Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Adv Healthc Mater ; : e2401753, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087395

ABSTRACT

Transdermal healthcare systems have gained significant attention for their painless and convenient drug administration, as well as their ability to detect biomarkers promptly. However, the skin barrier limits the candidates of biomolecules that can be transported, and reliance on simple diffusion poses a bottleneck for personalized diagnosis and treatment. Consequently, recent advancements in transdermal transport technologies have evolved toward active methods based on external energy sources. Multiple combinations of these technologies have also shown promise for increasing therapeutic effectiveness and diagnostic accuracy as delivery efficiency is maximized. Furthermore, wearable healthcare platforms are being developed in diverse aspects for patient convenience, safety, and on-demand treatment. Herein, a comprehensive overview of active transdermal delivery technologies is provided, highlighting the combination-based diagnostics, therapeutics, and theragnostics, along with the latest trends in platform advancements. This offers insights into the potential applications of next-generation wearable transdermal medical devices for personalized autonomous healthcare.

2.
Adv Healthc Mater ; : e2401371, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38994663

ABSTRACT

Iontophoretic transdermal drug delivery (TDD) devices are known to enhance the transdermal transport of drugs. However, conventional transdermal iontophoretic devices require external power sources, wired connections, or mechanical parts, which reduce the comfort level for patients during extended use. In this work, a self-powered, wearable transdermal iontophoretic patch (TIP) is proposed by harvesting ambient humidity for energy generation, enabling controlled TDD. This patch primarily uses moist-electric generators (MEGs) as its power source, thus obviating the need for complex power management modules and mechanical components. A single MEG unit can produce an open-circuit voltage of 0.80 V and a short-circuit current of 11.65 µA under the condition of 80% relative humidity. Amplification of the electrical output is feasible by connecting multiple generator units in series and parallel, facilitating the powering of certain commercial electronic devices. Subsequently, the MEG array is integrated with the TDD circuit to create the wearable TIP. After 20 min of application, the depth of drug penetration through the skin is observed to increase threefold. The effective promotion effect of TIP on the transdermal delivery of ionized drugs is corroborated by simulations and experiments. This wearable TIP offers a simple, noninvasive solution for TDD.

3.
Adv Sci (Weinh) ; : e2401947, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38868908

ABSTRACT

Perspiration plays a pivotal role not only in thermoregulation but also in reflecting the body's internal state and its response to external stimuli. The up-to-date skin-based wearable platforms have facilitated the monitoring and simultaneous analysis of sweat, offering valuable physiological insights. Unlike conventional passive sweating, dynamic normal perspiration, which occurs during various activities and rest periods, necessitates a more reliable method of collection to accurately capture its real-time fluctuations. An innovative microfluidic patch incorporating a hierarchical superhydrophilic biosponge, poise to significantly improve the efficiency capture of dynamic sweat is introduced. The seamlessly integrated biosponge microchannel showcases exceptional absorption capabilities, efficiently capturing non-sensitive sweat exuding from the skin surface, mitigating sample loss and minimizing sweat volatilization. Furthermore, the incorporation of sweat-rate sensors alongside a suite of functional electrochemical sensors endows the patch of uninterrupted monitoring and analysis of dynamic sweat during various activities, stress events, high-energy intake, and other scenarios.

4.
J Colloid Interface Sci ; 669: 835-843, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38749222

ABSTRACT

Wearable drug delivery systems (DDS) have made significant advancements in the field of precision medicine, offering precise regulation of drug dosage, location, and timing. The performance qualities that wearable DDS has always strived for are simplicity, efficiency, and intelligence. This paper proposes a wearable dual-drug synergistic release patch. The patch is powered by a built-in magnesium battery and utilizes a hydrogel containing viologen-based hyperbranched polyamidoamine as both a cathode material and an integrated drug reservoir. This design allows for the simultaneous release of both dexamethasone and tannic acid, overcoming the limitations of monotherapy and ensuring effective synergy for on-demand therapy. In a mouse model with praziquimod-induced psoriasis, the patch demonstrated therapeutic efficacy at a low voltage. The inflammatory skin returned to normal after 5 days with the on-demand release of dual drugs. This work provides a promising treatment option considering its straightforward construction and the therapeutic advantages of dual-drug synergy.


Subject(s)
Dexamethasone , Psoriasis , Wearable Electronic Devices , Animals , Mice , Psoriasis/drug therapy , Psoriasis/pathology , Dexamethasone/administration & dosage , Dexamethasone/pharmacology , Delayed-Action Preparations/chemistry , Tannins/chemistry , Tannins/pharmacology , Drug Liberation , Hydrogels/chemistry , Drug Delivery Systems , Transdermal Patch , Polyamines
5.
ACS Appl Mater Interfaces ; 15(37): 43541-43549, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37694575

ABSTRACT

Resting sweat analysis could provide unique insight into the metabolic levels of physiological and pathological states. However, the low secretion rate of resting sweat and the low concentration of metabolic molecules pose challenges for the development of noninvasive wearable sensors. Here, we demonstrated a wearable patch for the precise analysis of uric acid at rest. Fe single-atom nanozymes (FeSAs) with excellent electrocatalytic activity were used to develop a sensor for selective catalysis of uric acid (UA, 1-425 µM), and the catalytic mechanism of UA was later explored by density functional theory. In addition, polyaniline was integrated into the wearable patch for pH detection; thus, accurate analysis of sweat UA molecules can be achieved by pH calibration. Then, we explored the possibility of collecting resting sweat with different ratios of agarose hydrogels to reduce the sweat accumulation time. Finally, the possibility of a wearable patch for accurate UA detection in volunteer sweat samples was experimentally verified. We believe that our work provides novel insights and ideas for the analysis of resting sweat using wearable devices, further driving advancements in the field of personalized medicine.


Subject(s)
Hydrogels , Wearable Electronic Devices , Humans , Uric Acid , Calibration , Catalysis
6.
Acta Pharm Sin B ; 13(6): 2298-2309, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37425057

ABSTRACT

Transdermal drug delivery systems (TDDs) avoid gastrointestinal degradation and hepatic first-pass metabolism, providing good drug bioavailability and patient compliance. One emerging type of TDDs is the wearable patch worn on the skin surface to deliver medication through the skin. They can generally be grouped into passive and active types, depending on the properties of materials, design principles and integrated devices. This review describes the latest advancement in the development of wearable patches, focusing on the integration of stimulus-responsive materials and electronics. This development is deemed to provide a dosage, temporal, and spatial control of therapeutics delivery.

7.
Biomolecules ; 13(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37371509

ABSTRACT

Smart wearable patch systems that combine biosensing and therapeutic components have emerged as promising approaches for personalized healthcare and therapeutic platforms that enable self-administered, noninvasive, user-friendly, and long-acting smart drug delivery. Sensing components can continuously monitor physiological and biochemical parameters, and the monitoring signals can be transferred to various stimuli using actuators. In therapeutic components, stimuli-responsive carrier-based drug delivery systems (DDSs) provide on-demand drug delivery in a closed-loop manner. This review provides an overview of the recent advances in smart wearable patch systems, focusing on sensing components, stimuli, and therapeutic components. Additionally, this review highlights the potential of fully integrated smart wearable patch systems for personalized medicine. Furthermore, challenges associated with the clinical applications of this system and future perspectives are discussed, including issues related to drug loading and reloading, biocompatibility, accuracy of sensing and drug delivery, and largescale fabrication.


Subject(s)
Drug Delivery Systems , Wearable Electronic Devices , Pharmaceutical Preparations , Delivery of Health Care
8.
Acta Pharmaceutica Sinica B ; (6): 2298-2309, 2023.
Article in English | WPRIM (Western Pacific) | ID: wpr-982875

ABSTRACT

Transdermal drug delivery systems (TDDs) avoid gastrointestinal degradation and hepatic first-pass metabolism, providing good drug bioavailability and patient compliance. One emerging type of TDDs is the wearable patch worn on the skin surface to deliver medication through the skin. They can generally be grouped into passive and active types, depending on the properties of materials, design principles and integrated devices. This review describes the latest advancement in the development of wearable patches, focusing on the integration of stimulus-responsive materials and electronics. This development is deemed to provide a dosage, temporal, and spatial control of therapeutics delivery.

9.
J Electrocardiol ; 75: 82-87, 2022.
Article in English | MEDLINE | ID: mdl-35918203

ABSTRACT

INTRODUCTION: Standard 12­lead electrocardiogram (ECG) is a basic element of routine everyday clinical practice. Traditional cardiac monitoring devices are associated with considerable limitations. Adhesive patches, novel digital solutions, may become a useful diagnostic tool for several cardiovascular diseases. MATERIALS AND METHODS: We propose a new variation of ECG electrodes positioning called KoMaWo. 15 consecutive patients presenting with ST segment deviations due to coronary artery disease were enrolled. The accuracy and utility of the new configuration was assessed and compared with the Mason-Likar configuration, as well as with a standard 12­lead ECG recording. The scans were blinded and interpreted by two independent cardiologists. RESULTS: There were no statistically significant differences in morphology, as well as in the duration of individual waves, complexes, segments, and intervals between the scans obtained using all three methods. In a subgroup analysis, with regard to age, body mass and left ventricle ejection fraction (LVEF), KoMaWo was non-inferior to standard ECG with a 0.2 mm margin. DISCUSSION: The role of traditional cardiac monitoring devices is recognized as the gold standard of patient management. However, certain limitations should be considered. Adhesive patches are light-weight, well-tolerated and do not interfere with daily activities of patients. These novel devices allow for extended monitoring, facilitating increased diagnostic accuracy, regarding cardiac arrhythmias. CONCLUSIONS: The KoMaWo configuration is not inferior to standard electrode placement, nor to Mason-Likar configuration, including its ability to capture ST segment deviations. Adhesive patches may become a valid alternative for traditional cardiac monitoring methods.


Subject(s)
Arrhythmias, Cardiac , Electrocardiography , Humans , Electrocardiography/methods , Arrhythmias, Cardiac/diagnosis , Electrodes , Monitoring, Physiologic
10.
Cardiovasc Eng Technol ; 13(5): 783-796, 2022 10.
Article in English | MEDLINE | ID: mdl-35292914

ABSTRACT

PURPOSE: There is an increasing clinical interest in the adoption of small single-lead wearable ECG sensors for continuous cardiac monitoring. The purpose of this work is to assess ECG signal quality of such devices compared to gold standard 12-lead ECG. METHODS: The ECG signal from a 1-lead patch was systematically compared to the 12-lead ECG device in thirty subjects to establish its diagnostic accuracy in terms of clinically relevant signal morphology, wave representation, fiducial markers and interval and wave duration. One minute ECG segments with good signal quality was selected for analysis and the features of ECG were manually annotated for comparative assessment. RESULTS: The patch showed closest similarity based on correlation and normalized root-mean-square error to the standard ECG leads I, II, [Formula: see text] and [Formula: see text]. P-wave and QRS complexes in the patch showed sensitivity (Se) and positive predictive value (PPV) of at least 99.8% compared to lead II. T-wave representation showed Se and PPV of at least 99.9% compared to lead [Formula: see text] and [Formula: see text]. Mean errors for onset and offset of the ECG waves, wave durations, and ECG intervals were within 2 samples based on 125Hz patch ECG sampling frequency. CONCLUSION: This study demonstrates the diagnostic capability with similar morphological representation and reasonable timing accuracy of ECG signal from a patch sensor compared to 12-lead ECG. The advantages and limitations of small bipolar single-lead wearable patch sensor compared to 12-lead ECG are discussed in the context of relevant differences in ECG signal for clinical applications.


Subject(s)
Electrocardiography , Wearable Electronic Devices , Humans , Arrhythmias, Cardiac
11.
Biosens Bioelectron ; 189: 113384, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34090154

ABSTRACT

The advanced stimuli-responsive approaches for on-demand drug delivery systems have received tremendous attention as they have great potential to be integrated with sensing and multi-functional electronics on a flexible and stretchable single platform (all-in-one concept) in order to develop skin-integration with close-loop sensation for personalized diagnostic and therapeutic application. The wearable patch pumps have evolved from reservoir-based to matrix patch and drug-in-adhesive (single-layer or multi-layer) type. In this review, we presented the basic requirements of an artificial pancreas, surveyed the design and technologies used in commercial patch pumps available on the market and provided general information about the latest wearable patch pump. We summarized the various advanced delivery strategies with their mechanisms that have been developed to date and representative examples. Mechanical, electrical, light, thermal, acoustic and glucose-responsive approaches on patch form have been successfully utilized in the controllable transdermal drug delivery manner. We highlighted key challenges associated with wearable transdermal delivery systems, their research direction and future development trends.


Subject(s)
Biosensing Techniques , Pancreas, Artificial , Wearable Electronic Devices , Administration, Cutaneous , Electronics
12.
JMIR Mhealth Uhealth ; 9(4): e24142, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33792550

ABSTRACT

BACKGROUND: Cardiovascular disease is the leading cause of death worldwide. Early recognition, diagnosis, and reperfusion are the key elements of treatment for ST-segment elevation myocardial infarction. The absence of a prehospital 12-lead electrocardiogram (P12ECG) can cause definitive treatment delay and repeated transfer. Although guidelines highly recommend the measurement and transmission of P12ECG data, P12ECG use has not been widely established. OBJECTIVE: The aim of this study was to verify the time-efficiency and feasibility of the use of a patchy-type 12-lead ECG measuring and transmitting device (P-ECG) by an emergency medical technician (EMT) in an ambulance during patient transport. METHODS: This was a simulation-based prospective randomized crossover-controlled study that included EMTs. The participants were randomly assigned to one of two groups. Group A began the experiment with a conventional 12-lead ECG (C-ECG) device and then switched to the intervention device (P-ECG), whereas group B began the experiment with the P-ECG and then switched to the C-ECG. All simulations were performed inside an ambulance driving at 30 km/h. The time interval was measured from the beginning of ECG application to completion of sending the results. After the simulation, participants were administered the System Usability Scale questionnaire about usability of the P-ECG. RESULTS: A total of 18 EMTs were recruited for this study with a median age of 35 years. The overall interval time for the C-ECG was 254 seconds (IQR 247-270), whereas the overall interval time for the P-ECG was 130 seconds (IQR 112-150), with a significant difference (P<.001). Significant differences between the C-ECG and P-ECG were identified at all time intervals, in which the P-ECG device was significantly faster in all intervals, except for the preparation interval in which the C-ECG was faster (P=.03). CONCLUSIONS: Performance of 12-lead ECG examination and transmission of the results using P-ECG are faster than those of C-ECG during ambulance transport. With the additional time afforded, EMTs can provide more care to patients and transport patients more rapidly, which may help reduce the symptoms-to-balloon time for patients with acute coronary syndrome. TRIAL REGISTRATION: ClinicalTrials.gov NCT04114760; https://www.clinicaltrials.gov/ct2/show/NCT04114760.


Subject(s)
Emergency Medical Services , Myocardial Infarction , Adult , Ambulances , Electrocardiography , Humans , Prospective Studies , Time Factors
13.
Sensors (Basel) ; 20(4)2020 Feb 11.
Article in English | MEDLINE | ID: mdl-32053945

ABSTRACT

The aim of this study was to reconstruct a 12-lead electrocardiograph (ECG) with a universal transformation coefficient and find the appropriate electrode position and shape for designing a patch-type ECG sensor. A 35-channel ECG monitoring system was developed, and 14 subjects were recruited for the experiment. A feedforward neural network with one hidden layer was applied to train the transformation coefficient. Three electrode shapes (5 cm × 5 cm square, 10 cm × 10 cm square, and right-angled triangle) were considered for the patch-type ECG sensor. The mean correlation coefficient (CC) and minimum CC methods were applied to evaluate the reconstruction performance. The average CCs between the standard 12-lead ECG and reconstructed 12-lead ECG were 0.860, 0.893, and 0.893 for a 5 cm × 5 cm square, 10 cm × 10 cm square, and right-angled triangle shape. The right-angled triangle showed the highest performance among the considered shapes. The results also suggested that the bottom of the central area of the chest was the most suitable position for attaching the patch-type ECG sensor.


Subject(s)
Electrocardiography/methods , Adult , Algorithms , Electrodes , Heart Rate/physiology , Humans , Male , Neural Networks, Computer , Signal Processing, Computer-Assisted , Thorax , Wearable Electronic Devices , Young Adult
14.
ACS Nano ; 13(3): 3141-3150, 2019 Mar 26.
Article in English | MEDLINE | ID: mdl-30779547

ABSTRACT

Flexible and stretchable electrochromic supercapacitor systems are widely considered as promising multifunctional energy storage devices that eliminate the need for an external power source. Nevertheless, the performance of conventional designs deteriorates significantly as a result of electrode/electrolyte exposure to atmosphere as well as mechanical deformations for the case of flexible systems. In this study, we suggest an all-transparent stretchable electrochromic supercapacitor device with ultrastable performance, which consists of Au/Ag core-shell nanowire-embedded polydimethylsiloxane (PDMS), bistacked WO3 nanotube/PEDOT:PSS, and polyacrylamide (PAAm)-based hydrogel electrolyte. Au/Ag core-shell nanowire-embedded PDMS integrated with PAAm-based hydrogel electrolyte prevents Ag oxidation and dehydration while maintaining ionic and electrical conductivity at high voltage even after 16 days of exposure to ambient conditions and under application of mechanical strains in both tensile and bending conditions. WO3 nanotube/PEDOT:PSS bistacked active materials maintain high electrochemical-electrochromic performance even under mechanical deformations. Maximum specific capacitance of 471.0 F g-1 was obtained with a 92.9% capacity retention even after 50 000 charge-discharge cycles. In addition, high coloration efficiency of 83.9 cm2 C-1 was shown to be due to the dual coloration and pseudocapacitor characteristics of the WO3 nanotube and PEDOT:PSS thin layer.

15.
Methods Inf Med ; 56(4): 319-327, 2017 Aug 11.
Article in English | MEDLINE | ID: mdl-28451687

ABSTRACT

OBJECTIVES: The aim of this study is to develop an optimal electrode system in the form of a small and wearable single-patch ECG monitoring device that allows for the faithful reconstruction of the standard 12-lead ECG. METHODS: The optimized universal electrode positions on the chest and the personalized transformation matrix were determined using linear regression as well as artificial neural networks (ANNs). A total of 24 combinations of 4 neighboring electrodes on 35 channels were evaluated on 19 subjects. Moreover, we analyzed combinations of three electrodes within the four-electrode combination with the best performance. RESULTS: The mean correlation coefficients were all higher than 0.95 in the case of the ANN method for the combinations of four neighboring electrodes. The reconstructions obtained using the three and four sensing electrodes showed no significant differences. The reconstructed 12-lead ECG obtained using the ANN method is better than that using the MLR method. Therefore, three sensing electrodes and one ground electrode (forming a square) placed below the clavicle on the left were determined to be suitable for ensuring good reconstruction performance. CONCLUSIONS: Since the interelectrode distance was determined to be 5 cm, the suggested approach can be implemented in a single-patch device, which should allow for the continuous monitoring of the standard 12-lead ECG without requiring limb contact, both in daily life and in clinical practice.


Subject(s)
Electrocardiography/instrumentation , Electrodes , Humans , Male , Neural Networks, Computer , Signal Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL