photocatalysis process was optimal for enhancing the efficiency of methylene blue (MB) removal, especially when compared to the isolated adsorption process. Additionally, the regeneration of the CB-Cat between cycles was favorable toward the maintenance of the MB removal efficiency, as the process carried out without regeneration displayed significant efficiency drops between cycles. Finally, the mechanism evaluation evidenced that hydroxyl and superoxide radicals were the main responsible for the MB photocatalytic degradation during illumination with simulated sunlight.


Subject(s)
Water Pollutants, Chemical , Zinc Oxide , Carbon , Adsorption , Cellulose , Sunlight , Methylene Blue
15.
Sci Bull (Beijing) ; 69(2): 218-226, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38087739

ABSTRACT

Atomic layer deposition (ALD) offers unique capabilities to fabricate atomically engineered porous materials with precise pore tuning and multi-functionalization for diverse applications like advanced membrane separations towards sustainable energy-water systems. However, current ALD technique is inhibited on most non-polar polymeric membranes due to lack of accessible nucleation sites. Here, we report a facile method to efficiently promote ALD coating on hydrophobic surface of polymeric membranes via novel protein activation/sensitization. As a proof of concept, TiO2 ALD-coated membranes activated by bovine serum albumin exhibit remarkable superhydrophilicity, ultralow underwater crude oil adhesion, and robust tolerance to rigorous environments including acid, alkali, saline, and ethanol. Most importantly, excellent cyclable crude oil-in-water emulsion separation performance can be achieved. The mechanism for activation/sensitization is rooted in reactivity for a particular set of amino acids. Furthermore, the universality of protein-sensitized ALD is demonstrated using common egg white, promising numerous potential usages in biomedical engineering, environmental remediation, low-carbon manufacturing, catalysis, and beyond.

16.
Environ Sci Pollut Res Int ; 31(3): 4779-4796, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38105329

ABSTRACT

The present research aimed to evaluate the photocatalytic activity of manganese ferrite (M) and reduced graphene oxide (G) supported on pulverized activated carbon from cow bone waste (PAC-MG). PAC-MG was characterized by different instrumental techniques. The efficiency of PAC-MG was evaluated using solar irradiation under different conditions of photocatalyst concentration, H2O2 concentration, and pH ranges for the discoloration of methylene blue dye (MB). The synergy between the nanomaterials potentiated the photocatalytic activity, reaching 85.5% of MB discoloration when using 0.25 g L-1 of catalyst at neutral pH with no oxidant needed. Furthermore, PAC-MG demonstrated excellent stability in 6 consecutive cycles. Finally, it is expected that the present study can add value to industrial waste and contribute to the development of novel water and wastewater treatment methods, ensuring water quality for human consumption and the environment.


Subject(s)
Ferric Compounds , Graphite , Manganese Compounds , Minerals , Waste Disposal, Fluid , Water Purification , Humans , Waste Disposal, Fluid/methods , Charcoal/chemistry , Hydrogen Peroxide , Water Purification/methods , Catalysis , Methylene Blue/chemistry , Biological Products
17.
Sci Total Environ ; 912: 169637, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38157893

ABSTRACT

This research investigated the removal of contaminants of emerging concern (CECs) and characterized the microbial community across an advanced water treatment (AWT) train consisting of Coagulation/Flocculation/Clarification/Granular Media Filtration (CFCGMF), Ozone-Biological Activated Carbon Filtration (O3/BAC), Granular Activated Carbon filtration, Ultraviolet Disinfection, and Cartridge Filtration (GAC/UV/CF). The AWT train successfully met the goals of CECs and bulk organics removal. The microbial community at each treatment step of the AWT train was characterized using 16S rRNA sequencing on the Illumina MiSeq platform generated from DNA extracted from liquid and solid (treatment media) samples taken along the treatment train. Differences in the microbial community structure were observed. The dominant operational taxonomic units (OTU) decreased along the treatment train, but the treatment steps did impact the microbial community composition downstream of each unit process. These results provide insights into microbial ecology in advanced water treatment systems, which are influenced and shaped by each treatment step, the microbial community interactions, and their potential metabolic contribution to CECs degradation.


Subject(s)
Drinking Water , Ozone , Water Pollutants, Chemical , Water Purification , Charcoal/chemistry , RNA, Ribosomal, 16S , Water Pollutants, Chemical/chemistry , Water Purification/methods , Filtration/methods , Ozone/chemistry
18.
Methods Protoc ; 6(6)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37987352

ABSTRACT

This research evaluates extracts from the bark of Heliocarpus popayanensis and Triumfetta bogotensis as coagulating agents for removing turbidity in domestic wastewater, considering the coagulant dosage and pH of the wastewater. ANOVA was conducted to assess differences between the coagulants, dosages, and pH, with three pH levels (5, 8, and 9) and six dosages (7, 9, 11, 13, 15, and 17 mL per 1000 mL of wastewater) at a significance level of α = 0.05, and both the p-value and effect size were evaluated. This study found that the mucilaginous compound from the bark of Triumfetta bogotensis performed better in reducing turbidity levels, with an average reduction of 30.2 NTU (Nephelometric Turbidity Unit) (CI [25.9 NTU; 34.5 NTU], α = 0.05) at a pH of 5, and an average initial NTU of 102.2. This represents an average reduction of 70.45%. The dosage factor did not show significant effects on turbidity reduction, which opens the possibility for further study to determine the optimal dosage of the best coagulant.

19.
Nanomaterials (Basel) ; 13(22)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37999321

ABSTRACT

In this research work, the photocatalytic capacity shown by the nanoparticles of the CaTiO3 system was evaluated to degrade two pollutants of emerging concern, namely methyl orange (MO)-considered an organic contaminating substance of the textile industry that is non-biodegradable when dissolved in water-and levofloxacin (LVF), an antibiotic widely used in the treatment of infectious diseases that is released mostly to the environment in its original chemical form. The synthesis process used to obtain these powders was the polymeric precursor method (Pechini), at a temperature of 700 °C for 6 h. The characterization of the obtained oxide nanoparticles of interest revealed the presence of a majority perovskite-type phase with an orthorhombic Pbnm structure and a minority rutile-type TiO2 phase, with a P42/mnm structure and a primary particle size <100nm. The adsorption-desorption isotherms of the synthesized solids had H3-type hysteresis loops, characteristic of mesoporous solids, with a BET surface area of 10.01m2/g. The Raman and FTIR spectroscopy results made it possible to identify the characteristic vibrations of the synthesized system and the characteristic deformations of the perovskite structure, reiterating the results obtained from the XRD analysis. Furthermore, a bandgap energy of ~3.4eV and characteristic emissions in the violet (437 nm/2.8 eV) and orange (611 nm/2.03 eV) were determined for excitation lengths of 250 nm and 325 nm, respectively, showing that these systems have a strong emission in the visible light region and allowing their use in photocatalytic activity to be potentialized. The powders obtained were studied for their photocatalytic capacity to degrade methyl orange (MO) and levofloxacin (LVF), dissolved in water. To quantify the coloring concentration, UV-visible spectroscopy was used considering the variation in the intensity of the characteristic of the greatest absorption, which correlated with the change in the concentration of the contaminant in the solution. The results showed that after irradiation with ultraviolet light, the degradation of the contaminants MO and LVF was 79.4% and 98.1% with concentrations of 5 g/L and 10 g/L, respectively.

20.
Environ Sci Pollut Res Int ; 30(59): 123616-123632, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37991611

ABSTRACT

Pristine pyrogenic carbonaceous material (BRH) obtained from rice husk and modified with FeCl3 (BRH-FeCl3) were prepared and explored as carbocatalysts for the activation of peroxymonosulfate (PMS) to degrade a model pharmaceutical (acetaminophen, ACE) in water. The BRH-FeCl3/PMS system removed the pharmaceutical faster than the BRH/PMS. This is explained because in BRH-FeCl3, compared to BRH, the modification (iron played a role as a structuring agent mainly) increased the average pore diameter and the presence of functional groups such as -COO-, -Si-O-, or oxygen vacancies, which allowed to remove the pollutant through an adsorption process and significant carbocatalytic degradation. BRH-FeCl3 was reusable during four cycles and had a higher efficiency for activating PMS than another inorganic peroxide (peroxydisulfate, PDS). The effects of BRH-FeCl3 and PMS concentrations were evaluated and optimized through an experimental design, maximizing the ACE degradation. In the optimized system, a non-radical pathway (i.e., the action of singlet oxygen, from the interaction of PMS with defects and/or -COO-/-Si-O- moieties on the BRH-FeCl3) was found. The BRH-FeCl3/PMS system generated only one primary degradation product that was more susceptible to biodegradation and less active against living organisms than ACE. Also, the BRH-FeCl3/PMS system induced partial removals of chemical oxygen demand and dissolved organic carbon. Furthermore, the carbocatalytic system eliminated ACE in a wide pH range and in simulated urine, having a low-moderate electric energy consumption, indicating the feasibility of the carbocatalytic process to treat water polluted with pharmaceuticals.


Subject(s)
Oryza , Water , Peroxides/chemistry , Pharmaceutical Preparations
SELECTION OF CITATIONS
SEARCH DETAIL