Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 671
Filter
1.
Biomed Mater ; 19(5)2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39134023

ABSTRACT

The main reasons for the difficulty in curing and high recurrence rate of glioblastoma multiforme (GBM) include: 1. The difficulty of chemotherapy drugs in penetrating the blood-brain barrier (BBB) to target tumor cells; 2. The presence of glioma stem cells (GSCs) leading to chemotherapy resistance. Therefore, breaking through the limitations of the BBB and overcoming the drug resistance caused by GSCs are the main strategies to address this problem. This study presents our results on the development of lactoferrin (Lf)/CD133 antibody conjugated nanostructured lipid carriers (Lf/CD133-NLCS) for simultaneously targeting BBB and GSCs. Temozolomide (TMZ) loaded Lf/CD133-NLCS (Lf/CD133-NLCS-TMZ) exhibited high-efficiencyin vitroanti-tumor effects toward malignant glioma cells (U87-MG) and GSCs, while demonstrating no significant toxicity to normal cells at concentrations lower than 200 µg ml-1. The results of thein vitrotargeting GBM study revealed a notably higher cellular uptake of Lf/CD133-NLCS-TMZ in U87-MG cells and GSCs in comparison to Lf/CD133 unconjugated counterpart (NLCS-TMZ). In addition, increased BBB permeability were confirmed for Lf/CD133-NLCS-TMZ compared to NLCS-TMZ bothin vitroandin vivo. Taking together, Lf/CD133-NLCS-TMZ show great potential for dual targeting of BBB and GSCs, as well as GBM therapy based on this strategy.


Subject(s)
AC133 Antigen , Blood-Brain Barrier , Brain Neoplasms , Drug Carriers , Glioblastoma , Lactoferrin , Lipids , Nanostructures , Neoplastic Stem Cells , Temozolomide , Blood-Brain Barrier/metabolism , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Lactoferrin/chemistry , AC133 Antigen/metabolism , Humans , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Temozolomide/pharmacology , Cell Line, Tumor , Nanostructures/chemistry , Drug Carriers/chemistry , Animals , Lipids/chemistry , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Mice , Drug Delivery Systems , Antibodies/chemistry
2.
Cell Death Dis ; 15(8): 634, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39209807

ABSTRACT

Hepatocellular carcinoma (HCC) is known to be lethal disease. However, its prognosis remains poor, primarily because the precise oncogenic mechanisms underlying HCC progression remain elusive, thus hampering effective treatment. Here, we aimed to identify the potential oncogenes in HCC and elucidate the underlying mechanisms of their action. To identify potential candidate genes, an integrative analysis of eight publicly available genomic datasets was performed, and the functional implications of the identified genes were assessed in vitro and in vivo. Sortilin 1 (SORT1) was identified as a potential candidate oncogene in HCC, and its overexpression in HCC cells was confirmed by analyzing spatial transcriptomic and single-cell data. Silencing SORT1 in Huh-7 and Hep3B cells significantly reduced HCC progression in vitro and in vivo. Functional analyses of oncogenic pathways revealed that SORT1 expression regulated the Notch signaling pathway activation and CD133 expression. Furthermore, analysis of epigenetic regulation of the candidate gene and its clinical implications using The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA LIHC) and our HCC cohort (AJOU_HCC cohort) data demonstrated an inverse correlation between the methylation status of the SORT1 promoter region, specifically at the cg16988986 site, and SORT1 mRNA expression, indicating the epigenetic regulation of SORT1 in HCC. In addition, the distinct methylation status of cg16988986 was significantly associated with patient survival. In conclusion, SORT1 plays a pivotal role in HCC by activating the Notch signaling pathway and increasing CD133 expression. These findings suggest SORT1 as a promising therapeutic target for HCC.


Subject(s)
AC133 Antigen , Adaptor Proteins, Vesicular Transport , Carcinoma, Hepatocellular , Liver Neoplasms , Neovascularization, Pathologic , Receptors, Notch , Signal Transduction , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Adaptor Proteins, Vesicular Transport/genetics , Animals , Cell Line, Tumor , Receptors, Notch/metabolism , Receptors, Notch/genetics , AC133 Antigen/metabolism , AC133 Antigen/genetics , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Gene Expression Regulation, Neoplastic , Mice , Male , Mice, Nude , Neoplasm Metastasis , Female , Mice, Inbred BALB C , Epigenesis, Genetic , Angiogenesis
3.
J Transl Med ; 22(1): 797, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39198858

ABSTRACT

BACKGROUND: We have previously demonstrated the significant reliance of pancreatic Cancer Stem Cells (PaCSCs) on mitochondrial oxidative phosphorylation (OXPHOS), which enables versatile substrate utilization, including fatty acids (FAs). Notably, dysregulated lipid scavenging and aberrant FA metabolism are implicated in PDAC progression. METHODS & RESULTS: Our bioinformatics analyses revealed elevated expression of lipid metabolism-related genes in PDAC tissue samples compared to normal tissue samples, which correlated with a stemness signature. Additionally, PaCSCs exhibited heightened expression of diverse lipid metabolism genes and increased lipid droplet accumulation compared to differentiated progenies. Treatment with palmitic, oleic, and linolenic FAs notably augmented the self-renewal and chemotherapy resistance of CD133+ PaCSCs. Conversely, inhibitors of FA uptake, storage and metabolism reduced CSC populations both in vitro and in vivo. Mechanistically, inhibition of FA metabolism suppressed OXPHOS activity, inducing energy depletion and subsequent cell death in PaCSCs. Importantly, combining a FAO inhibitor and Gemcitabine treatment enhanced drug efficacy in vitro and in vivo, effectively diminishing the CSC content and functionality. CONCLUSION: Targeting FAO inhibition represents a promising therapeutic strategy against this highly tumorigenic population.


Subject(s)
Carcinogenesis , Drug Resistance, Neoplasm , Fatty Acids , Neoplastic Stem Cells , Oxidation-Reduction , Pancreatic Neoplasms , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/drug effects , Humans , Drug Resistance, Neoplasm/drug effects , Fatty Acids/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/drug therapy , Cell Line, Tumor , Carcinogenesis/pathology , Carcinogenesis/drug effects , Animals , Oxidative Phosphorylation/drug effects , Cell Self Renewal/drug effects , Lipid Metabolism/drug effects , AC133 Antigen/metabolism , Mice , Gene Expression Regulation, Neoplastic
4.
Pathol Res Pract ; 260: 155440, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964119

ABSTRACT

A cancer mass is composed of a heterogeneous group of cells, a small part of which constitutes the cancer stem cells since they are less differentiated and have a high capacity to develop cancer. Versican is an extracellular matrix protein located in many human tissues. The mRNA of versican has been shown to have "splicing patterns" as detected by RT-PCR, northern blot analysis, and cDNA sequencing. Based on this knowledge this study aims to reveal the splice variants of versican molecules, which are thought to be involved in the pathogenesis of the DU-145 human prostatic carcinoma cell line and prostatic cancer stem cells isolated from this cell line. In this study, RWPE-1 normal prostatic and DU-145 human prostate cancer cell lines have been used. Prostatic cancer stem cells and the remaining group of non-prostatic-cancer stem cells (bulk population) were isolated according to their CD133+/CD44+. RNA was isolated in all groups, and sequence analysis was accomplished for splicing variants by Illumina NextSeq 500 sequencing system. The results were analyzed by bioinformatic evaluation. As five isoforms of the versican gene in the differential transcript expression are analyzed, it was observed that a significant change was only found in the isoforms Versican 0 and Versican 1. In this study, we explored the function of this molecule which we think to be effective in cancer progression, and suggested that more valuable results can be obtained after the accomplishment of in vivo experiments.


Subject(s)
AC133 Antigen , Hyaluronan Receptors , Neoplastic Stem Cells , Prostatic Neoplasms , Versicans , Humans , Versicans/genetics , Versicans/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Male , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , AC133 Antigen/metabolism , AC133 Antigen/genetics , Cell Line, Tumor , Alternative Splicing , Protein Isoforms
5.
Stem Cell Res Ther ; 15(1): 192, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956727

ABSTRACT

BACKGROUND: Inherited retinal dystrophies (IRD) are one of the main causes of incurable blindness worldwide. IRD are caused by mutations in genes that encode essential proteins for the retina, leading to photoreceptor degeneration and loss of visual function. IRD generates an enormous global financial burden due to the lack of understanding of a significant part of its pathophysiology, molecular diagnosis, and the near absence of non-palliative treatment options. Patient-derived induced pluripotent stem cells (iPSC) for IRD seem to be an excellent option for addressing these questions, serving as exceptional tools for in-depth studies of IRD pathophysiology and testing new therapeutic approaches. METHODS: From a cohort of 8 patients with PROM1-related IRD, we identified 3 patients carrying the same variant (c.1354dupT) but expressing three different IRD phenotypes: Cone and rod dystrophy (CORD), Retinitis pigmentosa (RP), and Stargardt disease type 4 (STGD4). These three target patients, along with one healthy relative from each, underwent comprehensive ophthalmic examinations and their genetic panel study was expanded through clinical exome sequencing (CES). Subsequently, non-integrative patient-derived iPSC were generated and fully characterized. Correction of the c.1354dupT mutation was performed using CRISPR/Cas9, and the genetic restoration of the PROM1 gene was confirmed through flow cytometry and western blotting in the patient-derived iPSC lines. RESULTS: CES revealed that 2 target patients with the c.1354dupT mutation presented monoallelic variants in genes associated with the complement system or photoreceptor differentiation and peroxisome biogenesis disorders, respectively. The pluripotency and functionality of the patient-derived iPSC lines were confirmed, and the correction of the target mutation fully restored the capability of encoding Prominin-1 (CD133) in the genetically repaired patient-derived iPSC lines. CONCLUSIONS: The c.1354dupT mutation in the PROM1 gene is associated to three distinct AR phenotypes of IRD. This pleotropic effect might be related to the influence of monoallelic variants in other genes associated with retinal dystrophies. However, further evidence needs to be provided. Future experiments should include gene-edited patient-derived iPSC due to its potential as disease modelling tools to elucidate this matter in question.


Subject(s)
AC133 Antigen , Induced Pluripotent Stem Cells , Phenotype , Humans , Induced Pluripotent Stem Cells/metabolism , AC133 Antigen/genetics , AC133 Antigen/metabolism , Male , Female , Targeted Gene Repair/methods , Retinal Dystrophies/genetics , Retinal Dystrophies/therapy , Retinal Dystrophies/pathology , Adult , Mutation , Exome Sequencing , Exome
6.
J Cardiovasc Pharmacol ; 84(2): 220-226, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38922584

ABSTRACT

ABSTRACT: Sodium-glucose cotransporter-2 (SGLT-2) inhibitors have been shown to reduce the risk of cardiovascular mortality and hospitalizations in patients with heart failure (HF) with preserved or reduced ejection fraction (HFpEF or HFrEF). The mechanism for this benefit is not clear. Endothelial progenitor cells (EPCs) are bone marrow-derived cells able to differentiate into functional endothelial cells and participate in endothelial repair. The aim of this study was to evaluate the effect of SGLT-2 inhibitors on the level and function of EPCs in patients with HF. We enrolled 20 patients with symptomatic HF, 12 with HFrEF and 8 with HFpEF (aged 73.3 ± 10.2 years, 95% men). Blood samples were drawn at 2 time points: baseline and ≥3 months after initiation of SGLT-2 inhibitor therapy. Circulating EPC levels were evaluated by expression of vascular endothelial growth factor receptor-2 (VEGFR-2), CD34, and CD133 by flow cytometry. EPC colony forming units (CFUs) were quantified after 7 days in culture. The proportion of cells that coexpressed VEGFR-2 and CD34 or VEGFR-2 and CD133 was higher following 3 months of SGLT-2 inhibitors [0.26% (interquartile range, IQR 0.10-0.33) versus 0.55% (IQR 0.28-0.91), P = 0.002; 0.12% (IQR 0.07-0.15) versus 0.24% (IQR 0.15-0.39), P = 0.001, respectively]. EPC CFUs were also increased following SGLT-2 inhibitor treatment [23 (IQR 3.7-37.8) versus 79.4 (IQR 25.1-110.25) colonies/10 6 cells, P = 0.0039]. In patients with symptomatic HF, both HFpEF and HFrEF, treatment with SGLT-2 inhibitors is associated with an increase in the level and function of circulating EPCs. This augmentation in EPCs may be a contributing mechanism to the clinical benefit of SGLT-2 inhibitors in patients with HF.


Subject(s)
Endothelial Progenitor Cells , Heart Failure , Sodium-Glucose Transporter 2 Inhibitors , Stroke Volume , Vascular Endothelial Growth Factor Receptor-2 , Humans , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Male , Heart Failure/physiopathology , Heart Failure/drug therapy , Heart Failure/metabolism , Endothelial Progenitor Cells/drug effects , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/pathology , Aged , Female , Middle Aged , Treatment Outcome , Aged, 80 and over , Cells, Cultured , Stroke Volume/drug effects , Time Factors , Vascular Endothelial Growth Factor Receptor-2/metabolism , Biomarkers/blood , Antigens, CD34/metabolism , Antigens, CD34/blood , AC133 Antigen/metabolism , Ventricular Function, Left/drug effects , Sodium-Glucose Transporter 2/metabolism
7.
Am J Physiol Heart Circ Physiol ; 327(2): H370-H376, 2024 08 01.
Article in English | MEDLINE | ID: mdl-38874618

ABSTRACT

Glucagon-like peptide-1 receptor agonists (GLP-1RAs) and sodium-glucose cotransporter-2 (SGLT2) inhibitors are guideline-recommended therapies for the management of type 2 diabetes (T2D), atherosclerotic cardiovascular disease, heart failure, and chronic kidney disease. We previously observed in people living with T2D and coronary artery disease that circulating vascular regenerative (VR) progenitor cell content increased following 6-mo use of the SGLT2 inhibitor empagliflozin. In this post hoc subanalysis of the ORIGINS-RCE CardioLink-13 study (ClinicalTrials.gov Identifier NCT05253521), we analyzed the circulating VR progenitor cell content of 92 individuals living with T2D, among whom 20 were on a GLP-1RA, 42 were on an SGLT2 inhibitor but not a GLP-1RA, and 30 were on neither of these vascular protective therapies. In the GLP-1RA group, the mean absolute count of circulating VR progenitor cells defined by high aldehyde dehydrogenase (ALDH) activity (ALDHhiSSClow) and VR progenitor cells further characterized by surface expression of the proangiogenic marker CD133 (ALDHhiSSClowCD133+) was higher than the group receiving neither a GLP-1RA nor an SGLT2 inhibitor (P = 0.02) and comparable with that in the SGLT2 inhibitor group (P = 0.25). The absolute count of proinflammatory, granulocyte-restricted precursor cells (ALDHhiSSChi) was significantly lower in the GLP-1RA group compared with the group on neither therapy (P = 0.031). Augmented vessel repair initiated by VR cells with previously documented proangiogenic activity, alongside a reduction in systemic, granulocyte precursor-driven inflammation, may represent novel mechanisms responsible for the cardiovascular-metabolic benefits of GLP-1RA therapy. Prospective, randomized clinical trials are now warranted to establish the value of recovering circulating VR progenitor cell content with blood vessel regenerative functions.NEW & NOTEWORTHY In this post hoc subanalysis of 92 individuals living with T2D and at high cardiovascular risk, the authors summarize the differences in circulating vascular regenerative (VR) progenitor cell content between those on GLP-1RA therapy, on SGLT2 inhibitor without GLP-1RA therapy, and on neither therapy. Those on GLP-1RA therapy demonstrated greater circulating VR progenitor cell content and reduced proinflammatory granulocyte precursor content. These results offer novel mechanistic insights into the cardiometabolic benefits associated with GLP-1RA therapy.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon-Like Peptide-1 Receptor , Sodium-Glucose Transporter 2 Inhibitors , Humans , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Male , Female , Middle Aged , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Aged , Regeneration/drug effects , Stem Cells/drug effects , Stem Cells/metabolism , Incretins/therapeutic use , AC133 Antigen/metabolism , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Treatment Outcome , Benzhydryl Compounds , Glucosides
8.
Br J Cancer ; 131(2): 258-270, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38834745

ABSTRACT

BACKGROUND: Diffuse invasion remains a primary cause of treatment failure in pediatric high-grade glioma (pHGG). Identifying cellular driver(s) of pHGG invasion is needed for anti-invasion therapies. METHODS: Ten highly invasive patient-derived orthotopic xenograft (PDOX) models of pHGG were subjected to isolation of matching pairs of invasive (HGGINV) and tumor core (HGGTC) cells. RESULTS: pHGGINV cells were intrinsically more invasive than their matching pHGGTC cells. CSC profiling revealed co-positivity of CD133 and CD57 and identified CD57+CD133- cells as the most abundant CSCs in the invasive front. In addition to discovering a new order of self-renewal capacities, i.e., CD57+CD133- > CD57+CD133+ > CD57-CD133+ > CD57-CD133- cells, we showed that CSC hierarchy was impacted by their spatial locations, and the highest self-renewal capacities were found in CD57+CD133- cells in the HGGINV front (HGGINV/CD57+CD133- cells) mediated by NANOG and SHH over-expression. Direct implantation of CD57+ (CD57+/CD133- and CD57+/CD133+) cells into mouse brains reconstituted diffusely invasion, while depleting CD57+ cells (i.e., CD57-CD133+) abrogated pHGG invasion. CONCLUSION: We revealed significantly increased invasive capacities in HGGINV cells, confirmed CD57 as a novel glioma stem cell marker, identified CD57+CD133- and CD57+CD133+ cells as a new cellular driver of pHGG invasion and suggested a new dual-mode hierarchy of HGG stem cells.


Subject(s)
AC133 Antigen , Brain Neoplasms , CD57 Antigens , Glioma , Neoplasm Invasiveness , Neoplastic Stem Cells , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism , Humans , Animals , Glioma/pathology , Glioma/immunology , Glioma/metabolism , Mice , Brain Neoplasms/pathology , Brain Neoplasms/immunology , Brain Neoplasms/metabolism , CD57 Antigens/metabolism , Child , AC133 Antigen/metabolism
9.
Cells ; 13(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38727313

ABSTRACT

CD133, a cancer stem cell (CSC) marker in tumors, including melanoma, is associated with tumor recurrence, chemoresistance, and metastasis. Patient-derived melanoma cell lines were transduced with a Tet-on vector expressing CD133, generating doxycycline (Dox)-inducible cell lines. Cells were exposed to Dox for 24 h to induce CD133 expression, followed by RNA-seq and bioinformatic analyses, revealing genes and pathways that are significantly up- or downregulated by CD133. The most significantly upregulated gene after CD133 was amphiregulin (AREG), validated by qRT-PCR and immunoblot analyses. Induced CD133 expression significantly increased cell growth, percentage of cells in S-phase, BrdU incorporation into nascent DNA, and PCNA levels, indicating that CD133 stimulates cell proliferation. CD133 induction also activated EGFR and the MAPK pathway. Potential mechanisms highlighting the role(s) of CD133 and AREG in melanoma CSC were further delineated using AREG/EGFR inhibitors or siRNA knockdown of AREG mRNA. Treatment with the EGFR inhibitor gefitinib blocked CD133-induced cell growth increase and MAPK pathway activation. Importantly, siRNA knockdown of AREG reversed the stimulatory effects of CD133 on cell growth, indicating that AREG mediates the effects of CD133 on cell proliferation, thus serving as an attractive target for novel combinatorial therapeutics in melanoma and cancers with overexpression of both CD133 and AREG.


Subject(s)
AC133 Antigen , Amphiregulin , Cell Proliferation , Melanoma , Humans , AC133 Antigen/metabolism , AC133 Antigen/genetics , Amphiregulin/metabolism , Amphiregulin/genetics , Cell Line, Tumor , Cell Proliferation/genetics , ErbB Receptors/metabolism , Gene Expression Regulation, Neoplastic , Melanoma/pathology , Melanoma/metabolism , Melanoma/genetics , Up-Regulation/drug effects
10.
J Mater Chem B ; 12(24): 5884-5897, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38775254

ABSTRACT

Pancreatic cancer is an aggressive and highly fatal malignant tumor. Recent studies have shown that cancer stem cells (CSCs) play an important role in resisting current therapeutic modalities. Furthermore, CD133 is highly expressed in CSCs. High-intensity focused ultrasound (HIFU) is a promising non-invasive therapeutic strategy for unresectable pancreatic cancers. In our study, we synthesized targeted CD133 organosilane nanomicelles by encapsulating perfluorohexane (PFH). The CD133 antibody on the surface could specifically bind to CD133-positive pancreatic cancer cells and selectively concentrate in pancreatic cancer tumor tissues. PFH was introduced to improve the ablation effect of HIFU due to its liquid-gas phase transition properties. By combining with the dorsal skinfold window chamber model (DSWC) of pancreatic cancer in nude mice, multiphoton fluorescence microscopy was used to evaluate the targeting effect of nanomicelles on pancreatic cancer tumor tissue. These multifunctional nanomicelles synergistically affected HIFU treatment of pancreatic cancer, providing an integrated research platform for diagnosing and treating pancreatic cancer with HIFU.


Subject(s)
AC133 Antigen , High-Intensity Focused Ultrasound Ablation , Mice, Nude , Micelles , Pancreatic Neoplasms , Animals , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/therapy , AC133 Antigen/metabolism , Mice , Humans , Cell Line, Tumor , Fluorocarbons/chemistry , Fluorocarbons/pharmacology , Mice, Inbred BALB C , Nanoparticles/chemistry
11.
Sci Rep ; 14(1): 10498, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714794

ABSTRACT

Prominin 1 (PROM1) is a pentaspan transmembrane glycoprotein localized on the nascent photoreceptor discs. Mutations in PROM1 are linked to various retinal diseases. In this study, we assessed the role of PROM1 in photoreceptor biology and physiology using the PROM1 knockout murine model (rd19). Our study found that PROM1 is essential for vision and photoreceptor development. We found an early reduction in photoreceptor response beginning at post-natal day 12 (P12) before eye opening in the absence of PROM1 with no apparent loss in photoreceptor cells. However, at this stage, we observed an increased glial cell activation, indicative of cell damage. Contrary to our expectations, dark rearing did not mitigate photoreceptor degeneration or vision loss in PROM1 knockout mice. In addition to physiological defects seen in PROM1 knockout mice, ultrastructural analysis revealed malformed outer segments characterized by whorl-like continuous membranes instead of stacked disks. In parallel to the reduced rod response at P12, proteomics revealed a significant reduction in the levels of protocadherin, a known interactor of PROM1, and rod photoreceptor outer segment proteins, including rhodopsin. Overall, our results underscore the indispensable role of PROM1 in photoreceptor development and maintenance of healthy vision.


Subject(s)
AC133 Antigen , Animals , Mice , AC133 Antigen/metabolism , AC133 Antigen/genetics , Mice, Knockout , Photoreceptor Cells, Vertebrate/metabolism , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retinal Photoreceptor Cell Outer Segment/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Rhodopsin/metabolism , Rhodopsin/genetics
12.
Mol Biol Rep ; 51(1): 567, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656394

ABSTRACT

BACKGROUND: Metabolic plasticity gives cancer cells the ability to shift between signaling pathways to facilitate their growth and survival. This study investigates the role of glucose deprivation in the presence and absence of beta-hydroxybutyrate (BHB) in growth, death, oxidative stress and the stemness features of lung cancer cells. METHODS AND RESULTS: A549 cells were exposed to various glucose conditions, both with and without beta-hydroxybutyrate (BHB), to evaluate their effects on apoptosis, mitochondrial membrane potential, reactive oxygen species (ROS) levels using flow cytometry, and the expression of CD133, CD44, SOX-9, and ß-Catenin through Quantitative PCR. The activity of superoxide dismutase, glutathione peroxidase, and malondialdehyde was assessed using colorimetric assays. Treatment with therapeutic doses of BHB triggered apoptosis in A549 cells, particularly in cells adapted to glucose deprivation. The elevated ROS levels, combined with reduced levels of SOD and GPx, indicate that oxidative stress contributes to the cell arrest induced by BHB. Notably, BHB treatment under glucose-restricted conditions notably decreased CD133 expression, suggesting a potential inhibition of cell survival through the downregulation of CD133 levels. Additionally, the simultaneous decrease in mitochondrial membrane potential and increase in ROS levels indicate the potential for creating oxidative stress conditions to impede tumor cell growth in such environmental settings. CONCLUSION: The induced cell death, oxidative stress and mitochondria impairment beside attenuated levels of cancer stem cell markers following BHB administration emphasize on the distinctive role of metabolic plasticity of cancer cells and propose possible therapeutic approaches to control cancer cell growth through metabolic fuels.


Subject(s)
3-Hydroxybutyric Acid , Apoptosis , Glucose , Lung Neoplasms , Membrane Potential, Mitochondrial , Mitochondria , Oxidative Stress , Reactive Oxygen Species , Humans , Oxidative Stress/drug effects , Glucose/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , A549 Cells , Mitochondria/metabolism , Mitochondria/drug effects , 3-Hydroxybutyric Acid/pharmacology , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , Apoptosis/drug effects , Cell Survival/drug effects , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Superoxide Dismutase/metabolism , AC133 Antigen/metabolism , AC133 Antigen/genetics
13.
Cancer Chemother Pharmacol ; 94(1): 67-78, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38456956

ABSTRACT

BACKGROUND AND OBJECTIVE: This study aims to investigate the role of Vitamin D (VD) in regulating the stemness and survival of CD133+/CD44 + breast cancer stem cells, and to explore the role of NLRP3 in this process. METHODS: Breast cancer tissues were collected for RXRα and VDR expression analysis. A triple-negative breast cancer cell line was cultured and stem-like cells (CD133 + CD44+) isolated using flow cytometry. These cells were treated with VD, analyzing their stem-like properties, apoptosis and proliferation, as well as P65 nuclear expression and NLRP3 expression. After NLRP3 inflammasome activator treatment, the parameters were reassessed. RXRα and VDR interaction was confirmed using co-immunoprecipitation (CoIP). Finally, a subcutaneous xenograft model of triple-negative breast cancer was treated with VD and subsequently analyzed for stem-like properties, proliferation, apoptosis, and NLRP3 expression levels. RESULTS: CD133+/CD44 + stem cells expressed high levels of SOX2 and OCT4. VD treatment resulted in a significant decrease in SOX2 and OCT4 expression, fewer sphere-forming colonies, lower proliferation ability, and more apoptosis. Additionally, VD treatment inhibited NF-κB signaling and reduced NLRP3 expression. The NLRP3 activator BMS-986,299 counteracted the effects of VD in vitro. In vivo, VD inhibited the growth of breast cancer stem cells, reducing both tumor volume and weight, and decreased NLRP3, SOX2, and OCT4 expression within tumor tissues. CONCLUSION: Findings elucidate that VD mediates the modulation of stemness in CD133+/CD44 + breast cancer stem cells through the regulation of NLRP3 expression. The research represents novel insights on the implications for the application of VD in cancer therapies.


Subject(s)
Neoplastic Stem Cells , Signal Transduction , Triple Negative Breast Neoplasms , Vitamin D , Animals , Female , Humans , Mice , AC133 Antigen/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Mice, Inbred BALB C , Mice, Nude , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Signal Transduction/drug effects , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Vitamin D/pharmacology , Xenograft Model Antitumor Assays
14.
Pituitary ; 27(3): 248-258, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38483762

ABSTRACT

CONTEXT: The recent WHO 2022 Classification of pituitary tumours identified a novel group of 'plurihormonal tumours without distinct lineage differentiation (WDLD)'. By definition, these express multiple combinations of lineage commitment transcription factors, in a monomorphous population of cells. OBJECTIVES: To determine the expression of stem cell markers (SOX2, Nestin, CD133) within tumours WDLD, immature PIT-1 lineage and acidophil stem cell tumours, compared with committed cell lineage tumours. METHODS: Retrospective evaluation of surgically resected pituitary tumours from St Vincent's Hospital, Sydney. Patients were selected to cover a range of tumour types, based on transcription factor and hormone immunohistochemistry. Clinical data was collected from patient files. Radiology reports were reviewed for size and invasion. Samples were analysed by immunohistochemistry and RT-qPCR for SF-1, PIT-1, T-PIT, SOX2, Nestin and CD133. Stem cell markers were compared between tumours WDLD and those with classically "mature" types. RESULTS: On immunohistochemistry, SOX2 was positive in a higher proportion of tumours WDLD compared with those meeting WHO lineage criteria, 7/10 v 10/42 (70 v 23.4%, p = 0.005). CD133 was positive in 2/10 tumours WDLD but 0/41 meeting lineage criteria, P = 0.003. On RT-qPCR, there was no significant difference in relative expression of stem cell markers (SOX2, CD133, Nestin) between tumours with and WDLD. CONCLUSIONS: Our study is the first to biologically characterise pituitary tumours WDLD. We demonstrate that these tumours exhibit a higher expression of the stem cell marker SOX2 compared with other lineage-differentiated tumours, suggesting possible involvement of stem cells in their development.


Subject(s)
Cell Differentiation , Cell Lineage , Nestin , Pituitary Neoplasms , SOXB1 Transcription Factors , Humans , SOXB1 Transcription Factors/metabolism , Pituitary Neoplasms/metabolism , Pituitary Neoplasms/pathology , Retrospective Studies , Cell Differentiation/physiology , Female , Nestin/metabolism , Immunohistochemistry , Male , Middle Aged , Adult , AC133 Antigen/metabolism , Biomarkers, Tumor/metabolism , Aged , Stem Cells/metabolism , Stem Cells/pathology
15.
Genes Genomics ; 46(4): 511-518, 2024 04.
Article in English | MEDLINE | ID: mdl-38457096

ABSTRACT

BACKGROUND: Human endogenous retrovirus (HERV)-K is a type of retrovirus that is present in the human genome, and its expression is usually silenced in healthy tissues. The precise mechanism by which HERV-K env influences cancer stemness is not fully understood, but it has been suggested that HERV-K env may activate various signaling pathways that promote stemness traits in cancer cells. OBJECTIVE: To establish the connection between HERV-K env expression and cancer stemness in ovarian cancer cells, we carried out correlation analyses between HERV-K env and the cancer stem cell (CSC) marker known as the cluster of differentiation 133 (CD133) gene in SKOV3 ovarian cancer cells. METHOD: To perform correlation analysis between HERV-K env and CSCs, ovarian cancer cells were cultured in a medium designed for cancer stem cell induction. The expression of HERV-K env and CD133 genes was verified using quantitative real-time polymerase chain reaction (RT-qPCR) and Western blot analyses. Additionally, the expression of stemness-related markers, such as OCT-4 and Nanog, was also confirmed using RT-qPCR. RESULTS: In the stem cell induction medium, the number of tumorsphere-type SKOV3 cells increased, and the expression of CD133 and HERV-K env genes was up-regulated. Additionally, other stemness-related markers like OCT-4 and Nanog also exhibited increased expression when cultured in the cancer stem cell induction medium. However, when HERV-K env knockout (KO) SKOV3 cells were cultured in the same cancer stem cell induction medium, there was a significant decrease in the number of tumorsphere-type cells compared to mock SKOV3 cells subjected to the same conditions. Furthermore, the expression of CD133, Nanog, and OCT-4 did not show a significant increase in HERV-K env KO SKOV3 cells compared to mock SKOV3 cells cultured in the same cancer stem cell induction medium. CONCLUSION: These findings indicate that the expression of HERV-K env increased in SKOV3 cells when cultured in cancer stem cell induction media, and cancer stem cell induction was inhibited by KO of HERV-K env in SKOV3 cells. These results suggest a strong association between HERV-K env and stemness in SKOV3 ovarian cancer cells.


Subject(s)
Endogenous Retroviruses , Ovarian Neoplasms , Female , Humans , Endogenous Retroviruses/genetics , Endogenous Retroviruses/metabolism , Neoplastic Stem Cells/metabolism , Ovarian Neoplasms/metabolism , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , AC133 Antigen/immunology , AC133 Antigen/metabolism
16.
Cell Mol Biol Lett ; 29(1): 41, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532366

ABSTRACT

Prominin-1 (CD133) is a cholesterol-binding membrane glycoprotein selectively associated with highly curved and prominent membrane structures. It is widely recognized as an antigenic marker of stem cells and cancer stem cells and is frequently used to isolate them from biological and clinical samples. Recent progress in understanding various aspects of CD133 biology in different cell types has revealed the involvement of CD133 in the architecture and dynamics of plasma membrane protrusions, such as microvilli and cilia, including the release of extracellular vesicles, as well as in various signaling pathways, which may be regulated in part by posttranslational modifications of CD133 and its interactions with a variety of proteins and lipids. Hence, CD133 appears to be a master regulator of cell signaling as its engagement in PI3K/Akt, Src-FAK, Wnt/ß-catenin, TGF-ß/Smad and MAPK/ERK pathways may explain its broad action in many cellular processes, including cell proliferation, differentiation, and migration or intercellular communication. Here, we summarize early studies on CD133, as they are essential to grasp its novel features, and describe recent evidence demonstrating that this unique molecule is involved in membrane dynamics and molecular signaling that affects various facets of tissue homeostasis and cancer development. We hope this review will provide an informative resource for future efforts to elucidate the details of CD133's molecular function in health and disease.


Subject(s)
Phosphatidylinositol 3-Kinases , Signal Transduction , AC133 Antigen/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cell Membrane/metabolism , Neoplastic Stem Cells/metabolism
17.
Prostate ; 84(8): 738-746, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38528654

ABSTRACT

BACKGROUND: The occurrence of castration-resistant prostate cancer (CRPC) varies in patients with advanced prostate cancer (PCa) undergoing androgen deprivation therapy (ADT). The rate of occurrence of CRPC may be related to the presence of prostate cancer stem cells (CSC). Thus, this study aims to evaluate the presence of CSC markers (CD44 and CD133) in histopathology tissue at the time of diagnosis and their correlation with the occurrence of CRPC in patients with advanced PCa within 2 years of ADT. METHOD: A retrospective case-control study was conducted to evaluate the incidence of CRPC within 2 years. The inclusion criteria were patients with PCa who had received treatment with ADT and a first-generation anti-androgen (AA) for 2 years. We classified patients based on whether they developed CRPC within 2 years (CRPC) of the therapy or did not experience CRPC within 2 years (non-CRPC) of the therapy. We performed immunohistochemical (IHC) staining for CD44 and CD133 on the prostate biopsy tissue samples. RESULTS: Data were collected from records spanning 2011-2019. We analyzed a total of 65 samples, including 22 patients with CRPC and 43 patients with non-CRPC who had received treatment with LHRH agonists and AA for up to 2 years. Our findings showed a significant H-score difference in CD44 protein expression between CRPC prostate adenocarcinoma samples 869 (200-1329) and non-CRPC 524 (154-1166) (p = 0.033). There was no significant difference in CD133 protein expression between the two groups (p = 0.554). However, there was a significant difference in the nonoccurrence of CRPC between the high expressions of both CD44 and CD133 groups with other expressions of CD44/CD133 groups (25% vs. 75%; p = 0.011; odds ratio = 4.29; 95% confidence interval [1.34, 13.76]). CONCLUSION: This study found a low expression of at least one CD44/CD133 protein in the patients without early occurrence of CRPC. This result might suggest that CD44/CD133 may function as a potential prognostic marker for PCa, especially in a low expression, to identify patients who have a better prognosis regarding the occurrence of early CRPC.


Subject(s)
AC133 Antigen , Androgen Antagonists , Biomarkers, Tumor , Hyaluronan Receptors , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/analysis , Hyaluronan Receptors/biosynthesis , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , AC133 Antigen/metabolism , Retrospective Studies , Aged , Prognosis , Case-Control Studies , Androgen Antagonists/therapeutic use , Biomarkers, Tumor/metabolism , Middle Aged , Aged, 80 and over , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology
18.
J Transl Med ; 22(1): 159, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38365731

ABSTRACT

BACKGROUND: Proximal tubular cells (PTCs) play a critical role in the progression of diabetic kidney disease (DKD). As one of important progenitor markers, CD133 was reported to indicate the regeneration of dedifferentiated PTCs in acute kidney disease. However, its role in chronic DKD is unclear. Therefore, we aimed to investigate the expression patterns and elucidate its functional significance of CD133 in DKD. METHODS: Data mining was employed to illustrate the expression and molecular function of CD133 in PTCs in human DKD. Subsequently, rat models representing various stages of DKD progression were established. The expression of CD133 was confirmed in DKD rats, as well as in human PTCs (HK-2 cells) and rat PTCs (NRK-52E cells) exposed to high glucose. The immunofluorescence and flow cytometry techniques were utilized to determine the expression patterns of CD133, utilizing proliferative and injury indicators. After overexpression or knockdown of CD133 in HK-2 cells, the cell proliferation and apoptosis were detected by EdU assay, real-time cell analysis and flow analysis. Additionally, the evaluation of epithelial, progenitor cell, and apoptotic indices was performed through western blot and quantitative RT-PCR analyses. RESULTS: The expression of CD133 was notably elevated in both human and rat PTCs in DKD, and this expression increased as DKD progressed. CD133 was found to be co-expressed with CD24, KIM-1, SOX9, and PCNA, suggesting that CD133+ cells were damaged and associated with proliferation. In terms of functionality, the knockdown of CD133 resulted in a significant reduction in proliferation and an increase in apoptosis in HK-2 cells compared to the high glucose stimulus group. Conversely, the overexpression of CD133 significantly mitigated high glucose-induced cell apoptosis, but had no impact on cellular proliferation. Furthermore, the Nephroseq database provided additional evidence to support the correlation between CD133 expression and the progression of DKD. Analysis of single-cell RNA-sequencing data revealed that CD133+ PTCs potentially play a role in the advancement of DKD through multiple mechanisms, including heat damage, cell microtubule stabilization, cell growth inhibition and tumor necrosis factor-mediated signaling pathway. CONCLUSION: Our study demonstrates that the upregulation of CD133 is linked to cellular proliferation and protects PTC from apoptosis in DKD and high glucose induced PTC injury. We propose that heightened CD133 expression may facilitate cellular self-protective responses during the initial stages of high glucose exposure. However, its sustained increase is associated with the pathological progression of DKD. In conclusion, CD133 exhibits dual roles in the advancement of DKD, necessitating further investigation.


Subject(s)
AC133 Antigen , Diabetes Mellitus , Diabetic Nephropathies , Animals , Humans , Rats , Cell Line , Cell Proliferation , Diabetes Mellitus/pathology , Diabetic Nephropathies/metabolism , Epithelial Cells/pathology , Glucose/metabolism , Hyperplasia/pathology , AC133 Antigen/genetics , AC133 Antigen/metabolism
19.
Bull Exp Biol Med ; 176(3): 369-375, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38340198

ABSTRACT

Colorectal carcinoma (CRC) is maintained by putative colorectal cancer stem-like cells (CRC-CSCs) that are responsible for CRC metastasis and relapse. Targeting these CSCs can be an effective treatment of CRC. However, reliable identification of CRC-CSCs remains controversial due to the absence of specific markers. It is assumed that glycoprotein CD133 can serve as a useful marker for identification of CRC-CSCs. In this study, we employed CD133 as a marker to identify CRC-CSCs in human (LoVo, HCT116, and SW620) and mouse (CT26) CRC cell lines. In these lines, CD133+ cells were isolated and identified by magnetic-activated cell sorting and flow cytometry. Proliferation, colony formation, and drug resistance of CD133+ cells were analyzed in vitro, and their tumorigenicity was determined in vivo on mice. Proliferation, colony-forming ability, drug resistance, and tumorigenicity of CD133+ cells were higher than those of CD133- cells. Thus, cultured CD133+ cells had the characteristics of CSCs. Hence, glycoprotein CD133 is a reliable marker to identify CRC-CSCs. These results can be used for designing a novel therapeutic target in CRC treatment.


Subject(s)
Colorectal Neoplasms , Neoplasm Recurrence, Local , Humans , Mice , Animals , Cell Line, Tumor , Neoplasm Recurrence, Local/pathology , Colorectal Neoplasms/metabolism , Glycoproteins/metabolism , Cell Separation , Neoplastic Stem Cells/metabolism , AC133 Antigen/genetics , AC133 Antigen/metabolism
20.
Asian Pac J Cancer Prev ; 25(1): 249-255, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38285791

ABSTRACT

INTRODUCTION: Ovarian cancer is a primary cause of cancer-related death in women. At the time of diagnosis, the majority of ovarian malignancies had metastasized. It is believed that cancer stem cells (CSCs) and immune evasion play a crucial role in the metastatic process. The objective of this study was to describe the expression profiles of cluster of differentiation (CD)133, CD47, and programmed death ligand 1 (PD-L1) in high-grade serous ovarian cancer (HGSC) as commonly utilized markers for CSCs and immune evasion. MATERIAL AND METHODS: Using an immunohistochemical procedure, 51 HGSC tissue samples were stained with anti-CD133, anti-CD47, and anti-PDL1 antibodies. The samples contained 31 HGSC with metastases and 20 HGSC absent metastases. The expression of CD133, CD47, and PD-L1 was compared between groups. RESULTS: Strong expression of CD133 and CD47 was seen in 52% and 66% of tissue samples, respectively. Twenty of the thirty-one patients with metastases had a significant level of CD133 expression, with a p-value of 0.039. CD47 expression was increased in 26 of 31 samples with metastatic disease. A 62.7 percent of samples were negative for PD-L1 expression, significantly inversely correlated with HGSC metastatic disease (p=0.023). Although there was no significant association between CD133, CD47, or PD-L1 expression and age, Tumor Infiltrating Lymphocytes demonstrated a significantly varied relationship. CONCLUSION: Our findings suggested that expression of CD133, CD47, and PD-L1 may have dynamically increased as the primary lesion progressed to the metastatic lesion, implying that these proteins may be involved in the progression of high-grade serous ovarian cancer from the primary to the metastatic stage.


Subject(s)
CD47 Antigen , Ovarian Neoplasms , Female , Humans , B7-H1 Antigen/metabolism , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/pathology , CD47 Antigen/metabolism , Cross-Sectional Studies , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , AC133 Antigen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL