Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.122
Filter
1.
PLoS Pathog ; 20(6): e1011883, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38838057

ABSTRACT

ATP-binding cassette (ABC) transport systems are crucial for bacteria to ensure sufficient uptake of nutrients that are not produced de novo or improve the energy balance. The cell surface of the pathobiont Streptococcus pneumoniae (pneumococcus) is decorated with a substantial array of ABC transporters, critically influencing nasopharyngeal colonization and invasive infections. Given the auxotrophic nature of pneumococci for certain amino acids, the Ami ABC transporter system, orchestrating oligopeptide uptake, becomes indispensable in host compartments lacking amino acids. The system comprises five exposed Oligopeptide Binding Proteins (OBPs) and four proteins building the ABC transporter channel. Here, we present a structural analysis of all the OBPs in this system. Multiple crystallographic structures, capturing both open and closed conformations along with complexes involving chemically synthesized peptides, have been solved at high resolution providing insights into the molecular basis of their diverse peptide specificities. Mass spectrometry analysis of oligopeptides demonstrates the unexpected remarkable promiscuity of some of these proteins when expressed in Escherichia coli, displaying affinity for a wide range of peptides. Finally, a model is proposed for the complete Ami transport system in complex with its various OBPs. We further disclosed, through in silico modelling, some essential structural changes facilitating oligopeptide transport into the cellular cytoplasm. Thus, the structural analysis of the Ami system provides valuable insights into the mechanism and specificity of oligopeptide binding by the different OBPs, shedding light on the intricacies of the uptake mechanism and the in vivo implications for this human pathogen.


Subject(s)
ATP-Binding Cassette Transporters , Bacterial Proteins , Oligopeptides , Streptococcus pneumoniae , Streptococcus pneumoniae/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Oligopeptides/metabolism , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/chemistry , Crystallography, X-Ray , Models, Molecular , Lipoproteins
2.
Nat Commun ; 15(1): 4811, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844452

ABSTRACT

Human multidrug resistance protein 5 (hMRP5) effluxes anticancer and antivirus drugs, driving multidrug resistance. To uncover the mechanism of hMRP5, we determine six distinct cryo-EM structures, revealing an autoinhibitory N-terminal peptide that must dissociate to permit subsequent substrate recruitment. Guided by these molecular insights, we design an inhibitory peptide that could block substrate entry into the transport pathway. We also identify a regulatory motif, comprising a positively charged cluster and hydrophobic patches, within the first nucleotide-binding domain that modulates hMRP5 localization by engaging with membranes. By integrating our structural, biochemical, computational, and cell biological findings, we propose a model for hMRP5 conformational cycling and localization. Overall, this work provides mechanistic understanding of hMRP5 function, while informing future selective hMRP5 inhibitor development. More broadly, this study advances our understanding of the structural dynamics and inhibition of ABC transporters.


Subject(s)
Cryoelectron Microscopy , Humans , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/chemistry , Biological Transport , HEK293 Cells , Models, Molecular , Multidrug Resistance-Associated Proteins/metabolism , Multidrug Resistance-Associated Proteins/chemistry , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Multidrug Resistance-Associated Proteins/genetics , Peptides/metabolism , Peptides/chemistry , Protein Conformation
3.
Commun Biol ; 7(1): 672, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822018

ABSTRACT

ATP-binding cassette transporter B6 (ABCB6), a protein essential for heme biosynthesis in mitochondria, also functions as a heavy metal efflux pump. Here, we present cryo-electron microscopy structures of human ABCB6 bound to a cadmium Cd(II) ion in the presence of antioxidant thiol peptides glutathione (GSH) and phytochelatin 2 (PC2) at resolutions of 3.2 and 3.1 Å, respectively. The overall folding of the two structures resembles the inward-facing apo state but with less separation between the two halves of the transporter. Two GSH molecules are symmetrically bound to the Cd(II) ion in a bent conformation, with the central cysteine protruding towards the metal. The N-terminal glutamate and C-terminal glycine of GSH do not directly interact with Cd(II) but contribute to neutralizing positive charges of the binding cavity by forming hydrogen bonds and van der Waals interactions with nearby residues. In the presence of PC2, Cd(II) binding to ABCB6 is similar to that observed with GSH, except that two cysteine residues of each PC2 molecule participate in Cd(II) coordination to form a tetrathiolate. Structural comparison of human ABCB6 and its homologous Atm-type transporters indicate that their distinct substrate specificity might be attributed to variations in the capping residues situated at the top of the substrate-binding cavity.


Subject(s)
ATP-Binding Cassette Transporters , Humans , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/ultrastructure , Binding Sites , Cadmium/metabolism , Cadmium/chemistry , Cryoelectron Microscopy , Glutathione/metabolism , Glutathione/chemistry , Models, Molecular , Phytochelatins/metabolism , Phytochelatins/chemistry , Protein Binding , Protein Conformation
4.
Proc Natl Acad Sci U S A ; 121(23): e2320879121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38805290

ABSTRACT

Our ability to fight pathogens relies on major histocompatibility complex class I (MHC-I) molecules presenting diverse antigens on the surface of diseased cells. The transporter associated with antigen processing (TAP) transports nearly the entire repertoire of antigenic peptides into the endoplasmic reticulum for MHC-I loading. How TAP transports peptides specific for MHC-I is unclear. In this study, we used cryo-EM to determine a series of structures of human TAP, both in the absence and presence of peptides with various sequences and lengths. The structures revealed that peptides of eight or nine residues in length bind in a similarly extended conformation, despite having little sequence overlap. We also identified two peptide-anchoring pockets on either side of the transmembrane cavity, each engaging one end of a peptide with primarily main chain atoms. Occupation of both pockets results in a global conformational change in TAP, bringing the two halves of the transporter closer together to prime it for isomerization and ATP hydrolysis. Shorter peptides are able to bind to each pocket separately but are not long enough to bridge the cavity to bind to both simultaneously. Mutations that disrupt hydrogen bonds with the N and C termini of peptides almost abolish MHC-I surface expression. Our findings reveal that TAP functions as a molecular caliper that selects peptides according to length rather than sequence, providing antigen diversity for MHC-I presentation.


Subject(s)
ATP-Binding Cassette Transporters , Antigen Presentation , Histocompatibility Antigens Class I , Peptides , Humans , Peptides/metabolism , Peptides/chemistry , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/genetics , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/genetics , Cryoelectron Microscopy , Protein Conformation , Protein Binding , Models, Molecular
5.
Elife ; 122024 May 02.
Article in English | MEDLINE | ID: mdl-38695350

ABSTRACT

Bacteria utilize various strategies to prevent internal dehydration during hypertonic stress. A common approach to countering the effects of the stress is to import compatible solutes such as glycine betaine, leading to simultaneous passive water fluxes following the osmotic gradient. OpuA from Lactococcus lactis is a type I ABC-importer that uses two substrate-binding domains (SBDs) to capture extracellular glycine betaine and deliver the substrate to the transmembrane domains for subsequent transport. OpuA senses osmotic stress via changes in the internal ionic strength and is furthermore regulated by the 2nd messenger cyclic-di-AMP. We now show, by means of solution-based single-molecule FRET and analysis with multi-parameter photon-by-photon hidden Markov modeling, that the SBDs transiently interact in an ionic strength-dependent manner. The smFRET data are in accordance with the apparent cooperativity in transport and supported by new cryo-EM data of OpuA. We propose that the physical interactions between SBDs and cooperativity in substrate delivery are part of the transport mechanism.


Subject(s)
ATP-Binding Cassette Transporters , Bacterial Proteins , Lactococcus lactis , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Betaine/metabolism , Cryoelectron Microscopy , Fluorescence Resonance Energy Transfer , Lactococcus lactis/metabolism , Osmolar Concentration , Osmoregulation , Protein Binding , Protein Domains , Single Molecule Imaging
6.
Biochem Biophys Res Commun ; 716: 150030, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38704889

ABSTRACT

Sugar phosphates are potential sources of carbon and phosphate for bacteria. Despite that the process of internalization of Glucose-6-Phosphate (G6P) through plasma membrane remained elusive in several bacteria. VCA0625-27, made of periplasmic ligand binding protein (PLBP) VCA0625, an atypical monomeric permease VCA0626, and a cytosolic ATPase VCA0627, recently emerged as hexose-6-phosphate uptake system of Vibrio cholerae. Here we report high resolution crystal structure of VCA0625 in G6P bound state that largely resembles AfuA of Actinobacillus pleuropneumoniae. MD simulations on VCA0625 in apo and G6P bound states unraveled an 'open to close' and swinging bi-lobal motions, which are diminished upon G6P binding. Mutagenesis followed by biochemical assays on VCA0625 underscored that R34 works as gateway to bind G6P. Although VCA0627 binds ATP, it is ATPase deficient in the absence of VCA0625 and VCA0626, which is a signature phenomenon of type-I ABC importer. Further, modeling, docking and systematic sequence analysis allowed us to envisage the existence of similar atypical type-I G6P importer with fused monomeric permease in 27 other gram-negative bacteria.


Subject(s)
Bacterial Proteins , Glucose-6-Phosphate , Vibrio cholerae , Vibrio cholerae/metabolism , Vibrio cholerae/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Crystallography, X-Ray , Glucose-6-Phosphate/metabolism , Glucose-6-Phosphate/chemistry , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/genetics , Molecular Dynamics Simulation , Protein Conformation , Models, Molecular , Protein Binding , Binding Sites
7.
Biochemistry ; 63(10): 1322-1334, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38696389

ABSTRACT

Periplasmic solute-binding proteins (SBPs) are key ligand recognition components of bacterial ATP-binding cassette (ABC) transporters that allow bacteria to import nutrients and metabolic precursors from the environment. Periplasmic SBPs comprise a large and diverse family of proteins, of which only a small number have been empirically characterized. In this work, we identify a set of 610 unique uncharacterized proteins within the SBP_bac_5 family that are found in conserved operons comprising genes encoding (i) ABC transport systems and (ii) putative amidases from the FmdA_AmdA family. From these uncharacterized SBP_bac_5 proteins, we characterize a representative periplasmic SBP from Mesorhizobium sp. A09 (MeAmi_SBP) and show that MeAmi_SBP binds l-amino acid amides but not the corresponding l-amino acids. An X-ray crystal structure of MeAmi_SBP bound to l-serinamide highlights the residues that impart distinct specificity for l-amino acid amides and reveals a structural Ca2+ binding site within one of the lobes of the protein. We show that the residues involved in ligand and Ca2+ binding are conserved among the 610 SBPs from experimentally uncharacterized FmdA_AmdA amidase-associated ABC transporter systems, suggesting these homologous systems are also likely to be involved in the sensing, uptake, and metabolism of l-amino acid amides across many Gram-negative nitrogen-fixing soil bacteria. We propose that MeAmi_SBP is involved in the uptake of such solutes to supplement pathways such as the citric acid cycle and the glutamine synthetase-glutamate synthase pathway. This work expands our currently limited understanding of microbial interactions with l-amino acid amides and bacterial nitrogen utilization.


Subject(s)
Amides , Periplasmic Binding Proteins , Amides/metabolism , Amides/chemistry , Crystallography, X-Ray , Periplasmic Binding Proteins/metabolism , Periplasmic Binding Proteins/chemistry , Periplasmic Binding Proteins/genetics , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/chemistry , Amino Acids/metabolism , Mesorhizobium/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Models, Molecular , Amidohydrolases/metabolism , Amidohydrolases/chemistry , Calcium/metabolism , Protein Binding
8.
Mol Cell ; 84(10): 1917-1931.e15, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38723633

ABSTRACT

Many multi-spanning membrane proteins contain poorly hydrophobic transmembrane domains (pTMDs) protected from phospholipid in mature structure. Nascent pTMDs are difficult for translocon to recognize and insert. How pTMDs are discerned and packed into mature, muti-spanning configuration remains unclear. Here, we report that pTMD elicits a post-translational topogenesis pathway for its recognition and integration. Using six-spanning protein adenosine triphosphate-binding cassette transporter G2 (ABCG2) and cultured human cells as models, we show that ABCG2's pTMD2 can pass through translocon into the endoplasmic reticulum (ER) lumen, yielding an intermediate with inserted yet mis-oriented downstream TMDs. After translation, the intermediate recruits P5A-ATPase ATP13A1, which facilitates TMD re-orientation, allowing further folding and the integration of the remaining lumen-exposed pTMD2. Depleting ATP13A1 or disrupting pTMD-characteristic residues arrests intermediates with mis-oriented and exposed TMDs. Our results explain how a "difficult" pTMD is co-translationally skipped for insertion and post-translationally buried into the final correct structure at the late folding stage to avoid excessive lipid exposure.


Subject(s)
Endoplasmic Reticulum , Protein Folding , Humans , Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/chemistry , Proton-Translocating ATPases/metabolism , Proton-Translocating ATPases/genetics , Proton-Translocating ATPases/chemistry , HEK293 Cells , Protein Domains , Hydrophobic and Hydrophilic Interactions , Protein Processing, Post-Translational , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/chemistry
9.
J Mol Biol ; 436(14): 168591, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38677493

ABSTRACT

De novo protein folding into a native three-dimensional structure is indispensable for biological function, is instructed by its amino acid sequence, and occurs along a vectorial trajectory. The human proteome contains thousands of membrane-spanning proteins, whose biosynthesis begins on endoplasmic reticulum-associated ribosomes. Nearly half of all membrane proteins traverse the membrane more than once, including therapeutically important protein families such as solute carriers, G-protein-coupled receptors, and ABC transporters. These mediate a variety of functions like signal transduction and solute transport and are often of vital importance for cell function and tissue homeostasis. Missense mutations in multispan membrane proteins can lead to misfolding and cause disease; an example is the ABC transporter Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). Even though our understanding of multispan membrane-protein folding still is rather rudimental, the cumulative knowledge of 20 years of basic research on CFTR folding has led to development of drugs that modulate the misfolded protein. This has provided the prospect of a life without CF to the vast majority of patients. In this review we describe our understanding of the folding pathway of CFTR in cells, which is modular and tolerates many defects, making it effective and robust. We address how modulator drugs affect folding and function of CFTR, and distinguish protein stability from its folding process. Since the domain architecture of (mammalian) ABC transporters are highly conserved, we anticipate that the insights we discuss here for folding of CFTR may lay the groundwork for understanding the general rules of ABC-transporter folding.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Protein Folding , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Humans , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/genetics , Animals , Endoplasmic Reticulum/metabolism , Cystic Fibrosis/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis/drug therapy
10.
Nature ; 628(8009): 901-909, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38570679

ABSTRACT

Capsular polysaccharides (CPSs) fortify the cell boundaries of many commensal and pathogenic bacteria1. Through the ABC-transporter-dependent biosynthesis pathway, CPSs are synthesized intracellularly on a lipid anchor and secreted across the cell envelope by the KpsMT ABC transporter associated with the KpsE and KpsD subunits1,2. Here we use structural and functional studies to uncover crucial steps of CPS secretion in Gram-negative bacteria. We show that KpsMT has broad substrate specificity and is sufficient for the translocation of CPSs across the inner bacterial membrane, and we determine the cell surface organization and localization of CPSs using super-resolution fluorescence microscopy. Cryo-electron microscopy analyses of the KpsMT-KpsE complex in six different states reveal a KpsE-encaged ABC transporter, rigid-body conformational rearrangements of KpsMT during ATP hydrolysis and recognition of a glycolipid inside a membrane-exposed electropositive canyon. In vivo CPS secretion assays underscore the functional importance of canyon-lining basic residues. Combined, our analyses suggest a molecular model of CPS secretion by ABC transporters.


Subject(s)
Bacterial Capsules , Escherichia coli Proteins , Escherichia coli , Polysaccharides, Bacterial , Adenosine Triphosphate/metabolism , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/ultrastructure , Bacterial Capsules/metabolism , Bacterial Capsules/chemistry , Bacterial Capsules/ultrastructure , Cell Membrane/chemistry , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Cryoelectron Microscopy , Escherichia coli/chemistry , Escherichia coli/metabolism , Escherichia coli/ultrastructure , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/ultrastructure , Glycolipids/chemistry , Glycolipids/metabolism , Hydrolysis , Microscopy, Fluorescence , Models, Molecular , Polysaccharides, Bacterial/metabolism , Polysaccharides, Bacterial/chemistry , Substrate Specificity
11.
Cell Rep ; 43(4): 114110, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38607912

ABSTRACT

Transmembrane transporter proteins are essential for maintaining cellular homeostasis and, as such, are key drug targets. Many transmembrane transporter proteins are known to undergo large structural rearrangements during their functional cycles. Despite the wealth of detailed structural and functional data available for these systems, our understanding of their dynamics and, consequently, how they function is generally limited. We introduce an innovative approach that enables us to directly measure the dynamics and stability of interdomain interactions of transmembrane proteins using optical tweezers. Focusing on the osmoregulatory ATP-binding cassette transporter OpuA from Lactococcus lactis, we examine the mechanical properties and potential interactions of its substrate-binding domains. Our measurements are performed in lipid nanodiscs, providing a native-mimicking environment for the transmembrane protein. The technique provides high spatial and temporal resolution and allows us to study the functionally relevant motions and interdomain interactions of individual transmembrane transporter proteins in real time in a lipid bilayer.


Subject(s)
ATP-Binding Cassette Transporters , Bacterial Proteins , Lactococcus lactis , Optical Tweezers , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/chemistry , Lactococcus lactis/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Protein Binding , Protein Domains , Single Molecule Imaging , Protein Stability , Lipid Bilayers/metabolism , Lipid Bilayers/chemistry
12.
Biomolecules ; 14(4)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38672415

ABSTRACT

The ATP-binding cassette (ABC) transporters are a superfamily of membrane proteins. These active transporters are involved in the export of different substances such as xenobiotics. ABC transporters from subfamily C (ABCC) have also been described as functional receptors for different insecticidal proteins from Bacillus thuringiensis (Bt) in several lepidopteran species. Numerous studies have characterized the relationship between the ABCC2 transporter and Bt Cry1 proteins. Although other ABCC transporters sharing structural and functional similarities have been described, little is known of their role in the mode of action of Bt proteins. For Heliothis virescens, only the ABCC2 transporter and its interaction with Cry1A proteins have been studied to date. Here, we have searched for paralogs to the ABCC2 gene in H. virescens, and identified two new ABC transporter genes: HvABCC3 and HvABCC4. Furthermore, we have characterized their gene expression in the midgut and their protein topology, and compared them with that of ABCC2. Finally, we discuss their possible interaction with Bt proteins by performing protein docking analysis.


Subject(s)
Bacillus thuringiensis Toxins , Bacterial Proteins , Endotoxins , Hemolysin Proteins , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Animals , Bacillus thuringiensis Toxins/metabolism , Endotoxins/metabolism , Endotoxins/genetics , Endotoxins/chemistry , Hemolysin Proteins/metabolism , Hemolysin Proteins/genetics , Hemolysin Proteins/chemistry , Multidrug Resistance-Associated Proteins/metabolism , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/chemistry , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/chemistry , Moths/metabolism , Moths/genetics , Bacillus thuringiensis/metabolism , Bacillus thuringiensis/genetics , Molecular Docking Simulation , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/chemistry
13.
IUCrJ ; 11(Pt 3): 299-308, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38512773

ABSTRACT

Bacterial ABC toxin complexes (Tcs) comprise three core proteins: TcA, TcB and TcC. The TcA protein forms a pentameric assembly that attaches to the surface of target cells and penetrates the cell membrane. The TcB and TcC proteins assemble as a heterodimeric TcB-TcC subcomplex that makes a hollow shell. This TcB-TcC subcomplex self-cleaves and encapsulates within the shell a cytotoxic `cargo' encoded by the C-terminal region of the TcC protein. Here, we describe the structure of a previously uncharacterized TcC protein from Yersinia entomophaga, encoded by a gene at a distant genomic location from the genes encoding the rest of the toxin complex, in complex with the TcB protein. When encapsulated within the TcB-TcC shell, the C-terminal toxin adopts an unfolded and disordered state, with limited areas of local order stabilized by the chaperone-like inner surface of the shell. We also determined the structure of the toxin cargo alone and show that when not encapsulated within the shell, it adopts an ADP-ribosyltransferase fold most similar to the catalytic domain of the SpvB toxin from Salmonella typhimurium. Our structural analysis points to a likely mechanism whereby the toxin acts directly on actin, modifying it in a way that prevents normal polymerization.


Subject(s)
Bacterial Proteins , Bacterial Toxins , Yersinia , Yersinia/genetics , Bacterial Toxins/chemistry , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/metabolism , Models, Molecular , Crystallography, X-Ray
14.
Science ; 383(6689): eadj4591, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38513023

ABSTRACT

Brassinosteroids are steroidal phytohormones that regulate plant development and physiology, including adaptation to environmental stresses. Brassinosteroids are synthesized in the cell interior but bind receptors at the cell surface, necessitating a yet to be identified export mechanism. Here, we show that a member of the ATP-binding cassette (ABC) transporter superfamily, ABCB19, functions as a brassinosteroid exporter. We present its structure in both the substrate-unbound and the brassinosteroid-bound states. Bioactive brassinosteroids are potent activators of ABCB19 ATP hydrolysis activity, and transport assays showed that ABCB19 transports brassinosteroids. In Arabidopsis thaliana, ABCB19 and its close homolog, ABCB1, positively regulate brassinosteroid responses. Our results uncover an elusive export mechanism for bioactive brassinosteroids that is tightly coordinated with brassinosteroid signaling.


Subject(s)
ATP-Binding Cassette Transporters , Arabidopsis Proteins , Arabidopsis , Brassinosteroids , Adenosine Triphosphate/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Brassinosteroids/metabolism , Indoleacetic Acids/metabolism , Protein Conformation
15.
Sci Adv ; 10(12): eadk8521, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38507491

ABSTRACT

The type I adenosine 5'-triphosphate (ATP)-binding cassette (ABC) transporter DppABCD is believed to be responsible for the import of exogenous heme as an iron source into the cytoplasm of the human pathogen Mycobacterium tuberculosis (Mtb). Additionally, this system is also known to be involved in the acquisition of tri- or tetra-peptides. Here, we report the cryo-electron microscopy structures of the dual-function Mtb DppABCD transporter in three forms, namely, the apo, substrate-bound, and ATP-bound states. The apo structure reveals an unexpected and previously uncharacterized assembly mode for ABC importers, where the lipoprotein DppA, a cluster C substrate-binding protein (SBP), stands upright on the translocator DppBCD primarily through its hinge region and N-lobe. These structural data, along with biochemical studies, reveal the assembly of DppABCD complex and the detailed mechanism of DppABCD-mediated transport. Together, these findings provide a molecular roadmap for understanding the transport mechanism of a cluster C SBP and its translocator.


Subject(s)
Mycobacterium tuberculosis , Humans , Mycobacterium tuberculosis/metabolism , Cryoelectron Microscopy , Bacterial Proteins/metabolism , ATP-Binding Cassette Transporters/chemistry , Adenosine Triphosphate/metabolism
16.
Biochimie ; 220: 167-178, 2024 May.
Article in English | MEDLINE | ID: mdl-38158037

ABSTRACT

Candida albicans and C. glabrata express exporters of the ATP-binding cassette (ABC) superfamily and address them to their plasma membrane to expel azole antifungals, which cancels out their action and allows the yeast to become multidrug resistant (MDR). In a way to understand this mechanism of defense, we describe the purification and characterization of Cdr1, the membrane ABC exporter mainly responsible for such phenotype in both species. Cdr1 proteins were functionally expressed in the baker yeast, tagged at their C-terminal end with either a His-tag for the glabrata version, cgCdr1-His, or a green fluorescent protein (GFP) preceded by a proteolytic cleavage site for the albicans version, caCdr1-P-GFP. A membrane Cdr1-enriched fraction was then prepared to assay several detergents and stabilizers, probing their level of extraction and the ATPase activity of the proteins as a functional marker. Immobilized metal-affinity and size-exclusion chromatographies (IMAC, SEC) were then carried out to isolate homogenous samples. Overall, our data show that although topologically and phylogenetically close, both proteins display quite distinct behaviors during the extraction and purification steps, and qualify cgCdr1 as a good candidate to characterize this type of proteins for developing future inhibitors of their azole antifungal efflux activity.


Subject(s)
Antifungal Agents , Azoles , Candida albicans , Drug Resistance, Fungal , Fungal Proteins , Membrane Transport Proteins , Azoles/pharmacology , Azoles/chemistry , Azoles/metabolism , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/isolation & purification , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Candida albicans/drug effects , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Candida glabrata/drug effects , Candida glabrata/genetics , Candida glabrata/metabolism , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/chemistry
17.
Biochemistry ; 62(21): 3159-3165, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37807693

ABSTRACT

The ATP-binding cassette (ABC) transporter ABCB10 resides in the inner membrane of mitochondria and is implicated in erythropoiesis. Mitochondria from different cell types share some specific characteristics, one of which is the high abundance of cardiolipin. Although previous studies have provided insight into ABCB10, the affinity and selectivity of this transporter toward lipids, particularly those found in the mitochondria, remain poorly understood. Here, native mass spectrometry is used to directly monitor the binding events of lipids to human ABCB10. The results reveal that ABCB10 binds avidly to cardiolipin with an affinity significantly higher than that of other phospholipids. The first three binding events of cardiolipin display positive cooperativity, which is suggestive of specific cardiolipin-binding sites on ABCB10. Phosphatidic acid is the second-best binder of the lipids investigated. The bulk lipids, phosphatidylcholine and phosphatidylethanolamine, display the weakest binding affinity for ABCB10. Other lipids bind ABCB10 with a similar affinity. Functional assays show that cardiolipin regulates the ATPase activity of ABCB10 in a dose-dependent fashion. ATPase activity of ABCB10 was also impacted in the presence of other lipids but to a lesser extent than cardiolipin. Taken together, ABCB10 has a high binding affinity for cardiolipin, and this lipid also regulates the ATPase activity of the transporter.


Subject(s)
ATP-Binding Cassette Transporters , Cardiolipins , Humans , ATP-Binding Cassette Transporters/chemistry , Cardiolipins/metabolism , Mitochondria/metabolism , Membrane Transport Proteins/metabolism , Adenosine Triphosphatases/metabolism
18.
Biotechnol Appl Biochem ; 70(6): 2025-2037, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37606005

ABSTRACT

Tuberculosis is a fatal disease caused by Mycobacterium tuberculosis. M. tuberculosis becoming drug-resistant day by day, necessitating to know the mechanism behind the drug resistance and how to overcome this deadly malady. Drug resistance and reduced drug bioavailability are caused by a class of transporter proteins called the ATP-binding cassette (ABC) transporters, which pump a range of medicines out of cells at the price of ATP hydrolysis. By using computational approaches, we tried to elaborate the probable function of the Rv2326c gene of M. tuberculosis, perhaps involved in drug resistance mechanism. The presence of the signature motif of ABC transporters (LSGGELQRLALAAAL and LSGGQMRRVVLAGLL) and ATP binding motif (GXXXXGKT and GXXXXGKS) in the protein sequence signifying its importance in the ATP binding and transportation of molecules. Further, this manuscript elaborated about tertiary structure and validation, functional category, localization, phosphorylation site prediction, mutational analysis of conserved motifs. Ligand docking study shows the highest affinity with ATP than GTP justified its function as an ATP binding protein. The Rv2326c protein is present in the inner membrane and working as an ATP binding protein and might be playing a dynamic role in transportation. In this study, we found that Rv2326c protein might be working as an ABC transporter by which the drugs and other molecules are imported or exported into the bacterium. As a result, the current study provides a means to better understand its normal functioning and basic biology, which can help in the development of novel therapeutic targeting approaches for Rv2326c protein.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Amino Acid Sequence , Adenosine Triphosphate/metabolism
19.
J Appl Genet ; 64(4): 615-644, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37624461

ABSTRACT

Plant ATP-binding cassette (ABC) protein family is the largest multifunctional highly conserved protein superfamily that transports diverse substrates across biological membranes by the hydrolysis of ATP and is also the part of the several other biological processes like cellular detoxification, growth and development, stress biology, and signaling processes. In the agriculturally important legume crop Cajanus cajan, a genome-wide identification and characterization of the ABC gene family was carried out. A total of 159 ABC genes were identified that belong to eight canonical classes CcABCA to CcABCG and CcABCI based on the phylogenetic analysis. The number of genes was highest in CcABCG followed by CcABCC and CcABCB class. A total of 85 CcABC genes were found on 11 chromosomes and 74 were found on scaffold. Tandem duplication was the major driver of CcABC gene family expansion. The dN/dS ratio revealed the purifying selection. The phylogenetic analysis revealed class-specific eight superclades which reflect their functional importance. The largest clade was found to be CcABCG which reflects their functional significance. CcABC proteins were mainly basic in nature and found to be localized in the plasma membrane. The secondary structure prediction revealed the dominance of α-helix. The canonical transmembrane and nucleotide binding domain, signature motif LSSGQ, Walker A, Walker B region, and Q loop were also identified. A class-specific exon-intron pattern was also observed. In addition to core elements, different cis-acting regulatory elements like stress, hormone, and cellular responsive were also identified. Expression profiling of CcABC genes at various developmental stages of different anatomical tissues was performed and it was noticed that CcABCF3, CcABCF4, CcABCF5, CcABCG66, and CcABCI3 had the highest expression. The results of the current study endow us with the further functional analysis of Cajanus ABC in the future.


Subject(s)
Cajanus , Fabaceae , Fabaceae/genetics , Fabaceae/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/metabolism , Cajanus/genetics , Cajanus/metabolism , Phylogeny , Vegetables/metabolism , Adenosine Triphosphate/metabolism
20.
Angew Chem Int Ed Engl ; 62(37): e202307091, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37459565

ABSTRACT

ATP-binding cassette (ABC) transporters shuttle diverse substrates across biological membranes. Transport is often achieved through a transition between an inward-facing (IF) and an outward-facing (OF) conformation of the transmembrane domains (TMDs). Asymmetric nucleotide-binding sites (NBSs) are present among several ABC subfamilies and their functional role remains elusive. Here we addressed this question using concomitant NO-NO, Mn2+ -NO, and Mn2+ -Mn2+ pulsed electron-electron double-resonance spectroscopy of TmrAB in a time-resolved manner. This type-IV ABC transporter undergoes a reversible transition in the presence of ATP with a significantly faster forward transition. The impaired degenerate NBS stably binds Mn2+ -ATP, and Mn2+ is preferentially released at the active consensus NBS. ATP hydrolysis at the consensus NBS considerably accelerates the reverse transition. Both NBSs fully open during each conformational cycle and the degenerate NBS may regulate the kinetics of this process.


Subject(s)
ATP-Binding Cassette Transporters , Adenosine Triphosphate , ATP-Binding Cassette Transporters/chemistry , Adenosine Triphosphate/metabolism , Nucleotides/metabolism , Binding Sites , Protein Domains , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...