Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 976
Filter
1.
Dermatol Online J ; 30(3)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-39090041

ABSTRACT

A unique dermatopathology incident arose after administration of the mRNA-1273 SARS-CoV-2 (Moderna) vaccine. Specifically, a transient purpuric interface dermatitis occurred 5 days post-second vaccine with the presentation of erythematous papules with erythema multiforme-type findings. A patient developed purpuric interface dermatitis with micro-vesiculation post-vaccination which ultimately resolved without sequelae.


Subject(s)
COVID-19 Vaccines , Erythema Multiforme , Humans , Erythema Multiforme/chemically induced , Erythema Multiforme/pathology , COVID-19 Vaccines/adverse effects , 2019-nCoV Vaccine mRNA-1273/adverse effects , Female , Drug Eruptions/etiology , Drug Eruptions/pathology , Male , COVID-19/prevention & control , Middle Aged , Purpura/etiology , Purpura/pathology
2.
Nat Commun ; 15(1): 6603, 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39097574

ABSTRACT

Vaccine responsiveness is often reduced in older adults. Yet, our lack of understanding of low vaccine responsiveness hampers the development of effective vaccination strategies to reduce the impact of infectious diseases in the ageing population. Young-adult (25-49 y), middle-aged (50-64 y) and older-adult ( ≥ 65 y) participants of the VITAL clinical trials (n = 315, age-range: 28-98 y), were vaccinated with an annual (2019-2020) quadrivalent influenza (QIV) booster vaccine, followed by a primary 13-valent pneumococcal-conjugate (PCV13) vaccine (summer/autumn 2020) and a primary series of two SARS-CoV-2 mRNA-1273 vaccines (spring 2021). This unique setup allowed investigation of humoral responsiveness towards multiple vaccines within the same individuals over the adult age-range. Booster QIV vaccination induced comparable H3N2 hemagglutination inhibition (HI) titers in all age groups, whereas primary PCV13 and mRNA-1273 vaccination induced lower antibody concentrations in older as compared to younger adults (primary endpoint). The persistence of humoral responses, towards the 6 months timepoint, was shorter in older adults for all vaccines (secondary endpoint). Interestingly, highly variable vaccine responder profiles overarching multiple vaccines were observed. Yet, approximately 10% of participants, mainly comprising of older male adults, were classified as low responders to multiple vaccines. This study aids the identification of risk groups for low vaccine responsiveness and hence supports targeted vaccination strategies. Trial number: NL69701.041.19, EudraCT: 2019-000836-24.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , Antibodies, Viral , COVID-19 , Immunity, Humoral , Immunization, Secondary , Influenza Vaccines , Influenza, Human , Pneumococcal Vaccines , SARS-CoV-2 , Humans , Middle Aged , Adult , Aged , Male , Female , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Antibodies, Viral/immunology , Antibodies, Viral/blood , Immunity, Humoral/immunology , Pneumococcal Vaccines/immunology , Pneumococcal Vaccines/administration & dosage , COVID-19/prevention & control , COVID-19/immunology , SARS-CoV-2/immunology , Aged, 80 and over , 2019-nCoV Vaccine mRNA-1273/immunology , Influenza, Human/prevention & control , Influenza, Human/immunology , Age Factors , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Influenza A Virus, H3N2 Subtype/immunology , Vaccination , Hemagglutination Inhibition Tests
3.
Exerc Immunol Rev ; 30: 63-70, 2024.
Article in English | MEDLINE | ID: mdl-39094182

ABSTRACT

Purpose: This study analyses the immune response of elite athletes after COVID-19 vaccination with double-dose mRNA and a single-dose vector vaccine. Methods: Immunoglobulin G (IgG) antibody titers, neutralizing activity, CD4 and CD8 T-cells were examined in blood samples from 72 athletes before and after vaccination against COVID-19 (56 mRNA (BNT162b2 / mRNA-1273), 16 vector (Ad26.COV.2) vaccines). Side effects and training time loss was also recorded. Results: Induction of IgG antibodies (mRNA : 5702 BAU/ml ; 4343 BAU/ml (hereafter: median), vector: 61 BAU/ml ; 52 BAU/ml, p<0.01), their neutralizing activity (99.7% ; 10.6%, p<0.01), and SARS-CoV-2 spike-specific CD4 T-cells (0.13% ; 0.05% ; p<0.01) after mRNA double-dose vaccines was significantly more pronounced than after a single-dose vector vaccine. SARS-CoV-2 spike-specific CD8 T-cell levels after a vector vaccine (0.15%) were significantly higher than after mRNA vaccines (0.02%; p<0.01). When athletes who had initially received the vector vaccine were boostered with an mRNA vaccine, IgG antibodies (to 3456 BAU/ml; p<0.01), neutralizing activity (to 100%; p<0.01), CD4 (to 0.13%; p<0.01) and CD8 T-cells (to 0.43%; p<0.01) significantly increased. When compared with dual-dose mRNA regimen, IgG antibody response was lower (p<0.01), the neutralizing activity (p<0.01) and CD8 T-cell (p<0.01) response higher and no significant difference in CD4 T-cell response (p=0.54) between the two regimens. Cumulative training loss (3 days) did not significantly differ between vaccination regimens (p=0.46). Conclusion: mRNA and vector vaccines against SARSCoV-2 appear to induce different patterns of immune response in athletes. Lower immune induction after a single-shot vector vaccine was clearly optimized by a heterologous booster. Vaccine reactions were mild and short-lived.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Athletes , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , COVID-19 Vaccines , COVID-19 , Immunoglobulin G , SARS-CoV-2 , Vaccination , Humans , COVID-19/prevention & control , COVID-19/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , SARS-CoV-2/immunology , Male , Antibodies, Viral/blood , CD8-Positive T-Lymphocytes/immunology , Immunoglobulin G/blood , Antibodies, Neutralizing/blood , Female , Adult , CD4-Positive T-Lymphocytes/immunology , Young Adult , BNT162 Vaccine/immunology , BNT162 Vaccine/administration & dosage , 2019-nCoV Vaccine mRNA-1273/immunology , 2019-nCoV Vaccine mRNA-1273/administration & dosage , Spike Glycoprotein, Coronavirus/immunology
4.
BMC Infect Dis ; 24(1): 768, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090537

ABSTRACT

BACKGROUND: Data on the dynamics and persistence of humoral immunity against SARS-CoV-2 after primary vaccination with two-dose inactivated vaccine (CoronaVac) are limited. This study evaluated the sequential effects of prior infection, heterologous boosting with mRNA-1273 (Moderna), and the occurrence of Omicron vaccine-breakthrough infection (VBI) thereafter. METHODS: We evaluated anti-spike IgG (Abbott) and neutralising (cPASS/GenScript) antibody (nAb) titers up to one year after mRNA-1273 boost in two-dose-CoronaVac-primed Indonesian healthcare workers (August 2021-August 2022). We used linear mixed modeling to estimate the rate of change in antibody levels, and logistic regression to examine associations between antibody levels and VBI. RESULTS: Of 138 participants, 52 (37.7%) had a prior infection and 78 (56.5%) received an mRNA-1273 booster. After two-dose CoronaVac, antibody titers had significantly declined within 180 days, irrespective of prior infection. After mRNA-1273 booster, anti-spike IgG (1.47% decline/day) and Omicron B.1.1.529/BA.2 nAbs declined between day 28-90, and IgG titers plateaued between day 90-360. During the BA.1/BA.2 wave (February-March 2022), 34.6% (27/78) of individuals experienced a VBI (median 181 days after mRNA-1273), although none developed severe illness. VBI was associated with low pre-VBI anti-spike IgG and B.1.1.529/BA.2 nAbs, which were restored post-VBI. CONCLUSIONS: mRNA-1273 booster after two-dose CoronaVac did not prevent BA.1/BA.2 VBI. Periodic vaccine boosters may be warranted against emerging SARS-CoV-2 variants.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , Antibodies, Neutralizing , Antibodies, Viral , Breakthrough Infections , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , SARS-CoV-2 , Adult , Female , Humans , Male , Middle Aged , 2019-nCoV Vaccine mRNA-1273/immunology , 2019-nCoV Vaccine mRNA-1273/administration & dosage , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Breakthrough Infections/epidemiology , Breakthrough Infections/immunology , Breakthrough Infections/prevention & control , COVID-19/prevention & control , COVID-19/immunology , COVID-19/epidemiology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Health Personnel , Immunoglobulin G/blood , Indonesia/epidemiology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage
5.
Nat Commun ; 15(1): 6085, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085208

ABSTRACT

The first dose of COVID-19 vaccines led to an overall reduction in cardiovascular events, and in rare cases, cardiovascular complications. There is less information about the effect of second and booster doses on cardiovascular diseases. Using longitudinal health records from 45.7 million adults in England between December 2020 and January 2022, our study compared the incidence of thrombotic and cardiovascular complications up to 26 weeks after first, second and booster doses of brands and combinations of COVID-19 vaccines used during the UK vaccination program with the incidence before or without the corresponding vaccination. The incidence of common arterial thrombotic events (mainly acute myocardial infarction and ischaemic stroke) was generally lower after each vaccine dose, brand and combination. Similarly, the incidence of common venous thrombotic events, (mainly pulmonary embolism and lower limb deep venous thrombosis) was lower after vaccination. There was a higher incidence of previously reported rare harms after vaccination: vaccine-induced thrombotic thrombocytopenia after first ChAdOx1 vaccination, and myocarditis and pericarditis after first, second and transiently after booster mRNA vaccination (BNT-162b2 and mRNA-1273). These findings support the wide uptake of future COVID-19 vaccination programs.


Subject(s)
COVID-19 Vaccines , COVID-19 , Cardiovascular Diseases , Vaccination , Adult , Aged , Female , Humans , Male , Middle Aged , 2019-nCoV Vaccine mRNA-1273/administration & dosage , 2019-nCoV Vaccine mRNA-1273/adverse effects , BNT162 Vaccine/adverse effects , BNT162 Vaccine/administration & dosage , Cardiovascular Diseases/epidemiology , ChAdOx1 nCoV-19/administration & dosage , ChAdOx1 nCoV-19/adverse effects , Cohort Studies , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/administration & dosage , England/epidemiology , Immunization, Secondary/adverse effects , Incidence , Myocardial Infarction/epidemiology , Myocardial Infarction/etiology , Myocarditis/epidemiology , Myocarditis/etiology , Pulmonary Embolism/epidemiology , Pulmonary Embolism/etiology , Thrombosis/epidemiology , Thrombosis/etiology , Vaccination/adverse effects , Adolescent , Young Adult , Aged, 80 and over
6.
Int J Infect Dis ; 146: 107161, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38992789

ABSTRACT

OBJECTIVES: To assess the safety and immunogenicity of a fourth vaccination (second booster) in individuals aged ≥75 years. METHODS: Participants were randomized to BNT162b2 (Comirnaty, 30 µg) or messenger RNA (mRNA)-1273 (Spikevax, 100 µg). The primary end point was the rate of two-fold antibody titer increase 14 days after vaccination, targeting the receptor binding domain (RBD) region of wild-type SARS-CoV-2. The secondary end points included changes in neutralizing activity against wild-type and 25 variants. Safety was assessed by monitoring solicited adverse events (AEs) for 7 days. RESULTS: A total of 269 participants (mean age 81 years, mRNA-1273 n = 135/BNT162b2 n = 134) were included. Two-fold anti-RBD immunoglobulin (Ig) G titer increase was achieved by 101 of 129 (78%) and 116 of 133 (87%) subjects in the BNT162b2 and the mRNA-1273 group, respectively (P = 0.054). A second booster of mRNA-1273 provided higher anti-RBD IgG geometric mean titer: 21.326 IU/mL (95% confidence interval: 18.235-24.940) vs BNT162b2: 15.181 IU/mL (95% confidence interval: 13.172-17.497). A higher neutralizing activity was noted for the mRNA-1273 group. The most frequent AE was pain at the injection site (51% in mRNA-1273 and 48% in BNT162b2). Participants in the mRNA-1273 group had less vaccine-related AEs (30% vs 39%). CONCLUSIONS: A second booster of either BNT162b2 or mRNA-1273 provided substantial IgG increase. Full-dose mRNA-1273 provided higher IgG levels and neutralizing capacity against SARS-CoV-2, with similar safety profile for subjects of advanced age.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19 , Immunization, Secondary , Immunogenicity, Vaccine , SARS-CoV-2 , Humans , BNT162 Vaccine/immunology , Male , Female , Aged , COVID-19/prevention & control , COVID-19/immunology , SARS-CoV-2/immunology , Antibodies, Viral/blood , Aged, 80 and over , 2019-nCoV Vaccine mRNA-1273/immunology , Antibodies, Neutralizing/blood , COVID-19 Vaccines/immunology , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/administration & dosage , Immunoglobulin G/blood , Spike Glycoprotein, Coronavirus/immunology
7.
Cardiovasc Pathol ; 72: 107668, 2024.
Article in English | MEDLINE | ID: mdl-38866088

ABSTRACT

A 64-year-old woman with a history of subarachnoid hemorrhage, breast cancer, cervical spine tumor, and syringomyelia developed recurrent pericardial effusion and cardiac tamponade after receiving the third dose of coronavirus disease 2019 mRNA vaccine, mRNA-1273 (Spikevax, Moderna). The cardiac tamponade of unknown etiology was intractable with nonsteroidal anti-inflammatory drugs, colchicine, and prednisolone. She underwent thoracoscopic pericardiectomy, and microthrombi were detected in the pericardial tissue. Although the exact causal relationship between vaccination and recurrent cardiac tamponade was unclear, the vaccine possibly caused or triggered the microthrombi formation, resulting in recurrent cardiac tamponade. Because of the potential for cardiovascular side effects such as thrombosis and myocarditis following vaccination, it was deemed necessary to accumulate and analyze such cases.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , COVID-19 , Cardiac Tamponade , Recurrence , SARS-CoV-2 , Humans , Female , Middle Aged , Cardiac Tamponade/etiology , COVID-19/complications , COVID-19/prevention & control , SARS-CoV-2/immunology , 2019-nCoV Vaccine mRNA-1273/adverse effects , COVID-19 Vaccines/adverse effects , Vaccination/adverse effects , Pericardial Effusion/etiology , Pericardial Effusion/immunology , Treatment Outcome , Pericardiectomy/adverse effects
8.
J Med Virol ; 96(6): e29739, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38899449

ABSTRACT

This longitudinal prospective controlled multicenter study aimed to monitor immunity generated by three exposures caused by breakthrough infections (BTI) after COVID-19-vaccination considering pre-existing cell-mediated immunity to common-corona-viruses (CoV) which may impact cellular reactivity against SARS-CoV-2. Anti-SARS-CoV-2-spike-IgG antibodies (anti-S-IgG) and cellular reactivity against Spike-(S)- and nucleocapsid-(N)-proteins were determined in fully-vaccinated (F) individuals who either experienced BTI (F+BTI) or had booster vaccination (F+Booster) compared to partially vaccinated (P+BTI) and unvaccinated (U) from 1 to 24 weeks post PCR-confirmed infection. High avidity anti-S-IgG were found in F+BTI compared to U, the latter exhibiting increased long-lasting pro-inflammatory cytokines to S-stimulation. CoV was associated with higher cellular reactivity in U, whereas no association was seen in F. The study illustrates the induction of significant S-specific cellular responses in F+BTI building-up basic immunity by three exposures. Only U seem to benefit from pre-existing CoV immunity but demonstrated inflammatory immune responses compared to F+BTI who immunologically benefit from enhanced humoral and cellular immunity after BTI. This study demonstrates that individuals with hybrid immunity from COVID-19-vaccination and BTI acquire a stable humoral and cellular immune response that is maintained for at least 6 months. Our findings corroborate recommendations by health authorities to build on basic immunity by three S-protein exposures.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunity, Cellular , Spike Glycoprotein, Coronavirus , Adult , Aged , Female , Humans , Male , Middle Aged , 2019-nCoV Vaccine mRNA-1273/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , BNT162 Vaccine/administration & dosage , Breakthrough Infections/immunology , Breakthrough Infections/prevention & control , Coronavirus Nucleocapsid Proteins/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Cytokines/immunology , Immunization, Secondary , Immunoglobulin G/blood , Longitudinal Studies , Phosphoproteins/immunology , Prospective Studies , Spike Glycoprotein, Coronavirus/immunology , Vaccination
9.
Epidemiology ; 35(4): 568-578, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38912714

ABSTRACT

BACKGROUND: The UK delivered its first "booster" COVID-19 vaccine doses in September 2021, initially to individuals at high risk of severe disease, then to all adults. The BNT162b2 Pfizer-BioNTech vaccine was used initially, then also Moderna mRNA-1273. METHODS: With the approval of the National Health Service England, we used routine clinical data to estimate the effectiveness of boosting with BNT162b2 or mRNA-1273 compared with no boosting in eligible adults who had received two primary course vaccine doses. We matched each booster recipient with an unboosted control on factors relating to booster priority status and prior COVID-19 immunization. We adjusted for additional factors in Cox models, estimating hazard ratios up to 182 days (6 months) following booster dose. We estimated hazard ratios overall and within the following periods: 1-14, 15-42, 43-69, 70-97, 98-126, 127-152, and 155-182 days. Outcomes included a positive SARS-CoV-2 test, COVID-19 hospitalization, COVID-19 death, non-COVID-19 death, and fracture. RESULTS: We matched 8,198,643 booster recipients with unboosted controls. Adjusted hazard ratios over 6-month follow-up were: positive SARS-CoV-2 test 0.75 (0.74, 0.75); COVID-19 hospitalization 0.30 (0.29, 0.31); COVID-19 death 0.11 (0.10, 0.14); non-COVID-19 death 0.22 (0.21, 0.23); and fracture 0.77 (0.75, 0.78). Estimated effectiveness of booster vaccines against severe COVID-19-related outcomes peaked during the first 3 months following the booster dose. By 6 months, the cumulative incidence of positive SARS-CoV-2 test was higher in boosted than unboosted individuals. CONCLUSIONS: We estimate that COVID-19 booster vaccination, compared with no booster vaccination, provided substantial protection against COVID-19 hospitalization and COVID-19 death but only limited protection against positive SARS-CoV-2 test. Lower rates of fracture in boosted than unboosted individuals may suggest unmeasured confounding. Observational studies should report estimated vaccine effectiveness against nontarget and negative control outcomes.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , SARS-CoV-2 , Humans , England/epidemiology , COVID-19/prevention & control , Male , Female , Middle Aged , Adult , Aged , SARS-CoV-2/immunology , COVID-19 Vaccines/administration & dosage , Vaccine Efficacy , Proportional Hazards Models , Hospitalization/statistics & numerical data
10.
Ann Intern Med ; 177(7): 892-900, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38857503

ABSTRACT

BACKGROUND: Concern about side effects is a common reason for SARS-CoV-2 vaccine hesitancy. OBJECTIVE: To determine whether short-term side effects of SARS-CoV-2 messenger RNA (mRNA) vaccination are associated with subsequent neutralizing antibody (nAB) response. DESIGN: Prospective cohort study. SETTING: San Francisco Bay Area. PARTICIPANTS: Adults who had not been vaccinated against or exposed to SARS-CoV-2, who then received 2 doses of either BNT162b2 or mRNA-1273. MEASUREMENTS: Serum nAB titer at 1 month and 6 months after the second vaccine dose. Daily symptom surveys and objective biometric measurements at each dose. RESULTS: 363 participants were included in symptom-related analyses (65.6% female; mean age, 52.4 years [SD, 11.9]), and 147 were included in biometric-related analyses (66.0% female; mean age, 58.8 years [SD, 5.3]). Chills, tiredness, feeling unwell, and headache after the second dose were each associated with 1.4 to 1.6 fold higher nAB at 1 and 6 months after vaccination. Symptom count and vaccination-induced change in skin temperature and heart rate were all positively associated with nAB across both follow-up time points. Each 1 °C increase in skin temperature after dose 2 was associated with 1.8 fold higher nAB 1 month later and 3.1 fold higher nAB 6 months later. LIMITATIONS: The study was conducted in 2021 in people receiving the primary vaccine series, making generalizability to people with prior SARS-CoV-2 vaccination or exposure unclear. Whether the observed associations would also apply for neutralizing activity against non-ancestral SARS-CoV-2 strains is also unknown. CONCLUSION: Convergent self-report and objective biometric findings indicate that short-term systemic side effects of SARS-CoV-2 mRNA vaccination are associated with greater long-lasting nAB responses. This may be relevant in addressing negative attitudes toward vaccine side effects, which are a barrier to vaccine uptake. PRIMARY FUNDING SOURCE: National Institute on Aging.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , Antibodies, Neutralizing , BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Humans , Female , Middle Aged , Male , Prospective Studies , Antibodies, Neutralizing/blood , COVID-19/prevention & control , COVID-19/immunology , BNT162 Vaccine/adverse effects , SARS-CoV-2/immunology , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , 2019-nCoV Vaccine mRNA-1273/adverse effects , Adult , Antibodies, Viral/blood , Chills/chemically induced , Headache/chemically induced , Fatigue/chemically induced , Aged
11.
J Immunol Methods ; 530: 113698, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823574

ABSTRACT

There is a critical need to understand the effectiveness of serum elicited by different SARS-CoV-2 vaccines against SARS-CoV-2 variants. We describe the generation of reference reagents comprised of post-vaccination sera from recipients of different primary vaccines with or without different vaccine booster regimens in order to allow standardized characterization of SARS-CoV-2 neutralization in vitro. We prepared and pooled serum obtained from donors who received a either primary vaccine series alone, or a vaccination strategy that included primary and boosted immunization using available SARS-CoV-2 mRNA vaccines (BNT162b2, Pfizer and mRNA-1273, Moderna), replication-incompetent adenovirus type 26 vaccine (Ad26.COV2·S, Johnson and Johnson), or recombinant baculovirus-expressed spike protein in a nanoparticle vaccine plus Matrix-M adjuvant (NVX-CoV2373, Novavax). No subjects had a history of clinical SARS-CoV-2 infection, and sera were screened with confirmation that there were no nucleocapsid antibodies detected to suggest natural infection. Twice frozen sera were aliquoted, and serum antibodies were characterized for SARS-CoV-2 spike protein binding (estimated WHO antibody binding units/ml), spike protein competition for ACE-2 binding, and SARS-CoV-2 spike protein pseudotyped lentivirus transduction. These reagents are available for distribution to the research community (BEI Resources), and should allow the direct comparison of antibody neutralization results between different laboratories. Further, these sera are an important tool to evaluate the functional neutralization activity of vaccine-induced antibodies against emerging SARS-CoV-2 variants of concern. IMPORTANCE: The explosion of COVID-19 demonstrated how novel coronaviruses can rapidly spread and evolve following introduction into human hosts. The extent of vaccine- and infection-induced protection against infection and disease severity is reduced over time due to the fall in concentration, and due to emerging variants that have altered antibody binding regions on the viral envelope spike protein. Here, we pooled sera obtained from individuals who were immunized with different SARS-CoV-2 vaccines and who did not have clinical or serologic evidence of prior infection. The sera pools were characterized for direct spike protein binding, blockade of virus-receptor binding, and neutralization of spike protein pseudotyped lentiviruses. These sera pools were aliquoted and are available to allow inter-laboratory comparison of results and to provide a tool to determine the effectiveness of prior vaccines in recognizing and neutralizing emerging variants of concern.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , Neutralization Tests , SARS-CoV-2 , Humans , SARS-CoV-2/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , 2019-nCoV Vaccine mRNA-1273/immunology , BNT162 Vaccine/immunology , BNT162 Vaccine/administration & dosage , Spike Glycoprotein, Coronavirus/immunology , Reference Standards , Immunization, Secondary , Vaccination , Ad26COVS1/immunology
12.
JCI Insight ; 9(13)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833310

ABSTRACT

Patients with autoimmune diseases are at higher risk for severe infection due to their underlying disease and immunosuppressive treatments. In this real-world observational study of 463 patients with autoimmune diseases, we examined risk factors for poor B and T cell responses to SARS-CoV-2 vaccination. We show a high frequency of inadequate anti-spike IgG responses to vaccination and boosting in the autoimmune population but minimal suppression of T cell responses. Low IgG responses in B cell-depleted patients with multiple sclerosis (MS) were associated with higher CD8 T cell responses. By contrast, patients taking mycophenolate mofetil (MMF) exhibited concordant suppression of B and T cell responses. Treatments with highest risk for low anti-spike IgG response included B cell depletion within the last year, fingolimod, and combination treatment with MMF and belimumab. Our data show that the mRNA-1273 (Moderna) vaccine is the most effective vaccine in the autoimmune population. There was minimal induction of either disease flares or autoantibodies by vaccination and no significant effect of preexisting anti-type I IFN antibodies on either vaccine response or breakthrough infections. The low frequency of breakthrough infections and lack of SARS-CoV-2-related deaths suggest that T cell immunity contributes to protection in autoimmune disease.


Subject(s)
Autoimmune Diseases , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/prevention & control , Female , SARS-CoV-2/immunology , Male , Autoimmune Diseases/immunology , Middle Aged , Adult , COVID-19 Vaccines/immunology , Immunosuppressive Agents/therapeutic use , Immunoglobulin G/immunology , Immunoglobulin G/blood , 2019-nCoV Vaccine mRNA-1273/immunology , 2019-nCoV Vaccine mRNA-1273/administration & dosage , Antibodies, Viral/immunology , Antibodies, Viral/blood , Mycophenolic Acid/therapeutic use , Aged , Vaccination , B-Lymphocytes/immunology , Antibodies, Monoclonal, Humanized/therapeutic use , CD8-Positive T-Lymphocytes/immunology , Spike Glycoprotein, Coronavirus/immunology
13.
Nat Aging ; 4(8): 1121-1136, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38918602

ABSTRACT

Adenoviral and mRNA vaccines encoding the viral spike (S) protein have been deployed globally to contain severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Older individuals are particularly vulnerable to severe infection, probably reflecting age-related changes in the immune system, which can also compromise vaccine efficacy. It is nonetheless unclear to what extent different vaccine platforms are impacted by immunosenescence. Here, we evaluated S protein-specific immune responses elicited by vaccination with two doses of BNT162b2 or ChAdOx1-S and subsequently boosted with a single dose of BNT162b2 or mRNA-1273, comparing age-stratified participants with no evidence of previous infection with SARS-CoV-2. We found that aging profoundly compromised S protein-specific IgG titers and further limited S protein-specific CD4+ and CD8+ T cell immunity as a probable function of progressive erosion of the naive lymphocyte pool in individuals vaccinated initially with BNT162b2. Our results demonstrate that primary vaccination with ChAdOx1-S and subsequent boosting with BNT162b2 or mRNA-1273 promotes sustained immunological memory in older adults and potentially confers optimal protection against coronavirus disease 2019.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , Adaptive Immunity , BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , mRNA Vaccines , Humans , COVID-19/immunology , COVID-19/prevention & control , BNT162 Vaccine/immunology , SARS-CoV-2/immunology , Aged , Middle Aged , Adaptive Immunity/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Spike Glycoprotein, Coronavirus/immunology , mRNA Vaccines/immunology , Adult , Male , Female , Antibodies, Viral/blood , Antibodies, Viral/immunology , Adenovirus Vaccines/immunology , Adenovirus Vaccines/administration & dosage , CD8-Positive T-Lymphocytes/immunology , Age Factors , ChAdOx1 nCoV-19 , Aging/immunology , CD4-Positive T-Lymphocytes/immunology , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage
14.
J Korean Med Sci ; 39(21): e174, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38832478

ABSTRACT

BACKGROUND: Although guidelines recommend vaccination for individuals who have recovered from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection to prevent reinfection, comprehensive evaluation studies are limited. We aimed to evaluate vaccine effectiveness against SARS-CoV-2 reinfection according to the primary vaccination status, booster vaccination status, and vaccination methods used. METHODS: This population-based case-control study enrolled all SARS-CoV-2-infected patients in Seoul between January 2020 and February 2022. Individuals were categorized into case (reinfection) and control (no reinfection) groups. Data were analyzed using conditional logistic regression after adjusting for underlying comorbidities using multiple regression. RESULTS: The case group included 7,678 participants (average age: 32.26 years). In all vaccinated individuals, patients who received the first and second booster doses showed reduced reinfection rates compared with individuals who received basic vaccination (odds ratio [OR] = 0.605, P < 0.001 and OR = 0.002, P < 0.001). Patients who received BNT162b2 or mRNA-1273, NVX-CoV2373 and heterologous vaccination showed reduced reinfection rates compared with unvaccinated individuals (OR = 0.546, P < 0.001; OR = 0.356, P < 0.001; and OR = 0.472, P < 0.001). However, the ChAdOx1-S or Ad26.COV2.S vaccination group showed a higher reinfection rate than the BNT162b2 or mRNA-1273 vaccination group (OR = 4.419, P < 0.001). CONCLUSION: In SARS-CoV-2-infected individuals, completion of the basic vaccination series showed significant protection against reinfection compared with no vaccination. If the first or second booster vaccination was received, the protective effect against reinfection was higher than that of basic vaccination; when vaccinated with BNT162b2 or mRNA-1273 only or heterologous vaccination, the protective effect was higher than that of ChAdOx1-S or Ad26.COV2.S vaccination only.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Reinfection , SARS-CoV-2 , Vaccine Efficacy , Humans , Male , Female , Case-Control Studies , COVID-19/prevention & control , COVID-19/immunology , COVID-19/epidemiology , Adult , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , BNT162 Vaccine/immunology , Middle Aged , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Reinfection/prevention & control , Reinfection/immunology , 2019-nCoV Vaccine mRNA-1273/immunology , Young Adult , Vaccination , ChAdOx1 nCoV-19 , Aged
15.
Lancet Rheumatol ; 6(6): e339-e351, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734019

ABSTRACT

BACKGROUND: The humoral and T-cell responses to booster COVID-19 vaccine types in multidisease immunocompromised individuals who do not generate adequate antibody responses to two COVID-19 vaccine doses, is not fully understood. The OCTAVE DUO trial aimed to determine the value of third vaccinations in a wide range of patients with primary and secondary immunodeficiencies. METHODS: OCTAVE-DUO was a prospective, open-label, multicentre, randomised, controlled, phase 3 trial investigating humoral and T-cell responses in patients who are immunocompromised following a third vaccine dose with BNT162b2 or mRNA-1273, and of NVX-CoV2373 for those with lymphoid malignancies. We recruited patients who were immunocompromised from 11 UK hospitals, aged at least 18 years, with previous sub-optimal responses to two doses of SARS-CoV-2 vaccine. Participants were randomly assigned 1:1 (1:1:1 for those with lymphoid malignancies), stratified by disease, previous vaccination type, and anti-spike antibody response following two doses. Individuals with lived experience of immune susceptibility were involved in the study design and implementation. The primary outcome was vaccine-specific immunity defined by anti-SARS-CoV-2 spike antibodies (Roche Diagnostics UK and Ireland, Burgess Hill, UK) and T-cell responses (Oxford Immunotec, Abingdon, UK) before and 21 days after the third vaccine dose analysed by a modified intention-to-treat analysis. The trial is registered with the ISRCTN registry, ISRCTN 15354495, and the EU Clinical Trials Register, EudraCT 2021-003632-87, and is complete. FINDINGS: Between Aug 4, 2021 and Mar 31, 2022, 804 participants across nine disease cohorts were randomly assigned to receive BNT162b2 (n=377), mRNA-1273 (n=374), or NVX-CoV2373 (n=53). 356 (45%) of 789 participants were women, 433 (55%) were men, and 659 (85%) of 775 were White. Anti-SARS-CoV-2 spike antibodies measured 21 days after the third vaccine dose were significantly higher than baseline pre-third dose titres in the modified intention-to-treat analysis (median 1384 arbitrary units [AU]/mL [IQR 4·3-7990·0] compared with median 11·5 AU/mL [0·4-63·1]; p<0·001). Of participants who were baseline low responders, 380 (90%) of 423 increased their antibody concentrations to more than 400 AU/mL. Conversely, 166 (54%) of 308 baseline non-responders had no response after the third dose. Detectable T-cell responses following the third vaccine dose were seen in 494 (80%) of 616 participants. There were 24 serious adverse events (BNT612b2 eight [33%] of 24, mRNA-1273 12 [50%], NVX-CoV2373 four [17%]), two (8%) of which were categorised as vaccine-related. There were seven deaths (1%) during the trial, none of which were vaccine-related. INTERPRETATION: A third vaccine dose improved the serological and T-cell response in the majority of patients who are immunocompromised. Individuals with chronic renal disease, lymphoid malignancy, on B-cell targeted therapies, or with no serological response after two vaccine doses are at higher risk of poor response to a third vaccine dose. FUNDING: Medical Research Council, Blood Cancer UK.


Subject(s)
BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , Immunocompromised Host , Immunogenicity, Vaccine , SARS-CoV-2 , Humans , Female , Male , COVID-19/prevention & control , COVID-19/immunology , Middle Aged , Immunocompromised Host/immunology , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Aged , BNT162 Vaccine/immunology , BNT162 Vaccine/administration & dosage , Antibodies, Viral/blood , Prospective Studies , Immunization, Secondary , 2019-nCoV Vaccine mRNA-1273/immunology , Adult , T-Lymphocytes/immunology , United Kingdom , ChAdOx1 nCoV-19/immunology
16.
Vaccine ; 42(19): 4011-4021, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38760269

ABSTRACT

OBJECTIVE: This study aimed to evaluate the effectiveness of SARS-CoV-2 mRNA vaccines in preventing infection and hospitalization among healthcare workers (HCWs) in the Valencian Community (Spain), considering vaccination timing, dose number, and predominant variant. METHODS: A test-negative case-control design estimated vaccine effectiveness against symptomatic disease and hospitalization due to SARS-CoV-2. HCWs who underwent PCR or antigen testing for SARS-CoV-2 from January 2021 to March 2022 were included. Cases had a positive diagnostic test, while controls had negative tests. Adjusted vaccine effectiveness (aVE) was calculated using the formula: aVE = (1 - Odds ratio) × 100. RESULTS: During the Delta variant's predominance, aVE against infection within 12-120 days post-second dose was 64.8 % (BNT162b2) and 59.4 % (mRNA-1273), declining to 21.2 % and 42.2 %, respectively, after 120 days. For the Omicron variant, aVE within 12-120 days post-second dose was 61.1 % (BNT162b2) and 85.1 % (mRNA-1273), decreasing to 36.7 % and 24.9 %, respectively, after 120 days. After a booster dose of mRNA-1273, aVE was 64.0 % (BNT162b2 recipients) and 65.9 % (initial mRNA-1273 recipients). Regardless of variant, aVE for hospitalization prevention after 2 doses was 87.0 % (BNT162b2) and 89.0 % (mRNA-1273). CONCLUSION: The administration of two doses of Moderna-mRNA-1273 against SARS-CoV-2 in HCWs proved to be highly effective in preventing infections and hospitalizations in the first 120 days after the second dose during the predominance of the Omicron variant. The decline in VE after 120 days since the administration of the second dose was significantly restored by the booster dose administration. This increase in VE was greater for the Pfizer vaccine. COVID-19 hospitalization prevention remained stable with both mRNA vaccines throughout the study period.


Subject(s)
BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , Health Personnel , Hospitalization , Immunization, Secondary , SARS-CoV-2 , Vaccine Efficacy , Humans , COVID-19/prevention & control , COVID-19/epidemiology , Spain/epidemiology , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Male , Female , Hospitalization/statistics & numerical data , Adult , Middle Aged , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , BNT162 Vaccine/immunology , BNT162 Vaccine/administration & dosage , Case-Control Studies , 2019-nCoV Vaccine mRNA-1273/immunology , Vaccination/methods
17.
Nat Commun ; 15(1): 3822, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802362

ABSTRACT

The risk-benefit profile of COVID-19 vaccination in children remains uncertain. A self-controlled case-series study was conducted using linked data of 5.1 million children in England to compare risks of hospitalisation from vaccine safety outcomes after COVID-19 vaccination and infection. In 5-11-year-olds, we found no increased risks of adverse events 1-42 days following vaccination with BNT162b2, mRNA-1273 or ChAdOX1. In 12-17-year-olds, we estimated 3 (95%CI 0-5) and 5 (95%CI 3-6) additional cases of myocarditis per million following a first and second dose with BNT162b2, respectively. An additional 12 (95%CI 0-23) hospitalisations with epilepsy and 4 (95%CI 0-6) with demyelinating disease (in females only, mainly optic neuritis) were estimated per million following a second dose with BNT162b2. SARS-CoV-2 infection was associated with increased risks of hospitalisation from seven outcomes including multisystem inflammatory syndrome and myocarditis, but these risks were largely absent in those vaccinated prior to infection. We report a favourable safety profile of COVID-19 vaccination in under-18s.


Subject(s)
BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , ChAdOx1 nCoV-19 , Hospitalization , SARS-CoV-2 , Vaccination , Humans , COVID-19/prevention & control , COVID-19/epidemiology , COVID-19/complications , Child , Female , England/epidemiology , Male , Child, Preschool , Adolescent , SARS-CoV-2/immunology , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/administration & dosage , Hospitalization/statistics & numerical data , Vaccination/adverse effects , Myocarditis/epidemiology , 2019-nCoV Vaccine mRNA-1273 , Systemic Inflammatory Response Syndrome/epidemiology , Optic Neuritis/epidemiology , Epilepsy/epidemiology
18.
AIDS ; 38(9): 1355-1365, 2024 07 15.
Article in English | MEDLINE | ID: mdl-38788210

ABSTRACT

OBJECTIVE: We evaluated the immunogenicity of a bivalent BA.1 COVID-19 booster vaccine in people with HIV (PWH). DESIGN: Prospective observational cohort study. METHODS: PWH aged ≥45 years received Wuhan-BA.1 mRNA-1273.214 and those <45 years Wuhan-BA.1 BNT162b2. Participants were propensity score-matched 1 : 2 to people without HIV (non-PWH) by age, primary vaccine platform (mRNA-based or vector-based), number of prior COVID-19 boosters and SARS-CoV-2 infections, and spike (S1)-specific antibodies on the day of booster administration. The primary endpoint was the geometric mean ratio (GMR) of ancestral S1-specific antibodies from day 0 to 28 in PWH compared to non-PWH. Secondary endpoints included humoral responses, T-cell responses and cytokine responses up to 180 days post-vaccination. RESULTS: Forty PWH received mRNA-1273.214 ( N  = 35) or BNT162b2 ( N  = 5) following mRNA-based ( N  = 29) or vector-based ( N  = 11) primary vaccination. PWH were predominantly male (87% vs. 26% of non-PWH) and median 57 years [interquartile range (IQR) 53-59]. Their median CD4 + T-cell count was 775 (IQR 511-965) and the plasma HIV-RNA load was <50 copies/ml in 39/40. The GMR of S1-specific antibodies by 28 days post-vaccination was comparable between PWH [4.48, 95% confidence interval (CI) 3.24-6.19] and non-PWH (4.07, 95% CI 3.42-4.83). S1-specific antibody responses were comparable between PWH and non-PWH up to 180 days, and T-cell responses up to 90 days post-vaccination. Interferon-γ, interleukin (IL)-2, and IL-4 cytokine concentrations increased 28 days post-vaccination in PWH. CONCLUSION: A bivalent BA.1 booster vaccine was immunogenic in well treated PWH, eliciting comparable humoral responses to non-PWH. However, T-cell responses waned faster after 90 days in PWH compared to non-PWH.


Subject(s)
Antibodies, Viral , BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , HIV Infections , Immunization, Secondary , Immunogenicity, Vaccine , SARS-CoV-2 , Humans , Male , Middle Aged , Female , Prospective Studies , HIV Infections/immunology , COVID-19/prevention & control , COVID-19/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Antibodies, Viral/blood , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , BNT162 Vaccine/administration & dosage , Netherlands , Adult , SARS-CoV-2/immunology , 2019-nCoV Vaccine mRNA-1273/immunology , 2019-nCoV Vaccine mRNA-1273/administration & dosage , Cytokines/immunology , Aged
19.
Nature ; 630(8018): 950-960, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749479

ABSTRACT

Immune imprinting is a phenomenon in which prior antigenic experiences influence responses to subsequent infection or vaccination1,2. The effects of immune imprinting on serum antibody responses after boosting with variant-matched SARS-CoV-2 vaccines remain uncertain. Here we characterized the serum antibody responses after mRNA vaccine boosting of mice and human clinical trial participants. In mice, a single dose of a preclinical version of mRNA-1273 vaccine encoding Wuhan-1 spike protein minimally imprinted serum responses elicited by Omicron boosters, enabling generation of type-specific antibodies. However, imprinting was observed in mice receiving an Omicron booster after two priming doses of mRNA-1273, an effect that was mitigated by a second booster dose of Omicron vaccine. In both SARS-CoV-2-infected and uninfected humans who received two Omicron-matched boosters after two or more doses of the prototype mRNA-1273 vaccine, spike-binding and neutralizing serum antibodies cross-reacted with Omicron variants as well as more distantly related sarbecoviruses. Because serum neutralizing responses against Omicron strains and other sarbecoviruses were abrogated after pre-clearing with Wuhan-1 spike protein, antibodies induced by XBB.1.5 boosting in humans focus on conserved epitopes targeted by the antecedent mRNA-1273 primary series. Thus, the antibody response to Omicron-based boosters in humans is imprinted by immunizations with historical mRNA-1273 vaccines, but this outcome may be beneficial as it drives expansion of cross-neutralizing antibodies that inhibit infection of emerging SARS-CoV-2 variants and distantly related sarbecoviruses.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , SARS-CoV-2 , mRNA Vaccines , Adult , Animals , Female , Humans , Male , Mice , 2019-nCoV Vaccine mRNA-1273/administration & dosage , 2019-nCoV Vaccine mRNA-1273/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/immunology , Antibodies, Viral/blood , China , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Cross Reactions/immunology , Epitopes, B-Lymphocyte/immunology , mRNA Vaccines/administration & dosage , mRNA Vaccines/genetics , mRNA Vaccines/immunology , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Vaccination
20.
Vaccine ; 42(18): 3819-3829, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38714447

ABSTRACT

This study examined short-to-medium term safety of COVID-19 vaccines among adults aged ≥65 years using the Canadian National Vaccine Safety Network active safety surveillance data. Both vaccinated and unvaccinated older adult participants recruited from seven provinces and territories were included in the analysis. Safety was assessed at 7 days after COVID-19 vaccination (dose 1, 2 and 3), and 7 months after dose 1. Multivariable logistic regression was used to examine the association between BNT162b2/mRNA-1273 COVID-19 vaccines and two short-term health events: 1) health event preventing daily activities and/or required medical consultation, 2) serious health events resulting in an emergency department visit and/or hospitalization within 7 days following each dose. We also assessed the rates of serious health events for the period between dose 1 and 2, and 7-months following dose 1. Between December 2020 and February 2022, a total of 173,038, 104,452, and 13,970 older adults completed dose 1, dose 2, and dose 3 surveys, respectively. The control survey was completed by 2,955 unvaccinated older adults. Health events occurred more frequently among recipients after dose 2 homologous mRNA-1273 (adjusted odds ratio [95 % confidence interval]: 2.91 [2.24-3.79]) and dose two heterologous (BNT162b2 followed by mRNA-1273): 1.50 [1.12-2.02] compared to unvaccinated counterparts. There was no difference in event rates after any dose of BNT162b2 and unvaccinated participants. The rates of serious health events following COVID-19 vaccination were very low (≤0.3 %) across all vaccine products and doses, and were not higher compared to unvaccinated controls, and were not associated with an emergency department visit or hospitalization within 7 days following vaccination. Reported symptoms were self-limited and rarely required medical assessment. Our findings further strengthen the current evidence that mRNA COVID-19 vaccines are safe and can be used to inform older adults about expected adverse events following COVID-19 vaccination.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Humans , Aged , Male , Female , Canada , COVID-19/prevention & control , COVID-19/epidemiology , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/adverse effects , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/administration & dosage , Aged, 80 and over , SARS-CoV-2/immunology , Vaccination/adverse effects , Hospitalization/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL