Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.756
Filter
1.
Sci Rep ; 14(1): 15754, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977928

ABSTRACT

Variations in physical activity energy expenditure can make accurate prediction of total energy expenditure (TEE) challenging. The purpose of the present study was to determine the accuracy of available equations to predict TEE in individuals varying in physical activity (PA) levels. TEE was measured by DLW in 56 adults varying in PA levels which were monitored by accelerometry. Ten different models were used to predict TEE and their accuracy and precision were evaluated, considering the effect of sex and PA. The models generally underestimated the TEE in this population. An equation published by Plucker was the most accurate in predicting the TEE in our entire sample. The Pontzer and Vinken models were the most accurate for those with lower PA levels. Despite the levels of accuracy of some equations, there were sizable errors (low precision) at an individual level. Future studies are needed to develop and validate these equations.


Subject(s)
Energy Metabolism , Humans , Male , Female , Adult , Middle Aged , Accelerometry/methods , Exercise/physiology , Young Adult , Water/metabolism , Reproducibility of Results
2.
Sci Rep ; 14(1): 15784, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982219

ABSTRACT

This study investigates the effects of metronome walking on gait dynamics in older adults, focusing on long-range correlation structures and long-range attractor divergence (assessed by maximum Lyapunov exponents). Sixty older adults participated in indoor walking tests with and without metronome cues. Gait parameters were recorded using two triaxial accelerometers attached to the lumbar region and to the foot. We analyzed logarithmic divergence of lumbar acceleration using Rosenstein's algorithm and scaling exponents for stride intervals from foot accelerometers using detrended fluctuation analysis (DFA). Results indicated a concomitant reduction in long-term divergence exponents and scaling exponents during metronome walking, while short-term divergence remained largely unchanged. Furthermore, long-term divergence exponents and scaling exponents were significantly correlated. Reliability analysis revealed moderate intrasession consistency for long-term divergence exponents, but poor reliability for scaling exponents. Our results suggest that long-term divergence exponents could effectively replace scaling exponents for unsupervised gait quality assessment in older adults. This approach may improve the assessment of attentional involvement in gait control and enhance fall risk assessment.


Subject(s)
Gait , Walking , Humans , Aged , Female , Male , Gait/physiology , Walking/physiology , Accelerometry/methods , Aged, 80 and over , Algorithms , Accidental Falls/prevention & control , Reproducibility of Results
4.
Int J Behav Nutr Phys Act ; 21(1): 67, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961445

ABSTRACT

BACKGROUND: Physical activity surveillance systems are important for public health monitoring but rely mostly on self-report measurement of physical activity. Integration of device-based measurements in such systems can improve population estimates, however this is still relatively uncommon in existing surveillance systems. This systematic review aims to create an overview of the methodology used in existing device-based national PA surveillance systems. METHODS: Four literature databases (PubMed, Embase.com, SPORTDiscus and Web of Science) were searched, supplemented with backward tracking. Articles were included if they reported on population-based (inter)national surveillance systems measuring PA, sedentary time and/or adherence to PA guidelines. When available and in English, the methodological reports of the identified surveillance studies were also included for data extraction. RESULTS: This systematic literature search followed the PRISMA guidelines and yielded 34 articles and an additional 18 methodological reports, reporting on 28 studies, which in turn reported on one or multiple waves of 15 different national and 1 international surveillance system. The included studies showed substantial variation between (waves of) systems in number of participants, response rates, population representativeness and recruitment. In contrast, the methods were similar on data reduction definitions (e.g. minimal number of valid days, non-wear time and necessary wear time for a valid day). CONCLUSIONS: The results of this review indicate that few countries use device-based PA measurement in their surveillance system. The employed methodology is diverse, which hampers comparability between countries and calls for more standardized methods as well as standardized reporting on these methods. The results from this review can help inform the integration of device-based PA measurement in (inter)national surveillance systems.


Subject(s)
Exercise , Humans , Sedentary Behavior , Population Surveillance/methods , Self Report , Accelerometry/methods , Accelerometry/instrumentation
5.
Int J Behav Nutr Phys Act ; 21(1): 77, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020353

ABSTRACT

BACKGROUND: The more accurate we can assess human physical behaviour in free-living conditions the better we can understand its relationship with health and wellbeing. Thigh-worn accelerometry can be used to identify basic activity types as well as different postures with high accuracy. User-friendly software without the need for specialized programming may support the adoption of this method. This study aims to evaluate the classification accuracy of two novel no-code classification methods, namely SENS motion and ActiPASS. METHODS: A sample of 38 healthy adults (30.8 ± 9.6 years; 53% female) wore the SENS motion accelerometer (12.5 Hz; ±4 g) on their thigh during various physical activities. Participants completed standardized activities with varying intensities in the laboratory. Activities included walking, running, cycling, sitting, standing, and lying down. Subsequently, participants performed unrestricted free-living activities outside of the laboratory while being video-recorded with a chest-mounted camera. Videos were annotated using a predefined labelling scheme and annotations served as a reference for the free-living condition. Classification output from the SENS motion software and ActiPASS software was compared to reference labels. RESULTS: A total of 63.6 h of activity data were analysed. We observed a high level of agreement between the two classification algorithms and their respective references in both conditions. In the free-living condition, Cohen's kappa coefficients were 0.86 for SENS and 0.92 for ActiPASS. The mean balanced accuracy ranged from 0.81 (cycling) to 0.99 (running) for SENS and from 0.92 (walking) to 0.99 (sedentary) for ActiPASS across all activity types. CONCLUSIONS: The study shows that two available no-code classification methods can be used to accurately identify basic physical activity types and postures. Our results highlight the accuracy of both methods based on relatively low sampling frequency data. The classification methods showed differences in performance, with lower sensitivity observed in free-living cycling (SENS) and slow treadmill walking (ActiPASS). Both methods use different sets of activity classes with varying definitions, which may explain the observed differences. Our results support the use of the SENS motion system and both no-code classification methods.


Subject(s)
Accelerometry , Exercise , Thigh , Walking , Humans , Female , Male , Adult , Accelerometry/methods , Exercise/physiology , Walking/physiology , Young Adult , Algorithms , Software , Running/physiology , Bicycling/physiology , Posture
6.
PLoS One ; 19(7): e0301167, 2024.
Article in English | MEDLINE | ID: mdl-39024328

ABSTRACT

Dairy cattle lameness represents one of the common concerns in intensive and commercial dairy farms. Lameness is characterized by gait-related behavioral changes in cows and multiple approaches are being utilized to associate these changes with lameness conditions including data from accelerometers, and other precision technologies. The objective was to evaluate the use of machine learning algorithms for the identification of lameness conditions in dairy cattle. In this study, 310 multiparous Holstein dairy cows from a herd in Northern Colorado were affixed with a leg-based accelerometer (Icerobotics® Inc, Edinburg, Scotland) to obtain the lying time (min/d), daily steps count (n/d), and daily change (n/d). Subsequently, study cows were monitored for 4 months and cows submitted for claw trimming (CT) were differentiated as receiving corrective claw trimming (CCT) or as being diagnosed with a lameness disorder and consequent therapeutic claw trimming (TCT) by a certified hoof trimmer. Cows not submitted to CT were considered healthy controls. A median filter was applied to smoothen the data by reducing inherent variability. Three different machine learning (ML) models were defined to fit each algorithm which included the conventional features (containing daily lying, daily steps, and daily change derived from the accelerometer), slope features (containing features extracted from each variable in Conventional feature), or all features (3 simple features and 3 slope features). Random forest (RF), Naive Bayes (NB), Logistic Regression (LR), and Time series (ROCKET) were used as ML predictive approaches. For the classification of cows requiring CCT and TCT, ROCKET classifier performed better with accuracy (> 90%), ROC-AUC (> 74%), and F1 score (> 0.61) as compared to other algorithms. Slope features derived in this study increased the efficiency of algorithms as the better-performing models included All features explored. However, further classification of diseases into infectious and non-infectious events was not effective because none of the algorithms presented satisfactory model accuracy parameters. For the classification of observed cow locomotion scores into severely lame and moderately lame conditions, the ROCKET classifier demonstrated satisfactory accuracy (> 0.85), ROC-AUC (> 0.68), and F1 scores (> 0.44). We conclude that ML models using accelerometer data are helpful in the identification of lameness in cows but need further research to increase the granularity and accuracy of classification.


Subject(s)
Algorithms , Cattle Diseases , Dairying , Lameness, Animal , Machine Learning , Animals , Cattle , Lameness, Animal/diagnosis , Lameness, Animal/physiopathology , Cattle Diseases/diagnosis , Cattle Diseases/physiopathology , Female , Dairying/methods , Accelerometry/methods , Gait/physiology
7.
Sensors (Basel) ; 24(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39000839

ABSTRACT

Low physical activity (PA) measured by accelerometers and low heart rate variability (HRV) measured from short-term ECG recordings are associated with worse cognitive function. Wearable long-term ECG monitors are now widely used, and some devices also include an accelerometer. The objective of this study was to evaluate whether PA or HRV measured from long-term ECG monitors was associated with cognitive function among older adults. A total of 1590 ARIC participants had free-living PA and HRV measured over 14 days using the Zio® XT Patch [aged 72-94 years, 58% female, 32% Black]. Cognitive function was measured by cognitive factor scores and adjudicated dementia or mild cognitive impairment (MCI) status. Adjusted linear or multinomial regression models examined whether higher PA or higher HRV was cross-sectionally associated with higher factor scores or lower odds of MCI/dementia. Each 1-unit increase in the total amount of PA was associated with higher global cognition (ß = 0.30, 95% CI: 0.16-0.44) and executive function scores (ß = 0.38, 95% CI: 0.22-0.53) and lower odds of MCI (OR = 0.38, 95% CI: 0.22-0.67) or dementia (OR = 0.25, 95% CI: 0.08-0.74). HRV (i.e., SDNN and rMSSD) was not associated with cognitive function. More research is needed to define the role of wearable ECG monitors as a tool for digital phenotyping of dementia.


Subject(s)
Cognition , Cognitive Dysfunction , Dementia , Electrocardiography , Exercise , Heart Rate , Humans , Heart Rate/physiology , Female , Dementia/physiopathology , Dementia/diagnosis , Aged , Male , Cognition/physiology , Exercise/physiology , Electrocardiography/methods , Aged, 80 and over , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/physiopathology , Wearable Electronic Devices , Cross-Sectional Studies , Accelerometry/instrumentation , Accelerometry/methods
8.
Sensors (Basel) ; 24(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39001051

ABSTRACT

This study aims to integrate a convolutional neural network (CNN) and the Random Forest Model into a rehabilitation assessment device to provide a comprehensive gait analysis in the evaluation of movement disorders to help physicians evaluate rehabilitation progress by distinguishing gait characteristics under different walking modes. Equipped with accelerometers and six-axis force sensors, the device monitors body symmetry and upper limb strength during rehabilitation. Data were collected from normal and abnormal walking groups. A knee joint limiter was applied to subjects to simulate different levels of movement disorders. Features were extracted from the collected data and analyzed using a CNN. The overall performance was scored with Random Forest Model weights. Significant differences in average acceleration values between the moderately abnormal (MA) and severely abnormal (SA) groups (without vehicle assistance) were observed (p < 0.05), whereas no significant differences were found between the MA with vehicle assistance (MA-V) and SA with vehicle assistance (SA-V) groups (p > 0.05). Force sensor data showed good concentration in the normal walking group and more scatter in the SA-V group. The CNN and Random Forest Model accurately recognized gait conditions, achieving average accuracies of 88.4% and 92.3%, respectively, proving that the method mentioned above provides more accurate gait evaluations for patients with movement disorders.


Subject(s)
Deep Learning , Gait , Movement Disorders , Neural Networks, Computer , Humans , Movement Disorders/rehabilitation , Movement Disorders/diagnosis , Movement Disorders/physiopathology , Gait/physiology , Male , Self-Help Devices , Adult , Female , Accelerometry/instrumentation , Accelerometry/methods , Walking/physiology , Monitoring, Physiologic/methods , Monitoring, Physiologic/instrumentation
9.
BMC Geriatr ; 24(1): 601, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997632

ABSTRACT

BACKGROUND: In aged society, health policies aimed at extending healthy life expectancy are critical. Maintaining physical activity is essential to prevent the deterioration of body functions. Therefore, it is important to understand the physical activity levels of the target age group and to know the content and intensity of the required physical activity quantitatively. Especially we focused the role of non-exercise activity thermogenesis and sedentary time, which are emphasized more than the introduction of exercise in cases of obesity or diabetes. METHODS: A total of 193 patients from 25 institutions were included. Participants underwent a locomotive syndrome risk test (stand-up test, 2-step test, and Geriatric Locomotive Function Scale-25 questionnaire) and were classified into three stages. Physical activity was quantitatively monitored for one week with 3-axial accelerometer. Physical activity was classified into three categories; (1) Sedentary behavior (0 ∼ ≤ 1.5 metabolic equivalents (METs)), (2) Light physical activity (LPA:1.6 ∼ 2.9 METs), and (3) Moderate to vigorous physical activity (MVPA: ≥3 METs). We investigated the relationship between physical activity, including the number of steps, and the stages after gender- and age- adjustment. We also investigated the relationship between social isolation using Lubben's Social Network Scale (LSNS), as social isolation would lead to fewer opportunities to go out and less outdoor walking. RESULTS: Comparison among the three stages showed significant difference for age (p = 0.007) and Body Mass Index (p < 0.001). After gender-and age-adjustment, there was a significant relation with a decrease in the number of steps (p = 0.002) and with MVPA. However, no relation was observed in sedentary time and LPA. LSNS did not show any statistically significant difference. Moderate to high-intensity physical activity and the number of steps is required for musculoskeletal disorders. The walking, not sedentary time, was associated to the locomotive stages, and this finding indicated the importance of lower extremity exercise. CONCLUSIONS: Adjusting for age and gender, the number of steps and moderate to vigorous activity levels were necessary to prevent worsening, and there was no effect of sedentary behavior. Merely reducing sedentary time may be inadequate for locomotive disorders. It is necessary to engage in work or exercise that moves lower extremities more actively.


Subject(s)
Exercise , Sedentary Behavior , Humans , Female , Male , Cross-Sectional Studies , Exercise/physiology , Aged , Aged, 80 and over , Locomotion/physiology , Cohort Studies , Geriatric Assessment/methods , Middle Aged , Mobility Limitation , Accelerometry/methods
10.
PeerJ ; 12: e17739, 2024.
Article in English | MEDLINE | ID: mdl-39035168

ABSTRACT

Background: Scoliosis is a multifaceted three-dimensional deformity that significantly affects patients' balance function and walking process. While existing research primarily focuses on spatial and temporal parameters of walking and trunk/pelvic kinematics asymmetry, there remains controversy regarding the symmetry and regularity of bilateral lower limb gait. This study aims to investigate the symmetry and regularity of bilateral lower limb gait and examine the balance control strategy of the head during walking in patients with idiopathic scoliosis. Methods: The study involved 17 patients with idiopathic scoliosis of Lenke 1 and Lenke 5 classifications, along with 17 healthy subjects for comparison. Three-dimensional accelerometers were attached to the head and L5 spinous process of each participant, and three-dimensional motion acceleration signals were collected during a 10-meter walking test. Analysis of the collected acceleration signals involved calculating five variables related to the symmetry and regularity of walking: root mean square (RMS) of the acceleration signal, harmonic ratio (HR), step regularity, stride regularity, and gait symmetry. Results: Our analysis reveals that, during the walking process, the three-dimensional motion acceleration signals acquired from the lumbar region of patients diagnosed with idiopathic scoliosis exhibit noteworthy disparities in the RMS of the vertical axis (RMS-VT) and the HR of the vertical axis (HR-VT) when compared to the corresponding values in the healthy control (RMS-VT: 1.6 ± 0.41 vs. 3 ± 0.47, P < 0.05; HR-VT: 3 ± 0.72 vs. 3.9 ± 0.71, P < 0.05). Additionally, the motion acceleration signals of the head in three-dimensional space, including the RMS in the anterior-posterior and vertical axis, the HR-VT, and the values of step regularity in both anterior-posterior and vertical axis, as well as the values of stride regularity in all three axes, are all significantly lower than those in the healthy control group (P < 0.05). Conclusion: The findings of the analysis suggest that the application of three-dimensional accelerometer sensors proves efficacious and convenient for scrutinizing the symmetry and regularity of walking in individuals with idiopathic scoliosis. Distinctive irregularities in gait symmetry and regularity manifest in patients with idiopathic scoliosis, particularly within the antero-posterior and vertical direction. Moreover, the dynamic balance control strategy of the head in three-dimensional space among patients with idiopathic scoliosis exhibits a relatively conservative nature when compared to healthy individuals.


Subject(s)
Accelerometry , Gait , Scoliosis , Walking , Humans , Scoliosis/physiopathology , Female , Accelerometry/instrumentation , Accelerometry/methods , Walking/physiology , Adolescent , Male , Biomechanical Phenomena/physiology , Gait/physiology , Wearable Electronic Devices , Child , Case-Control Studies , Postural Balance/physiology , Young Adult
11.
Sensors (Basel) ; 24(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38894162

ABSTRACT

Composite indoor human activity recognition is very important in elderly health monitoring and is more difficult than identifying individual human movements. This article proposes a sensor-based human indoor activity recognition method that integrates indoor positioning. Convolutional neural networks are used to extract spatial information contained in geomagnetic sensors and ambient light sensors, while transform encoders are used to extract temporal motion features collected by gyroscopes and accelerometers. We established an indoor activity recognition model with a multimodal feature fusion structure. In order to explore the possibility of using only smartphones to complete the above tasks, we collected and established a multisensor indoor activity dataset. Extensive experiments verified the effectiveness of the proposed method. Compared with algorithms that do not consider the location information, our method has a 13.65% improvement in recognition accuracy.


Subject(s)
Accelerometry , Algorithms , Human Activities , Neural Networks, Computer , Smartphone , Humans , Accelerometry/instrumentation , Accelerometry/methods , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods
12.
Sensors (Basel) ; 24(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38894264

ABSTRACT

(1) Background: This study aimed to describe upper-limb (UL) movement quality parameters in women after breast cancer surgery and to explore their clinical relevance in relation to post-surgical pain and disability. (2) Methods: UL movement quality was assessed in 30 women before and 3 weeks after surgery for breast cancer. Via accelerometer data captured from a sensor located at the distal end of the forearm on the operated side, various movement quality parameters (local dynamic stability, movement predictability, movement smoothness, movement symmetry, and movement variability) were investigated while women performed a cyclic, weighted reaching task. At both test moments, the Quick Disabilities of the Arm, Shoulder, and Hand (Quick DASH) questionnaire was filled out to assess UL disability and pain severity. (3) Results: No significant differences in movement quality parameters were found between the pre-surgical and post-surgical time points. No significant correlations between post-operative UL disability or pain severity and movement quality were found. (4) Conclusions: From this study sample, no apparent clinically relevant movement quality parameters could be derived for a cyclic, weighted reaching task. This suggests that the search for an easy-to-use, quantitative analysis tool for UL qualitative functioning to be used in research and clinical practice should continue.


Subject(s)
Breast Neoplasms , Movement , Upper Extremity , Humans , Female , Breast Neoplasms/surgery , Breast Neoplasms/physiopathology , Middle Aged , Upper Extremity/physiopathology , Upper Extremity/physiology , Movement/physiology , Aged , Adult , Surveys and Questionnaires , Accelerometry/methods , Pain, Postoperative/physiopathology
13.
Sci Rep ; 14(1): 14006, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38890409

ABSTRACT

Smartphone sensors have gained considerable traction in Human Activity Recognition (HAR), drawing attention for their diverse applications. Accelerometer data monitoring holds promise in understanding students' physical activities, fostering healthier lifestyles. This technology tracks exercise routines, sedentary behavior, and overall fitness levels, potentially encouraging better habits, preempting health issues, and bolstering students' well-being. Traditionally, HAR involved analyzing signals linked to physical activities using handcrafted features. However, recent years have witnessed the integration of deep learning into HAR tasks, leveraging digital physiological signals from smartwatches and learning features automatically from raw sensory data. The Long Short-Term Memory (LSTM) network stands out as a potent algorithm for analyzing physiological signals, promising improved accuracy and scalability in automated signal analysis. In this article, we propose a feature analysis framework for recognizing student activity and monitoring health based on smartphone accelerometer data through an edge computing platform. Our objective is to boost HAR performance by accounting for the dynamic nature of human behavior. Nonetheless, the current LSTM network's presetting of hidden units and initial learning rate relies on prior knowledge, potentially leading to suboptimal states. To counter this, we employ Bidirectional LSTM (BiLSTM), enhancing sequence processing models. Furthermore, Bayesian optimization aids in fine-tuning the BiLSTM model architecture. Through fivefold cross-validation on training and testing datasets, our model showcases a classification accuracy of 97.5% on the tested dataset. Moreover, edge computing offers real-time processing, reduced latency, enhanced privacy, bandwidth efficiency, offline capabilities, energy efficiency, personalization, and scalability. Extensive experimental results validate that our proposed approach surpasses state-of-the-art methodologies in recognizing human activities and monitoring health based on smartphone accelerometer data.


Subject(s)
Accelerometry , Exercise , Smartphone , Students , Humans , Accelerometry/methods , Accelerometry/instrumentation , Exercise/physiology , Deep Learning , Algorithms , Monitoring, Physiologic/methods , Monitoring, Physiologic/instrumentation
14.
J Neuroeng Rehabil ; 21(1): 104, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890696

ABSTRACT

BACKGROUND: Recently, the use of inertial measurement units (IMUs) in quantitative gait analysis has been widely developed in clinical practice. Numerous methods have been developed for the automatic detection of gait events (GEs). While many of them have achieved high levels of efficiency in healthy subjects, detecting GEs in highly degraded gait from moderate to severely impaired patients remains a challenge. In this paper, we aim to present a method for improving GE detection from IMU recordings in such cases. METHODS: We recorded 10-meter gait IMU signals from 13 healthy subjects, 29 patients with multiple sclerosis, and 21 patients with post-stroke equino varus foot. An instrumented mat was used as the gold standard. Our method detects GEs from filtered acceleration free from gravity and gyration signals. Firstly, we use autocorrelation and pattern detection techniques to identify a reference stride pattern. Next, we apply multiparametric Dynamic Time Warping to annotate this pattern from a model stride, in order to detect all GEs in the signal. RESULTS: We analyzed 16,819 GEs recorded from healthy subjects and achieved an F1-score of 100%, with a median absolute error of 8 ms (IQR [3-13] ms). In multiple sclerosis and equino varus foot cohorts, we analyzed 6067 and 8951 GEs, respectively, with F1-scores of 99.4% and 96.3%, and median absolute errors of 18 ms (IQR [8-39] ms) and 26 ms (IQR [12-50] ms). CONCLUSIONS: Our results are consistent with the state of the art for healthy subjects and demonstrate a good accuracy in GEs detection for pathological patients. Therefore, our proposed method provides an efficient way to detect GEs from IMU signals, even in degraded gaits. However, it should be evaluated in each cohort before being used to ensure its reliability.


Subject(s)
Multiple Sclerosis , Humans , Male , Female , Multiple Sclerosis/diagnosis , Multiple Sclerosis/complications , Multiple Sclerosis/physiopathology , Adult , Middle Aged , Gait Disorders, Neurologic/diagnosis , Gait Disorders, Neurologic/physiopathology , Gait Disorders, Neurologic/etiology , Gait Analysis/methods , Gait Analysis/instrumentation , Gait/physiology , Aged , Stroke/diagnosis , Stroke/physiopathology , Stroke/complications , Accelerometry/instrumentation , Accelerometry/methods , Young Adult
15.
Sensors (Basel) ; 24(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38931600

ABSTRACT

For individuals with spinal cord injuries (SCIs) above the midthoracic level, a common complication is the partial or complete loss of trunk stability in the seated position. Functional neuromuscular stimulation (FNS) can restore seated posture and other motor functions after paralysis by applying small electrical currents to the peripheral motor nerves. In particular, the Networked Neuroprosthesis (NNP) is a fully implanted, modular FNS system that is also capable of capturing information from embedded accelerometers for measuring trunk tilt for feedback control of stimulation. The NNP modules containing the accelerometers are located in the body based on surgical constraints. As such, their exact orientations are generally unknown and cannot be easily assessed. In this study, a method for estimating trunk tilt that employed the Gram-Schmidt method to reorient acceleration signals to the anatomical axes of the body was developed and deployed in individuals with SCI using the implanted NNP system. An anatomically realistic model of a human trunk and five accelerometer sensors was developed to verify the accuracy of the reorientation algorithm. Correlation coefficients and root mean square errors (RMSEs) were calculated to compare target trunk tilt estimates and tilt estimates derived from simulated accelerometer signals under a variety of conditions. Simulated trunk tilt estimates with correlation coefficients above 0.92 and RMSEs below 5° were achieved. The algorithm was then applied to accelerometer signals from implanted sensors installed in three NNP recipients. Error analysis was performed by comparing the correlation coefficients and RMSEs derived from trunk tilt estimates calculated from implanted sensor signals to those calculated via motion capture data, which served as the gold standard. NNP-derived trunk tilt estimates exhibited correlation coefficients between 0.80 and 0.95 and RMSEs below 13° for both pitch and roll in most cases. These findings suggest that the algorithm is effective at estimating trunk tilt with the implanted sensors of the NNP system, which implies that the method may be appropriate for extracting feedback signals for control systems for seated stability with NNP technology for individuals who have reduced control of their trunk due to paralysis.


Subject(s)
Accelerometry , Algorithms , Torso , Humans , Accelerometry/methods , Torso/physiology , Spinal Cord Injuries/physiopathology , Neural Prostheses , Posture/physiology
16.
Mil Med ; 189(Supplement_2): 74-83, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38920031

ABSTRACT

INTRODUCTION: The U.S. Marine Corps (USMC) recruit training is a 13-week preparatory period for military service men and women. Differences in absolute performance capabilities between sexes may impact physical and physiological responses to the demands of recruit training. The purpose of this study was to monitor U.S. Marine Corps recruits throughout recruit training to comparatively assess workload, sleep, stress, and performance responses in men and women. MATERIALS AND METHODS: A total of 281 recruits (men = 182 and women = 99; age = 19 ± 2 years) were monitored and tested. Workload, sleep, and stress assessments occurred at week 2, week 7/8, and week 11 of training. Workload (energy expenditure per kg body mass [EEREL], distance [DIS], steps) and sleep (continuity and duration) were tracked over 72-hour periods using wearable accelerometry and heart rate technology. Stress responses were determined through salivary cortisol analyses. Performance testing, consisting of countermovement vertical jump (CMJ) and isometric mid-thigh pull (IMTP) performance relative to body mass, occurred at weeks 2 and 11. Linear mixed models were used to test for sex, time, and sex-by-time interactions (α < .05). RESULTS: On average, recruits covered 13.0 ± 2.7 km/day, expended 3,762 ± 765 calories/day, and slept 6.2 ± 1.1 hours/night. Sex-by-time interactions were found for DIS, steps, sleep duration, cortisol, and CMJREL performance (P < .05). Planned contrasts revealed that men covered more DIS than women at week 7/8 (P < .001). Women experienced greater step counts compared to men at week 11 (P = .004). Women experienced no significant change in sleep duration (P > .05), whereas men increased sleep duration from week 2 to week 7/8 (P = .03). Women experienced greater sleep duration at week 2 (P = .03) and week 11 (P = .02) compared to men. Women exhibited higher cortisol levels than men at week 2 (P < .001) and week 11 (P < .001). Women experienced declines in cortisol at week 7 compared to week 2 (P < .001). Men experienced no changes in cortisol response at any timepoint (P > .05). Both sexes experienced declines in CMJREL from week 2 to week 11 (P > .001). Sex main effects were observed for EEREL, DIS, CMJREL, and IMTPREL (P < .05) with men experiencing greater overall workloads and producing greater strength and power metrics. Sex main effects were also found for sleep continuity and cortisol (P < .05), for which men experienced lower values compared to women. Time main effects were observed for EEREL, DIS, steps, cortisol, CMJREL, and IMTPREL (P < .05). CONCLUSIONS: This study not only highlights the known sex differences between men and women but also sheds light on the different physical and physiological responses of each sex to military training. Interestingly, the greatest physical demands incurred earlier in the training cycle. Despite declining workloads, the stress response was maintained throughout the training, which may have implications for adaptation and performance. In addition, average sleep duration fell notably below recommendations for optimizing health and recovery. Effectively monitoring the demands and performance outcomes during recruit training is essential for determining individual fitness capabilities, as well as establishing the effectiveness of a training program. Individual performance assessments and adequately periodized workloads may help to optimize recruit training for both men and women.


Subject(s)
Military Personnel , Humans , Male , Female , Military Personnel/statistics & numerical data , United States , Young Adult , Sex Factors , Adolescent , Hydrocortisone/analysis , Sleep/physiology , Accelerometry/methods , Accelerometry/statistics & numerical data , Energy Metabolism/physiology , Workload/statistics & numerical data , Workload/standards , Workload/psychology , Adult
17.
J Neuroeng Rehabil ; 21(1): 94, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840208

ABSTRACT

BACKGROUND: Many individuals with neurodegenerative (NDD) and immune-mediated inflammatory disorders (IMID) experience debilitating fatigue. Currently, assessments of fatigue rely on patient reported outcomes (PROs), which are subjective and prone to recall biases. Wearable devices, however, provide objective and reliable estimates of gait, an essential component of health, and may present objective evidence of fatigue. This study explored the relationships between gait characteristics derived from an inertial measurement unit (IMU) and patient-reported fatigue in the IDEA-FAST feasibility study. METHODS: Participants with IMIDs and NDDs (Parkinson's disease (PD), Huntington's disease (HD), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), primary Sjogren's syndrome (PSS), and inflammatory bowel disease (IBD)) wore a lower-back IMU continuously for up to 10 days at home. Concurrently, participants completed PROs (physical fatigue (PF) and mental fatigue (MF)) up to four times a day. Macro (volume, variability, pattern, and acceleration vector magnitude) and micro (pace, rhythm, variability, asymmetry, and postural control) gait characteristics were extracted from the accelerometer data. The associations of these measures with the PROs were evaluated using a generalised linear mixed-effects model (GLMM) and binary classification with machine learning. RESULTS: Data were recorded from 72 participants: PD = 13, HD = 9, RA = 12, SLE = 9, PSS = 14, IBD = 15. For the GLMM, the variability of the non-walking bouts length (in seconds) with PF returned the highest conditional R2, 0.165, and with MF the highest marginal R2, 0.0018. For the machine learning classifiers, the highest accuracy of the current analysis was returned by the micro gait characteristics with an intrasubject cross validation method and MF as 56.90% (precision = 43.9%, recall = 51.4%). Overall, the acceleration vector magnitude, bout length variation, postural control, and gait rhythm were the most interesting characteristics for future analysis. CONCLUSIONS: Counterintuitively, the outcomes indicate that there is a weak relationship between typical gait measures and abnormal fatigue. However, factors such as the COVID-19 pandemic may have impacted gait behaviours. Therefore, further investigations with a larger cohort are required to fully understand the relationship between gait and abnormal fatigue.


Subject(s)
Fatigue , Feasibility Studies , Gait , Mental Fatigue , Neurodegenerative Diseases , Walking , Humans , Male , Female , Middle Aged , Fatigue/diagnosis , Fatigue/physiopathology , Fatigue/etiology , Walking/physiology , Aged , Mental Fatigue/physiopathology , Mental Fatigue/diagnosis , Neurodegenerative Diseases/complications , Neurodegenerative Diseases/physiopathology , Neurodegenerative Diseases/diagnosis , Gait/physiology , Wearable Electronic Devices , Immune System Diseases/complications , Immune System Diseases/diagnosis , Adult , Accelerometry/instrumentation , Accelerometry/methods
18.
Rehabil Nurs ; 49(4): 115-124, 2024.
Article in English | MEDLINE | ID: mdl-38904657

ABSTRACT

ABSTRACT: The purpose of this secondary data analysis was to describe physical activity and the factors associated with physical activity among older adults living with dementia on medical units in acute care settings. Measures included accelerometry data from the MotionWatch 8, behavioral and psychological symptoms associated with dementia, use of psychotropic medications, subjective reports of activities of daily living and other types of physical activity (e.g., walking to the bathroom, participating in therapy), delirium severity, and medications. The majority of the 204 participants were White (70%) and female (62%), with a mean age of 83 years. Over 24 hours of assessment, participants engaged in 15 ( SD = 46) minutes of vigorous activity, 43 ( SD = 54) minutes of moderate activity, 2 hours 50 ( SD = 2) minutes of low-level activity, and 20 ( SD = 3) hours of sedentary activity. Subjective walking activities, toileting, evidence of disinhibition, delirium severity, agitation, and use of psychotropic medications were associated with increased physical activity based on the MotionWatch 8. The findings provide information for rehabilitation nurses regarding factors associated with physical activity among patients with dementia admitted to acute care settings as well as some of the challenges associated with measurement of physical activity. Future research needs to continue to explore the impact of behavioral symptoms associated with dementia on physical activity and increase participation in activities that are functionally relevant.


Subject(s)
Accelerometry , Dementia , Exercise , Humans , Female , Male , Aged, 80 and over , Dementia/psychology , Dementia/complications , Aged , Exercise/psychology , Accelerometry/methods , Hospitalization/statistics & numerical data , Activities of Daily Living/psychology
19.
J Sci Med Sport ; 27(8): 551-556, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38852004

ABSTRACT

OBJECTIVES: Cadence thresholds have been widely used to categorize physical activity intensity in health-related research. We examined the convergent validity of two cadence-based intensity classification approaches against a machine-learning-based intensity schema in 84,315 participants (≥40 years) with wrist-worn accelerometers. DESIGN: Validity study. METHODS: Both cadence-based methods (one-level cadence, two-level cadence) calculated intensity-specific time based on cadence-thresholds while the two-level cadence identified stepping behaviors first. We used an overlapping plot, mean absolute error, and Spearman's correlation coefficient to examine agreements between the cadence-based and machine-learning methods. We also evaluated agreements between methods based on practically-important-difference (moderate-to-vigorous-physical activity: ±20 min/day, moderate-physical activity: ±15, vigorous-physical activity: ±2.5, light-physical activity: ±30). RESULTS: The group-level (median) minutes of moderate-to-vigorous- and moderate-physical activity estimated by one-level cadence were within the range of practically-important-difference compared to the machine-learning method (bias of median: moderate-to-vigorous-physical activity, -3.5, interquartile range [-15.8, 12.2]; moderate-physical activity, -6.0 [-17.2, 4.1]). The group-level vigorous- and light-physical activity minutes derived by two-level cadence were within practically-important-difference range (vigorous-physical activity: -0.9 [-3.1, 0.5]; light-physical activity, -1.3 [-28.2, 28.9]). The individual-level differences between the cadence-based and machine learning methods were high across intensities (e.g., moderate-to-vigorous-physical activity: mean absolute error [one-level cadence: 24.2 min/day; two-level cadence: 26.2]), with the proportion of participants within the practically-important-difference ranging from 8.4 % to 61.6 %. CONCLUSIONS: One-level cadence showed acceptable group-level estimates of moderate-to-vigorous and moderate-physical activity while two-level cadence showed acceptable group-level estimates of vigorous- and light-physical activity. The cadence-based methods might not be appropriate for individual-level intensity-specific time estimation.


Subject(s)
Accelerometry , Exercise , Machine Learning , Humans , Male , Middle Aged , Female , Accelerometry/methods , United Kingdom , Adult , Aged , Biological Specimen Banks , UK Biobank
20.
Sci Rep ; 14(1): 13897, 2024 06 17.
Article in English | MEDLINE | ID: mdl-38886358

ABSTRACT

Digital health technologies (DHTs) are increasingly being adopted in clinical trials, as they enable objective evaluations of health parameters in free-living environments. Although lumbar accelerometers notably provide reliable gait parameters, embedding accelerometers in chest devices, already used for vital signs monitoring, could capture a more comprehensive picture of participants' wellbeing, while reducing the burden of multiple devices. Here we assess the validity of gait parameters measured from a chest accelerometer. Twenty healthy adults (13 females, mean ± sd age: 33.9 ± 9.1 years) instrumented with lumbar and chest accelerometers underwent in-lab and outside-lab walking tasks, while monitored with reference devices (an instrumented mat, and a 6-accelerometers set). Gait parameters were extracted from chest and lumbar accelerometers using our open-source Scikit Digital Health gait (SKDH-gait) algorithm, and compared against reference values via Bland-Altman plots, Pearson's correlation, and intraclass correlation coefficient. Mixed effects regression models were performed to investigate the effect of device, task, and their interaction. Gait parameters derived from chest and lumbar accelerometers showed no significant difference and excellent agreement across all tasks, as well as good-to-excellent agreement and strong correlation against reference values, thus supporting the deployment of a single multimodal chest device in clinical trials, to simultaneously measure gait and vital signs.Trial Registration: The study was reviewed and approved by the Advarra IRB (protocol number: Pro00043100).


Subject(s)
Accelerometry , Gait , Thorax , Humans , Female , Male , Adult , Accelerometry/instrumentation , Accelerometry/methods , Gait/physiology , Healthy Volunteers , Walking/physiology , Wearable Electronic Devices , Algorithms , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL