Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters











Publication year range
1.
Mar Pollut Bull ; 199: 116022, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38211543

ABSTRACT

The effects of yessotoxins (YTXs) produced by the dinoflagellate Protoceratium reticulatum in the early stages of bivalves have not been studied in detail. The present study evaluates the effects of P. reticulatum and YTXs on the survival and feed ingestion of veliger larvae of Argopecten purpuratus. Larvae were 96 h-exposed to 500, 1000 and 2000 P. reticulatum cells mL-1, and their equivalent YTX extract was prepared in methanol. Results show a survival mean of 82 % at the highest density of dinoflagellate, and 38 % for larvae with the highest amount of YTX extract. Feed ingestion is reduced in the dinoflagellate exposure treatments as a function of cell density. Therefore, the effect of YTXs on A. purpuratus represents a new and important area of study for investigations into the deleterious effects of these toxins in the early stages of the life cycle of this and, potentially, other bivalves.


Subject(s)
Bivalvia , Dinoflagellida , Mollusk Venoms , Oxocins , Pectinidae , Animals , Marine Toxins/metabolism , Larva , Dinoflagellida/metabolism , Eating
2.
J Mass Spectrom ; 58(10): e4963, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37431171

ABSTRACT

In the present study, 334 samples of mussels (Mytilus galloprovincialis) harvested along the coasts of the Central Adriatic Sea during the years 2020-2021 were analyzed for the presence of lipophilic marine biotoxins according to the European Harmonized Standard Operating Procedure. The results showed that 74 (22%) and 84 (25%) samples were positive to okadaic acid and yessotoxin groups, respectively. Among them, only 11 (3.3%) samples resulted as non-compliant, as they exceeded the maximum limits (160 µg okadaic acid equivalent/kg) established by the Regulation (EC) 853/2004. The method applied in this study was able to detect and quantify lipophilic marine biotoxins concentrations, in order to monitor their presence in molluscs and avoid the risk of consumer exposure.


Subject(s)
Marine Toxins , Mytilus , Animals , Okadaic Acid , Seafood , Italy
3.
Nanomedicine (Lond) ; 17(10): 717-739, 2022 04.
Article in English | MEDLINE | ID: mdl-35481356

ABSTRACT

Background: Yessotoxin (YTX), a marine-derived drug, was encapsulated in PEGylated pH-sensitive nanoliposomes, covalently functionalized (strategy I) with SDF-1α and by nonspecific adsorption (strategy II), to actively target chemokine receptor CXCR-4. Methods: Cytotoxicity to normal human epithelial cells (HK-2) and prostate (PC-3) and breast (MCF-7) adenocarcinoma models, with different expression levels of CXCR-4, were tested. Results: Strategy II exerted the highest cytotoxicity toward cancer cells while protecting normal epithelia. Acid pH-induced fusion of nanoliposomes seemed to serve as a primary route of entry into MCF-7 cells but PC-3 data support an endocytic pathway for their internalization. Conclusion: This work describes an innovative hallmark in the current marine drug clinical pipeline, as the developed nanoliposomes are promising candidates in the design of groundbreaking marine flora-derived anticancer nanoagents.


Subject(s)
Neoplasms , Oxocins , Chemokine CXCL12/metabolism , Humans , Hydrogen-Ion Concentration , MCF-7 Cells , Male , Mollusk Venoms , Neoplasms/drug therapy , Receptors, CXCR4
4.
Mar Drugs ; 20(3)2022 Feb 26.
Article in English | MEDLINE | ID: mdl-35323472

ABSTRACT

Under the name of lipophilic marine toxins, there are included more than 1000 toxic secondary metabolites, produced by phytoplankton, with the common chemical property of lipophilicity. Due to toxicological effects and geographical distribution, in European legislation relevant compounds are regulated, and their determination is accomplished with the reference liquid chromatography-tandem mass spectrometry method. In this study a modified ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method has been developed for the identification and quantification of EU-regulated lipophilic toxins. The method optimization included a refinement of SPE-C18 clean-up, in order to reduce matrix interferences. Improved LC conditions and upgraded chromatographic ammonia-based gradient ensured the best separation of all analytes and, in particular, of the two structural isomers (OA and DTX2). Also, different MS parameters were tested, and confirmation criteria finally established. The validation studies confirmed that all parameters were satisfactory. The requirements for precision (RSD% < 11.8% for each compound), trueness (recoveries from 73 to 101%) and sensitivity (limits of quantification in the range 3−8 µg kg−1) were fulfilled. The matrix effect, ranging from −9 to 19%, allowed the use of a calibration curve in solvent (3−320 µg kg−1 in matrix) for quantification of real samples. Method relative uncertainty ranged from 12 to 20.3%. Additionally, a total of 1000 shellfish samples was analysed, providing a first preliminary surveillance study that may contribute to the knowledge of lipophilic marine toxins contamination. Increase in algae proliferation events and intoxication cases, EFSA suggestions for modification of maximum permitted levels and toxicity equivalency factors, and new studies of important toxic effects underline that implementation of reference methods still represents an important task for health and food safety laboratories.


Subject(s)
Food Contamination/analysis , High-Throughput Screening Assays/methods , Marine Toxins/analysis , Shellfish/analysis , Animals , Chromatography, High Pressure Liquid , Environmental Monitoring , European Union , Food Contamination/legislation & jurisprudence , Food Handling , Government Regulation , Mollusca/chemistry , Reproducibility of Results , Tandem Mass Spectrometry
5.
J Phycol ; 58(3): 465-486, 2022 06.
Article in English | MEDLINE | ID: mdl-35234279

ABSTRACT

The taxonomy of the extant dinoflagellate genus Gonyaulax is challenging since its thecate morphology is rather conservative. In contrast, cysts of Gonyaulax are varied in morphology and have been related with the fossil-based genera Spiniferites and Impagidinium. To better understand the systematics of Gonyaulax species, we performed germination experiments on cysts that can be identified as S. ristingensis, an unidentified Spiniferites with petaloid processes here described as Spiniferites pseudodelicatus sp. nov. and Impagidinium variaseptum from Chinese and Portuguese waters. Despite marked differences in cyst morphology, motile cells of S. pseudodelicatus and I. variaseptum are indistinguishable from Gonyaulax baltica. Motile cells hatched from S. ristingensis are morphologically similar to G. baltica as well but differ in the presence of one pronounced antapical spine. Three new species, Gonyaulax amoyensis (cyst equivalent S. pseudodelicatus), Gonyaulax bohaiensis (cyst equivalent I. variaseptum), and Gonyaulax portimonensis (cyst equivalent S. ristingensis), were erected. In addition, a new ribotype (B) of G. baltica was reported from South Korea and a bloom of G. baltica ribotype B is reported from New Zealand. Molecular phylogeny based on LSU and SSU rRNA gene sequences revealed that Gonyaulax species with minute or short antapical spines formed a well-resolved clade, whereas species with two pronounced antapical spines or lack of antapical spines formed the sister clade. Six strains of four above species were examined for yessotoxin production by liquid chromatography coupled with tandem mass spectrometry, and very low concentrations of yessotoxin were detected for one G. bohaiensis strain.


Subject(s)
Dinoflagellida , Chromatography, Liquid , Dinoflagellida/genetics , Phylogeny , Republic of Korea , Tandem Mass Spectrometry
6.
Mar Drugs ; 20(2)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35200672

ABSTRACT

The analysis of marine lipophilic toxins in shellfish products still represents a challenging task due to the complexity and diversity of the sample matrix. Liquid chromatography coupled with mass spectrometry (LC-MS) is the technique of choice for accurate quantitative measurements in complex samples. By combining unambiguous identification with the high selectivity of tandem MS, it provides the required high sensitivity and specificity. However, LC-MS is prone to matrix effects (ME) that need to be evaluated during the development and validation of methods. Furthermore, the large sample-to-sample variability, even between samples of the same species and geographic origin, needs a procedure to evaluate and control ME continuously. Here, we analyzed the toxins okadaic acid (OA), dinophysistoxins (DTX-1 and DTX-2), pectenotoxin (PTX-2), yessotoxin (YTX) and azaspiracid-1 (AZA-1). Samples were mussels (Mytilus galloprovincialis), both fresh and processed, and a toxin-free mussel reference material. We developed an accurate mass-extracted ion chromatogram (AM-XIC) based quantitation method using an Orbitrap instrument, evaluated the ME for different types and extracts of mussel samples, characterized the main compounds co-eluting with the targeted molecules and quantified toxins in samples by following a standard addition method (SAM). An AM-XIC based quantitation of lipophilic toxins in mussel samples using high resolution and accuracy full scan profiles (LC-HR-MS) is a good alternative to multi reaction monitoring (MRM) for instruments with HR capabilities. ME depend on the starting sample matrix and the sample preparation. ME are particularly strong for OA and related toxins, showing values below 50% for fresh mussel samples. Results for other toxins (AZA-1, YTX and PTX-2) are between 75% and 110%. ME in unknown matrices can be evaluated by comparing their full scan LC-HR-MS profiles with those of known samples with known ME. ME can be corrected by following SAM with AM-XIC quantitation if necessary.


Subject(s)
Chromatography, Liquid/methods , Marine Toxins/isolation & purification , Mass Spectrometry/methods , Mytilus/metabolism , Animals , Marine Toxins/analysis , Marine Toxins/chemistry
7.
Harmful Algae ; 105: 102032, 2021 05.
Article in English | MEDLINE | ID: mdl-34303512

ABSTRACT

Summer bivalve shellfish mortalities have been observed in Puget Sound for nearly a century and attempts to understand and mitigate these losses have been only partially successful. Likewise, the understanding of the environmental conditions triggering shellfish mortalities and successful strategies for their mitigation are incomplete. In the literature, phytoplankton have played only a cursory role in summer shellfish mortalities in Washington State because spawning stress and bacteria were thought to be the primary causes. In recent years, the occurrence of Protoceratium reticulatum (Claparede & Lachmann) Buetschli and Akashiwo sanguinea (Hirasaka) Hansen & Moestrup, have been documented by the SoundToxins research and monitoring partnership in increasing numbers and duration and have been associated with declining shellfish health or mortality at various sites in Puget Sound. Blooms of these species occur primarily in summer months and have been shown to cause mass mortalities of shellfish in the U.S. and other parts of the world. In 2016-2017, yessotoxins (YTX) were measured in several species of Puget Sound bivalve shellfish, with a maximum concentration of 2.20 mg/kg in blue mussels, a value below the regulatory limit of 3.75 mg/kg established by the European Union for human health protection but documented to cause shellfish mortalities in other locations around the world. In July 2019, a bloom of P. reticulatum coincided with a summer shellfish mortality event, involving a dramatic surfacing of stressed, gaping Manila clams, suggesting that YTX could be the cause. YTX concentrations in their tissues were measured at a maximum of 0.28 mg/kg and histology of these clams demonstrated damage to digestive glands. A culture of P. reticulatum, isolated from North Bay during this massive bloom and shellfish mortality event, showed YTX reaching 26.6 pg/cell, the highest recorded toxin quota measured in the U.S. to date. Concentrations of YTX in phytoplankton samples reached a maximum of 920 ng/L during a P. reticulatum bloom in Mystery Bay on 13 August 2019 when cell abundance reached 1.82 million cells/L. The highest cellular YTX quota during that bloom that lasted into September was 10.8 pg/cell on 3 Sept 2019. Shellfish producers in Washington State have also noted shellfish larvae mortalities due to A. sanguinea passing through filtration intake systems into hatchery facilities. Early warning of shellfish-killing harmful algal bloom (HAB) presence in Puget Sound, through partnerships such as SoundToxins, provides options for shellfish growers to mitigate their effects through early harvest, movement of shellstock to upland facilities, or enhanced filtration at aquaculture facilities.


Subject(s)
Marine Toxins , Phytoplankton , Chromatography, Liquid , Humans , Marine Toxins/analysis , Shellfish/analysis , Washington
8.
J Hazard Mater ; 418: 126285, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34119973

ABSTRACT

Marine phycotoxins severely threaten ecosystem health and mariculture. This study investigates the spatial distribution and source of diverse phycotoxins in the South China Sea (SCS), during four 2019/2020 cruises. Saxitoxin (STX) and okadaic acid (OA) -groups, azaspiracids, cyclic imines, pectenotoxins (PTX), yessotoxins, and domoic acid (DA) toxins were analyzed in microalgal samples. PTX2 occurred with the highest (93.5%) detection rate (DR) during all cruises, especially in the Pearl River Estuary (PRE) in June 2019. Homo-yessotoxin (hYTX) and DA were found during three cruises in August 2020, and high DR of hYTX (67.7%, 29.3%) and DA (29.0%, 29.3%) in the PRE and Guangdong coast, respectively, in June 2019 and 2020, peaking at concentrations of 777 pg hYTX L-1 and 38514 pg DA L-1. The phycotoxin distribution demonstrated that DA-producing microalgae gathered close to the PRE and Guangdong coast, while hYTX-producing microalgae distributed relatively far offshore. Microalgae producing PTX2- and STX-group toxins were more widely living in the SCS. High-throughput sequencing results suggested that Alexandrium pacificum and Gonyaulax spinifera were responsible for STX-group toxins and hYTX, respectively, while Pseudo-nitzschia cuspidata was the main source of DA. Widely distributed PTX2, hYTX, and DA were reported for the first time in the SCS.


Subject(s)
Diatoms , Dinoflagellida , China , Ecosystem , Okadaic Acid , Phytoplankton
9.
Anal Bioanal Chem ; 413(8): 2055-2069, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33661347

ABSTRACT

A freeze-dried mussel tissue-certified reference material (CRM-FDMT1) was prepared containing the marine algal toxin classes azaspiracids, okadaic acid and dinophysistoxins, yessotoxins, pectenotoxins, cyclic imines, and domoic acid. Thus far, only a limited number of analogues in CRM-FDMT1 have been assigned certified values; however, the complete toxin profile is significantly more complex. Liquid chromatography-high-resolution mass spectrometry was used to profile CRM-FDMT1. Full-scan data was searched against a list of previously reported toxin analogues, and characteristic product ions extracted from all-ion-fragmentation data were used to guide the extent of toxin profiling. A series of targeted and untargeted acquisition MS/MS experiments were then used to collect spectra for analogues. A number of toxins previously reported in the literature but not readily available as standards were tentatively identified including dihydroxy and carboxyhydroxyyessotoxin, azaspiracids-33 and -39, sulfonated pectenotoxin analogues, spirolide variants, and fatty acid acyl esters of okadaic acid and pectenotoxins. Previously unreported toxins were also observed including compounds from the pectenotoxin, azaspiracid, yessotoxin, and spirolide classes. More than one hundred toxin analogues present in CRM-FDMT1 are summarized along with a demonstration of the major acyl ester conjugates of several toxins. Retention index values were assigned for all confirmed or tentatively identified analogues to help with qualitative identification of the broad range of lipophilic toxins present in the material.


Subject(s)
Bivalvia/chemistry , Chromatography, High Pressure Liquid/methods , Marine Toxins/analysis , Tandem Mass Spectrometry/methods , Animals , Chromatography, High Pressure Liquid/standards , Freeze Drying , Kainic Acid/analogs & derivatives , Kainic Acid/analysis , Mollusk Venoms , Okadaic Acid/analysis , Oxocins/analysis , Reference Standards , Spiro Compounds/analysis , Tandem Mass Spectrometry/standards
10.
J Food Prot ; 84(2): 204-212, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-32977333

ABSTRACT

ABSTRACT: Some harmful algal blooms produce lipophilic marine biotoxins (LMTs) such as okadaic acid (OA; and its analogs dinophysistoxins [DTXs]), yessotoxins (YTXs), pectenotoxins (PTXs), and azaspiracids (AZAs), all of which may accumulate in filter-feeding bivalve mollusks. European health regulations stipulate a limit of 160 µg/kg for OA or DTXs, PTXs, and AZAs and 3.75 mg/kg for YTXs. Argopecten purpuratus is a valuable commercial marine bivalve exploited in Peru. Despite its importance and the periodic reports of the presence of harmful algal blooms in Peruvian coastal waters, information regarding potential contamination of these scallops by LMTs is lacking. We evaluated LMTs in 115 samples of A. purpuratus collected between November 2013 and March 2015 from 18 production areas distributed along the Peruvian coast. The hepatopancreas, which accumulates most of the toxins in the scallop, was analyzed with liquid chromatography-tandem mass spectrometry to quantify OA in its free form, YTX, AZA-1, and PTX-2. Baseline separation was achieved in 19 min. Linearity (R2 > 0.997), precision (coefficient of variation < 15%), and limits of quantification (0.155 to 0.479 ng/mL) were satisfactory. YTX was found in 72 samples, and PTX-2 was found in 17 samples, but concentrations of both biotoxins were below the regulatory limits. Free OA and AZA-1 were not detected in the scallop samples. This atypical profile (i.e., presence of PTX-2 and absence of OA) may be linked to the presence of the dinoflagellate Dinophysis acuminata. The production of YTX could be associated with the phytoplankton Gonyaulax spinifera and Protoceratium reticulatum. This is the first systematic assessment of the four types of LMTs in shellfish from Peruvian coastal waters. The results suggest low prevalence of LMTs in Peruvian bay scallops but support continued surveillance and analysis of LMTs in Peru.


Subject(s)
Pectinidae , Animals , Chromatography, Liquid , Okadaic Acid/analysis , Peru , Shellfish/analysis
11.
Harmful Algae ; 88: 101610, 2019 09.
Article in English | MEDLINE | ID: mdl-31582156

ABSTRACT

The cosmopolitan, potentially toxic dinoflagellate Protoceratium reticulatum possesses a fossilizable cyst stage which is an important paleoenvironmental indicator. Slight differences in the internal transcribed spacer ribosomal DNA (ITS rDNA) sequences of P. reticulatum have been reported, and both the motile stage and cyst morphology of P. reticulatum display phenotypic plasticity, but how these morpho-molecular variations are related with ecophysiological preferences is unknown. Here, 55 single cysts or cells were isolated from localities in the Northern (Arctic to subtropics) and Southern Hemispheres (Chile and New Zealand), and in total 34 strains were established. Cysts and/or cells were examined with light microscopy and/or scanning electron microscopy. Large subunit ribosomal DNA (LSU rDNA) and/or ITS rDNA sequences were obtained for all strains/isolates. All strains/isolates of P. reticulatum shared identical LSU sequences except for one strain from the Mediterranean Sea that differs in one position, however ITS rDNA sequences displayed differences at eight positions. Molecular phylogeny was inferred using maximum likelihood and Bayesian inference based on ITS rDNA sequences. The results showed that P. reticulatum comprises at least three ribotypes (designated as A, B, and C). Ribotype A included strains from the Arctic and temperate areas, ribotype B included strains from temperate regions only, and ribotype C included strains from the subtropical and temperate areas. The average ratios of process length to cyst diameter of P. reticulatum ranged from 15% in ribotype A, 22% in ribotype B and 17% in ribotype C but cyst size could overlap. Theca morphology was indistinguishable among ribotypes. The ITS-2 secondary structures of ribotype A displayed one CBC (compensatory change on two sides of a helix pairing) compared to ribotypes B and C. Growth response of one strain from each ribotype to various temperatures was examined. The strains of ribotypes A, B and C exhibited optimum growth at 15 °C, 20 °C and 20-25 °C, respectively, thus corresponding to cold, moderate and warm ecotypes. The profiles of yessotoxins (YTXs) were examined for 25 strains using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The parent compound yessotoxin (YTX) was produced by strains of ribotypes A and B, but not by ribotype C strains, which only produced the structural variant homoyessotoxin (homoYTX). Our results support the notion that there is significant intra-specific variability in Protoceratium reticulatum and the biogeography of the different ribotypes is consistent with specific ecological preferences.


Subject(s)
Dinoflagellida , Marine Toxins , Arctic Regions , Bayes Theorem , Chile , Chromatography, Liquid , Mediterranean Sea , New Zealand , Tandem Mass Spectrometry
12.
Vopr Pitan ; 87(3): 18-29, 2018.
Article in Russian | MEDLINE | ID: mdl-30592876

ABSTRACT

Yessotoxin and its derivatives (about 90) are isolated from algae belonging to the species Protoceratium reticulatum, Gonyaulax cf. Spinifera, Lingulodinium polyedrum and from invertebrate organisms that feed on these algae. Previously yessotoxin have been associated with the group of diarrheal toxins. Later studies of the possible impact of yessotoxin on the activity of alkaline phosphatase allowed to exclude them from this group. Yessotoxin causes a violation of calcium entry in the cells, which, in turn, effects the calcium-calmodulin system and thus influences into homeostasis of the organism as a whole. It was shown that yessotoxin induces a biphasic change in the concentration of adenosine monophosphate, an initial increase with a subsequent relative decrease, within some minutes after adding the toxin to the lymphocytes cell culture. Yessotoxin has effects on immune system; which is manifested in an increase of cytokines level, by inducing the expression of the genes encoding them. Yessotoxin have impact into processes of cell adhesion via E-cadherin and, thus, could be an important factor in the development of Alzheimer's disease. It has been established that yessotoxin caused the development of apoptosis. In those cases all three mechanisms of cell death took place - apoptosis, paraptosis and autophagy. Yessotoxin's acute toxicity doses according to different data are from 100 to 500-750 µg per 1kg of body weight. Yessotoxin's acute reference dose (ARfD) - 25 µg/kg of body weight per day. The results of the analysis of yessotoxin level in shellfish meat showed that none of the studied samples contained more than 3.75 mg yessotoxin equivalents/kg shellfish meat. This level has been adopted by the European Union as the maximum acceptable level of yessotoxin in shellfish meat (EU Regulation N 786/2013). Presented data on the mechanism of action, toxicity and prevalence of yessotoxins make it necessary to establish regulations of their content in seafood, placed on the markets of the Eurasian Economic Union.


Subject(s)
Food Safety , Oxocins/toxicity , Public Health , Seafood/adverse effects , Seafood/analysis , Animals , Humans , Mollusk Venoms , Risk Assessment
13.
Front Oncol ; 8: 260, 2018.
Article in English | MEDLINE | ID: mdl-30023341

ABSTRACT

Long-term video-based tracking of single A549 lung cancer cells exposed to three different concentrations of the marine toxin yessotoxin (YTX) reveals significant variation in cytotoxicity, and it confirms the potential genotoxic effects of this toxin. Tracking of single cells subject to various toxic exposure, constitutes a conceptually simple approach to elucidate lineage correlations and sub-populations which are masked in cell bulk analyses. The toxic exposure can here be considered as probing a cell population for properties and change which may include long-term adaptation to treatments. Ranking of pedigree trees according to a measure of "size," provides definition of sub-populations. Following single cells through generations indicates that signaling cascades and experience of mother cells can pass to their descendants. Epigenetic factors and signaling downstream lineages may enhance differences between cells and partly explain observed heterogeneity in a population. Signaling downstream lineages can potentially link a variety of observations of cells making resulting data more suitable for computerized treatment. YTX exposure of A549 cells tends to cause two main visually distinguishable classes of cell death modalities ("apoptotic-like" and "necrotic-like") with approximately equal frequency. This special property of YTX enables estimation of correlation between cell death modalities for sister cells indicating impact downstream lineages. Hence, cellular responses and adaptation to treatments might be better described in terms of effects on pedigree trees rather than considering cells as independent entities.

14.
Talanta ; 187: 47-58, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-29853065

ABSTRACT

To detect and recognise three structurally related marine biotoxins responsible for the diarrheic shellfish poisoning (DSP) symptom, namely okadaic acid (OA), dinophysistoxin-1 (DTX-1) and dinophysistoxin-2 (DTX-2) respectively, as well as the structurally different yessotoxin (YTX), we developed a novel surface-enhanced micro-Raman scattering (micro-SERS) approach to investigate for the first time their micro-SERS signalling in solution and jointly analysed them in conjunction with the normal and toxic mussel tissue. YTX provided the main SERS feature surprisingly similar to DTX-1 and DTX-2, suggesting similar molecular adsorption mechanism with respect to the AgNPs. A fingerprint SERS band at 1017 cm-1 characteristic for the C-CH3 stretching in DTX-1 and DTX-2 and absent in OA SERS signal, allowed direct SERS discrimination of DTX-1,2 from OA. In acid form or as dissolved potassium salt, OA showed reproducible SERS feature for 0.81 µM to 84.6 nM concentrations respectively, while its ammonium salt slightly changed the overall SERS signature. The inherently strong fluorescence of the shellfish tissue, which hampers Raman spectroscopy analysis, further increases when toxins are present in tissue. Through SERS, tissue fluorescence is partially quenched. Artificially intoxicated mussel tissue with DSP toxins and incubated with AgNPs allowed direct SERS evidence of the toxin presence, opening a novel avenue for the in situ shellfish tracking and warning via micro-SERS. Natural toxic tissue containing 57.91 µg kg-1 YTX (LC-MS confirmed) was micro-SERS assessed to validate the new algorithm for toxins detection. We showed that a portable Raman system was able to reproduce the lab-based SERS results, being suitable for in situ raw seafood screening. The new approach provides an attractive, faster, effective and low-cost alternative for seafood screening, with economic, touristic and sustainable impact in aquaculture, fisheries, seafood industry and consumer trust.


Subject(s)
Bivalvia/chemistry , Marine Toxins/analysis , Okadaic Acid/analysis , Oxocins/analysis , Pyrans/analysis , Animals , Hydrophobic and Hydrophilic Interactions , Mollusk Venoms , Spectrum Analysis, Raman , Surface Properties
15.
Front Microbiol ; 9: 152, 2018.
Article in English | MEDLINE | ID: mdl-29487576

ABSTRACT

Lipophilic marine biotoxins include okadaic acid, pectenotoxin, yessotoxin and azaspiracid groups. The consumption of contaminated molluscs can lead to acute food poisoning syndromes depending on the exposure level. Regulatory limits have been set by Regulation (European Community, 2004a) No 853/2004 and LC-MS/MS is used as the official analytical method according to Regulation (European Community, 2011) No 15/2011. In this study specimens of mussels (Mytilus galloprovincialis) were collected along the coasts of the central Adriatic Sea during the years 2015-2017 and analyzed by the European harmonized Standard Operating Procedure. The method was validated for linearity, specificity, repeatability and reproducibility and it revealed able to be used for the detection of the lipophilic marine biotoxins. Levels of okadaic acid, pectenotoxin, yessotoxin and its analogs were detected at different concentrations in 148 (37%) out of a total of 400 samples, always below the maximum limits, except for 11 (4.3%) of them that were non-compliant because they exceeded the regulatory limit. Moreover, some samples were exposed to a multi-toxin mixture with regards to okadaic acid, yessotoxin and 1-Homo yessotoxin. Following these results, the aquaculture farms from which the non-compliant samples derived were closed until the analytical data of two consecutive samplings returned favorable. Besides the potential risk of consumption of mussels contaminated by lipophilic marine biotoxins, these marine organisms can be considered as bio-indicators of the contamination status of the marine ecosystem.

16.
Toxicon ; 139: 31-40, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28970035

ABSTRACT

This paper reports a toxic strain of Protoceratium reticulatum, its morphology, phylogeny, yessotoxins (YTXs) production and abundance in northern Yellow Sea of China from 2011 to 2015 was investigated. YTXs in hepatopancreas and edible parts of bottom sowing cultured Japanese scallop Patinopecten yessoensis in this sea area were determined weekly for 5 years. Other potential producers of YTXs, Gonyaulax spinifera and Lingulodinium polyedrum, were also investigated. Results revealed that Protoceratium reticulatum strain from the northern Yellow Sea belongs to a geographically widely distributed species. Motile cells of Protoceratium reticulatum contribute to YTXs in Japanese scallop, and G. spinifera may also be a potential contributor. Resting cysts of Protoceratium reticulatum, G. spinifera, and L. polyedrum in sediments were possibly important origins of YTXs in scallop cultured at sea bottom. YTXs in scallop decreased from 2011 to 2015, most toxins were concentrated in hepatopancreas, while a small portion in edible parts which was safe for consumption the whole year around.


Subject(s)
Dinoflagellida/classification , Oxocins/analysis , Pectinidae/chemistry , Animals , Aquaculture , China , Dinoflagellida/chemistry , Dinoflagellida/cytology , Food Contamination/analysis , Hepatopancreas/chemistry , Marine Toxins/analysis , Mollusk Venoms , Seasons
17.
Front Cell Dev Biol ; 5: 30, 2017.
Article in English | MEDLINE | ID: mdl-28409150

ABSTRACT

The marine toxin yessotoxin (YTX) can cause various cytotoxic effects depending on cell type and cell line. It is well known to trigger distinct mechanisms for programmed cell death which may overlap or cross-talk. The present contribution provides the first evidence that YTX can cause genotoxicity and induce mitotic catastrophe which can lead to different types of cell death. This work also demonstrates potential information gain from non-intrusive computer-based tracking of many individual cells during long time. Treatment of BC3H1 cells at their exponential growth phase causes atypical nuclear alterations and formation of giant cells with multiple nuclei. These are the most prominent morphological features of mitotic catastrophe. Giant cells undergo slow cell death in a necrosis-like manner. However, apoptotic-like cell death is also observed in these cells. Electron microscopy of treated BC3H1 cells reveal uncondensed chromatin and cells with double nuclei. Activation of p-p53, p-H2AX, p-Chk1, p-ATM, and p-ATR and down-regulation of p-Chk2 indicate DNA damage response and cell cycle deregulation. Micronuclei formation further support this evidence. Data from tracking single cells reveal that YTX treatment suppresses a second round of cell division in BC3H1 cells. These findings suggest that YTX can induce genomic alterations or imperfections in chromosomal segregation leading to permanent mitotic failure. This understanding extends the list of effects from YTX and which are of interest to control cancer and tumor progression.

18.
Toxicon ; 129: 74-80, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28209479

ABSTRACT

Yessotoxin (YTX) is a marine phycotoxin produced by dinoflagellates and accumulated in filter feeding shellfish. YTX content in shellfish is regulated by many food safety authorities to protect human health, although currently no human intoxication episodes have been unequivocally related to YTX presence in food. The immune system has been proposed as one of the target organs of YTX due to alterations of lymphoid tissues and cellular and humoral components. The aim of the present study was to explore subacute immunotoxicity of YTX in rats by evaluating the haematological response, inflammatory cytokine biomarkers and the presence of YTX-induced structural alterations in the spleen and thymus. The results showed that repeated administrations of YTX caused a decrease of lymphocyte percentage and an increase of neutrophil counts, a reduction in interleukine-6 (IL-6) plasmatic levels and histopathological splenic alterations in rats after four intraperitoneal injections of YTX at doses of 50 or 70 µg/kg that were administered every 4 days along a period of 15 days. Therefore, for the first time, subacute YTX-immunotoxicity is reported in rats, suggesting that repeated exposures to low amounts of YTX might also suppose a threat to human health, especially in immuno-compromised populations.


Subject(s)
Immunotoxins/toxicity , Oxocins/toxicity , Shellfish/analysis , Animals , Biomarkers/blood , Dinoflagellida/metabolism , Dose-Response Relationship, Drug , Female , Food Contamination , Food Safety , Interleukin-6/blood , Lymphocyte Count , Lymphocytes/cytology , Lymphocytes/drug effects , Mollusk Venoms , Neutrophils/cytology , Oxocins/immunology , Rats , Rats, Sprague-Dawley , Spleen/drug effects , Spleen/pathology , Thymus Gland/drug effects , Thymus Gland/pathology , Tumor Necrosis Factor-alpha/blood
19.
Anal Bioanal Chem ; 409(1): 95-106, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27830316

ABSTRACT

A freeze-dried mussel tissue (Mytilus edulis) reference material (CRM-FDMT1) was produced containing multiple groups of shellfish toxins. Homogeneity and stability testing showed the material to be fit for purpose. The next phase of work was to assign certified values and uncertainties to 10 analytes from six different toxin groups. Efforts involved optimizing extraction procedures for the various toxin groups and performing measurements using liquid chromatography-based analytical methods. A key aspect of the work was compensating for matrix effects associated with liquid chromatography-mass spectrometry through standard addition, dilution, or matrix-matched calibration. Certified mass fraction values are reported as mg/kg of CRM-FDMT1 powder as bottled for azaspiracid-1, -2, and -3 (4.10 ± 0.40; 1.13± 0.10; 0.96 ± 0.10, respectively), okadaic acid, dinophysistoxin-1 and -2 (1.59 ± 0.18; 0.68 ± 0.07; 3.57± 0.33, respectively), yessotoxin (2.49 ± 0.28), pectenotoxin-2 (0.66 ± 0.06), 13-desmethylspirolide-C (2.70 ± 0.26), and domoic acid (126 ± 10). Combined uncertainties for the certified values include contributions from homogeneity, stability, and characterization experiments. The commutability of CRM-FDMT1 was assessed by examining the extractability and matrix effects for the freeze-dried material in comparison with its equivalent wet tissue homogenate. CRM-FDMT1 is the first shellfish matrix CRM with certified values for yessotoxins, pectenotoxins or spirolides, and is the first CRM certified for multiple toxin groups. CRM-FDMT1 is a valuable tool for quality assurance of phycotoxin monitoring programs and for analytical method development and validation. Graphical Abstract CRM-FDMT1 is a multi-toxin mussel tissue certified reference material (CRM) to aid in development and validation of analytical methods for measuring the levels of algal toxins in seafood.


Subject(s)
Chromatography, Liquid/methods , Marine Toxins/analysis , Mass Spectrometry/methods , Mytilus edulis/chemistry , Seafood/analysis , Animals , Freeze Drying , Furans/analysis , Kainic Acid/analogs & derivatives , Kainic Acid/analysis , Macrolides , Mollusk Venoms , Okadaic Acid/analysis , Oxocins/analysis , Pyrans/analysis , Reference Standards , Spiro Compounds/analysis
20.
Arch Toxicol ; 91(4): 1859-1870, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27709272

ABSTRACT

Yessotoxins (YTX) and azaspiracids (AZAs) are marine toxins produced by phytoplanktonic dinoflagellates that get accumulated in filter feeding shellfish and finally reach human consumers through the food web. Both toxin classes are worldwide distributed, and food safety authorities have regulated their content in shellfish in many countries. Recently, YTXs and AZAs have been described as compounds with subacute cardiotoxic potential in rats owed to alterations of the cardiovascular function and ultrastructural heart damage. These molecules are also well known in vitro inducers of cell death. The aim of this study was to explore the presence of cardiomyocyte death after repeated subacute exposure of rats to AZA-1 and YTX for 15 days. Because autophagy and apoptosis are often found in dying cardiomyocytes, several autophagic and apoptotic markers were determined by western blot in heart tissues of these rats. The results showed that hearts from YTX-treated rats presented increased levels of the autophagic markers microtubule-associated protein light chain 3-II (LC3-II) and beclin-1, nevertheless AZA-1-treated hearts evidenced increased levels of the apoptosis markers cleaved caspase-3 and -8, cleaved PARP and Fas ligand. Therefore, while YTX-induced damage to the heart triggers autophagic processes, apoptosis activation occurs in the case of AZA-1. For the first time, activation of cell death signals in cardiomyocytes is demonstrated for these toxins with in vivo experiments, which may be related to alterations of the cardiovascular function.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Marine Toxins/toxicity , Myocytes, Cardiac/drug effects , Oxocins/toxicity , Spiro Compounds/toxicity , Animals , Biomarkers/metabolism , Blotting, Western , Female , Marine Toxins/administration & dosage , Mollusk Venoms , Oxocins/administration & dosage , Rats , Rats, Sprague-Dawley , Spiro Compounds/administration & dosage , Time Factors , Toxicity Tests, Subacute/methods
SELECTION OF CITATIONS
SEARCH DETAIL