Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.564
Filter
1.
Brief Bioinform ; 25(5)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39101501

ABSTRACT

Engineering enzyme-substrate binding pockets is the most efficient approach for modifying catalytic activity, but is limited if the substrate binding sites are indistinct. Here, we developed a 3D convolutional neural network for predicting protein-ligand binding sites. The network was integrated by DenseNet, UNet, and self-attention for extracting features and recovering sample size. We attempted to enlarge the dataset by data augmentation, and the model achieved success rates of 48.4%, 35.5%, and 43.6% at a precision of ≥50% and 52%, 47.6%, and 58.1%. The distance of predicted and real center is ≤4 Å, which is based on SC6K, COACH420, and BU48 validation datasets. The substrate binding sites of Klebsiella variicola acid phosphatase (KvAP) and Bacillus anthracis proline 4-hydroxylase (BaP4H) were predicted using DUnet, showing high competitive performance of 53.8% and 56% of the predicted binding sites that critically affected the catalysis of KvAP and BaP4H. Virtual saturation mutagenesis was applied based on the predicted binding sites of KvAP, and the top-ranked 10 single mutations contributed to stronger enzyme-substrate binding varied while the predicted sites were different. The advantage of DUnet for predicting key residues responsible for enzyme activity further promoted the success rate of virtual mutagenesis. This study highlighted the significance of correctly predicting key binding sites for enzyme engineering.


Subject(s)
Machine Learning , Binding Sites , Protein Engineering/methods , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Acid Phosphatase/chemistry , Acid Phosphatase/genetics , Acid Phosphatase/metabolism , Substrate Specificity , Bacillus anthracis/genetics , Bacillus anthracis/enzymology , Klebsiella/genetics , Klebsiella/enzymology , Ligands , Protein Binding , Models, Molecular , Neural Networks, Computer
2.
Bull Exp Biol Med ; 177(2): 181-184, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39090467

ABSTRACT

We performed a comprehensive study of protein (total protein, medium-molecular-weight peptides, creatinine, and urea), purine (uric acid), and lipid (cholesterol, triglycerides) metabolism, activity of AST, ALT, and acid phosphatase in blood plasma of white male rats under conditions of restriction of motor activity up to 28 days. Patterns of changes in metabolic profile during hypokinesia were established: prevalence of catabolic processes and atherogenic shifts in the lipid spectrum with maximum manifestation on 14-21 days of the experiment.


Subject(s)
Cholesterol , Triglycerides , Animals , Male , Rats , Triglycerides/blood , Triglycerides/metabolism , Cholesterol/blood , Cholesterol/metabolism , Uric Acid/blood , Uric Acid/metabolism , Motor Activity/physiology , Metabolome/physiology , Lipid Metabolism/physiology , Aspartate Aminotransferases/blood , Aspartate Aminotransferases/metabolism , Alanine Transaminase/blood , Alanine Transaminase/metabolism , Creatinine/blood , Acid Phosphatase/metabolism , Acid Phosphatase/blood , Urea/blood , Hypokinesia/metabolism , Hypokinesia/physiopathology
3.
Huan Jing Ke Xue ; 45(8): 4915-4922, 2024 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-39168707

ABSTRACT

Microorganisms produce extracellular enzymes to meet elemental requirements and cope with stoichiometric imbalances of resources. To gain insights into the cycling of C, N, and P, the activities of the C∶N∶P acquisition enzymes have been extensively investigated. To detect the effects of long-term fertilization practices on soil nutrient balance and characteristics of soil enzymatic stoichiometry in black soil, four different fertilization treatments were selected: no fertilization (CK), nitrogen fertilizer (N), phosphorus fertilizer (P), and combination of nitrogen and phosphorus fertilizers (NP). Soil samples were collected in both April 2021 and April 2022 to determine soil enzyme activities and their stoichiometric characteristics. The results showed that soil acid phosphatase and ß-D-glucosidase activities were significantly higher in the N and NP treatments than in CK by 68%-158% and 26%-222%, respectively. Soil ß-N-acetylaminoglucosidase activities were significantly higher in the P and NP treatments, with the highest around 75.48 nmol·ï¼ˆg·h)-1 and 106.81 nmol·ï¼ˆg·h)-1, respectively. Two-way ANOVA analysis showed that N and P inputs had a great impact on soil enzyme activities. Redundancy analysis showed that the main factors controlling enzyme activities were soil pH, microbial biomass phosphorus, and soil available P content. It was found that N inputs significantly increased enzyme vector length, which was ranged from 1.32 to 1.52, and the enzyme vector angles were all larger than 45°, suggesting C and P co-limited in the black soils. These findings suggest that 40 years of fertilization have had a great impact on soil enzymes and the related resource use strategy, which provides great implications for assessing soil nutrients balance and soil sustainability.


Subject(s)
Fertilizers , Nitrogen , Phosphorus , Soil Microbiology , Soil , Soil/chemistry , Phosphorus/analysis , Acid Phosphatase/metabolism , Carbon/analysis , Time Factors , China
4.
Talanta ; 279: 126620, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39068829

ABSTRACT

In this study, a nanozyme (ZIF-Co-Cys) with high oxidase-like catalytic activity was prepared, and a ratiometric fluorescent/photothermal dual-mode probe was constructed for organophosphorus pesticides (OPs) detection based on the competitive effect of ZIF-Co-Cys and the enzymatic reaction product of acid phosphatase (ACP) on o-phenylenediamine and the inhibition effect of OPs on ACP activity. Using dimethyl dichloroviny phosphate (DDVP) as the model, both the fluorescence intensity ratio and the temperature change of the probe solution exhibited an excellent correlation with OPs concentration. The detection limits were 1.64 ng/mL and 0.084 ng/mL, respectively. Additionally, the detection of DDVP residues in real samples verified the outstanding anti-interference and accuracy of the probe. This work not only provided a complementary dual-mode method for the accurate and rapid detection of OPs residues in complex samples, but also supplied a new insight into the design of a multi-mode sensing platform based on the cascade reaction of nanozyme.


Subject(s)
Fluorescent Dyes , Pesticide Residues , Fluorescent Dyes/chemistry , Pesticide Residues/analysis , Pesticide Residues/chemistry , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/analysis , Acid Phosphatase/analysis , Acid Phosphatase/chemistry , Acid Phosphatase/metabolism , Spectrometry, Fluorescence/methods , Limit of Detection , Dichlorvos/analysis , Temperature
5.
Int J Biol Macromol ; 277(Pt 1): 134026, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39048014

ABSTRACT

The purple acid phosphatase was purified from 5.9-fold to apparent homogeneity from Anagelis arvensis seeds using SP-Sephadex C-50 and Sephadex G-100 chromatography. The results of residual activity tests conducted using different temperature ranges (50-70 °C) were calculated as the activation energy (Ed = 72 kJ/mol), enthalpy (69.31 ≤ (ΔH° ≤ 69.10 kJ/mol), entropy (-122.48 ≤ ΔS° ≤ -121.13 J/mol·K), and Gibbs free energy (108.87 ≤ ΔG° ≤ 111.25 kJ/mol) of the enzyme irreversible denaturation. These thermodynamic parameters indicate that this novel PAP is highly thermostable and may be significant for use in industrial applications. However, it may be confirmed by stopped-flow measurements that this substitution produces a chromophoric Fe3+ site and a Pi-substrate interaction that is about ten times faster. Additionally, these data show that phenyl phosphate hydrolysis proceeds more rapidly in metal form of A. arvensis PAP than the creation of a µ-1,3 phosphate complex. The Fe3+ site in the native Fe3+-Mn2+ derivative interacts with it at a faster rate than in the Fe3+-Fe2+ form. This is most likely caused by a network of hydrogen bonds between the first and second coordination spheres. This suggests that the choice of metal ions plays a significant role in regulating the activity of this enzyme.


Subject(s)
Acid Phosphatase , Catalytic Domain , Thermodynamics , Acid Phosphatase/chemistry , Acid Phosphatase/metabolism , Kinetics , Substrate Specificity , Cations, Divalent , Protein Binding , Hydrolysis , Hydrogen-Ion Concentration , Temperature , Metals/chemistry
6.
Molecules ; 29(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38999063

ABSTRACT

As part of the multifaceted strategies developed to shape the common environmental policy, considerable attention is now being paid to assessing the degree of environmental degradation in soil under xenobiotic pressure. Bisphenol A (BPA) has only been marginally investigated in this ecosystem context. Therefore, research was carried out to determine the biochemical properties of soils contaminated with BPA at two levels of contamination: 500 mg and 1000 mg BPA kg-1 d.m. of soil. Reliable biochemical indicators of soil changes, whose activity was determined in the pot experiment conducted, were used: dehydrogenases, catalase, urease, acid phosphatase, alkaline phosphatase, arylsulfatase, and ß-glucosidase. Using the definition of soil health as the ability to promote plant growth, the influence of BPA on the growth and development of Zea mays, a plant used for energy production, was also tested. As well as the biomass of aerial parts and roots, the leaf greenness index (SPAD) of Zea mays was also assessed. A key aspect of the research was to identify those of the six remediating substances-molecular sieve, zeolite, sepiolite, starch, grass compost, and fermented bark-whose use could become common practice in both environmental protection and agriculture. Exposure to BPA revealed the highest sensitivity of dehydrogenases, urease, and acid phosphatase and the lowest sensitivity of alkaline phosphatase and catalase to this phenolic compound. The enzyme response generated a reduction in the biochemical fertility index (BA21) of 64% (500 mg BPA) and 70% (1000 mg BPA kg-1 d.m. of soil). The toxicity of BPA led to a drastic reduction in root biomass and consequently in the aerial parts of Zea mays. Compost and molecular sieve proved to be the most effective in mitigating the negative effect of the xenobiotic on the parameters discussed. The results obtained are the first research step in the search for further substances with bioremediation potential against both soil and plants under BPA pressure.


Subject(s)
Acid Phosphatase , Benzhydryl Compounds , Phenols , Soil Pollutants , Soil , Zea mays , Phenols/chemistry , Benzhydryl Compounds/chemistry , Soil Pollutants/chemistry , Zea mays/chemistry , Soil/chemistry , Acid Phosphatase/metabolism , Arylsulfatases/metabolism , Alkaline Phosphatase/metabolism , Zeolites/chemistry , Oxidoreductases/metabolism , Urease/metabolism , Catalase/metabolism , Biodegradation, Environmental , Magnesium Silicates/chemistry , Starch/chemistry , beta-Glucosidase/metabolism , Composting/methods
7.
Talanta ; 278: 126451, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38917549

ABSTRACT

Developing water-soluble nanomaterials with high photoluminescence emission and high yield for biological analysis and imaging is urgently needed. Herein, water-soluble blue emitting silicon and nitrogen co-doped carbon dots (abbreviated as Si-CDs) of a high photoluminescence quantum yield of 80 % were effectively prepared with high yield rate (59.1 %) via one-step hydrothermal treatment of N-[3-(trimethoxysilyl)propyl]ethylenediamine (DAMO) and trans-aconitic acid. Furthermore, the Si-CDs demonstrate environmental robustness, photo-stability and biocompatibility. Given the importance of the potentially abnormal levels of acid phosphatase (ACP) in cancer diagnosis, developing a reliable and sensitive ACP measurement method is of significance for clinical research. The Si-CDs unexpectedly promote the catalytic oxidation of ACP on dopamine (DA) to polydopamine under acidic conditions through the produced reactive oxygen species (ROS). Correspondingly, a fluorescence response strategy using Si-CDs as the dual functions of probes and promoting enzyme activity of ACP on catalyzing DA was constructed to sensitively determine ACP. The quantitative analysis of ACP displayed a linear range of 0.1-60 U/L with a detection limit of 0.056 U/L. The accurate detection of ACP was successfully achieved in human serum through recovery tests. As a satisfactory fluorescent probe, Si-CDs were successfully applied to fluorescent imaging of A549 cells in cytoplasmic with long-term and safe staining. The Si-CDs have the dual properties of outstanding fluorescent probes and auxiliary oxidase activity, indicating their great potential in multifunctional applications.


Subject(s)
Acid Phosphatase , Carbon , Dopamine , Nitrogen , Quantum Dots , Silicon , Acid Phosphatase/metabolism , Acid Phosphatase/analysis , Humans , Silicon/chemistry , Dopamine/analysis , Dopamine/chemistry , Quantum Dots/chemistry , Carbon/chemistry , Nitrogen/chemistry , Optical Imaging
8.
J Hazard Mater ; 474: 134867, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38861900

ABSTRACT

Organic phosphorus (Po) is a large component of soil P, but it is often unavailable for plant uptake. Purple acid phosphatases (PAP) can hydrolyze a wide range of Po, playing an important role in Po utilization by plants. In this study, we investigated a novel secretary PvPAP1 from the As-hyperaccumulator Pteris vittata, which can effectively utilize exogenous Po, including adenosine triphosphate (ATP) and phytate. Unlike other PAP, PvPAP1 was abundantly-expressed in P. vittata roots, which was upregulated 3.5-folds under P-deprivation than P-sufficient conditions. When expressed in tobacco, its activity in the roots of PvPAP1-Ex lines was ∼8 folds greater than that in wild-type (WT) plants. Besides, PvPAP1 exhibited its secretory ability as evidenced by the sapphire-blue color on the root surface after treating with 5-bromo-4-chloro-3-indolyl phosphate. In a long-term experiment using sand media, PvPAP1-expressing tobacco plants showed 25-30 % greater root biomass than WT plants when using ATP as the sole P source. This is because PvPAP1-expression enhanced its phosphatase activity by 6.5-9.2 folds in transgenic tobacco, thereby increasing the P contents by 39-41 % in its roots under ATP treatment and 9.4-30 % under phytate treatment. The results highlight PvPAP1 as a novel secreted phosphatase crucial for external Po utilization in P. vittata, suggesting that PvPAP1 has the potential to serve as a valuable gene resource for enhancing Po utilization by crop plants.


Subject(s)
Nicotiana , Phosphorus , Phytic Acid , Plant Roots , Pteris , Phytic Acid/metabolism , Nicotiana/metabolism , Nicotiana/genetics , Nicotiana/growth & development , Phosphorus/metabolism , Pteris/metabolism , Pteris/genetics , Pteris/growth & development , Plant Roots/metabolism , Plant Roots/growth & development , Hydrolysis , Plants, Genetically Modified/growth & development , Plant Proteins/metabolism , Plant Proteins/genetics , Acid Phosphatase/metabolism , Acid Phosphatase/genetics , Arsenic/metabolism , Gene Expression Regulation, Plant
9.
Huan Jing Ke Xue ; 45(6): 3523-3532, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897772

ABSTRACT

In this study, the effects of four types of amendments on effective Cd and Cd content in different parts of prickly ash soil and soil enzyme activity were studied, which provided scientific basis for acidification improvement of purple soil and heavy metal pollution control. A field experiment was conducted. Six treatments were set up:no fertilizer (CK), only chemical fertilizer (F), lime + chemical fertilizer (SF), organic fertilizer + chemical fertilizer (OM), biochar + chemical fertilizer (BF), and vinasse biomass ash + chemical fertilizer (JZ). Soil pH; available Cd (DTPA-Cd); Cd content in branches, leaves, shells, and seeds of Zanthoxylum; as well as the activities of catalase (S-CAT), acid phosphatase (S-ACP), and urease (S-UE) in different treatments were studied, and their relationships were clarified. The results showed following:① The two treatments of vinasse biomass ash + chemical fertilizer and lime + chemical fertilizer significantly increased soil pH (P < 0.05) to 3.39 and 2.25 units higher than that in the control, respectively. Compared with that in the control treatment, the content of available Cd in soil under vinasse biomass ash + chemical fertilizer and lime + chemical fertilizer treatment decreased by 28.91 % and 20.90 %, respectively. ② The contents of Cd in leaves, shells, and seeds of Zanthoxylum were decreased by 31.33 %, 30.24 %, and 34.01 %, respectively. The Cd enrichment ability of different parts of Zanthoxylum was different, with the specific performances being leaves > branches > seeds > shells. Compared with that of the control, the enrichment coefficient of each part of Zanthoxylum treated with vinasse biomass ash + chemical fertilizer decreased significantly(P < 0.05)by 27.54 %-40.0 %. ③ The changes in catalase and urease activities in soil treated with amendments were similar. Compared with those in the control group, the above two enzyme activities were significantly increased by 191.26 % and 199.50 %, respectively, whereas the acid phosphatase activities were decreased by 16.45 %. Correlation analysis showed that soil available Cd content was significantly negatively correlated with soil pH value(P < 0.01), S-CAT and S-UE enzyme activities were significantly positively correlated with soil pH(P < 0.01), and the soil available Cd content was significantly negatively correlated (P < 0.01); the S-ACP enzyme showed the complete opposite trends. The application of lime and vinasse biomass ash to acidic purple soil had the most significant effect on neutralizing soil acidity. It was an effective measure to improve acidic purple soil and prevent heavy metal pollution by reducing the effective Cd content in soil and improving the soil environment while inhibiting the absorption and transfer of Cd in various parts of Zanthoxylum.


Subject(s)
Cadmium , Fertilizers , Soil Pollutants , Soil , Soil Pollutants/metabolism , Cadmium/metabolism , Soil/chemistry , Urease/metabolism , Zanthoxylum/chemistry , Zanthoxylum/metabolism , Acid Phosphatase/metabolism , Catalase/metabolism , Biological Availability , Oxides/chemistry , Calcium Compounds/chemistry , Charcoal/chemistry
10.
PLoS One ; 19(6): e0297215, 2024.
Article in English | MEDLINE | ID: mdl-38875297

ABSTRACT

Dianthus barbatus linn. is widely used in gardens, mainly as flower beds and flower borders. The effects of different gradients of P on the growth and root morphology of Dianthus barbatus were studied to explore its morphological and physiological responses and adaptive strategies. Hence, this study provides a theoretical basis and practical guidance for D. barbatus production. Two soil substrates, namely loess and vegetable soil, and five phosphorus concentration gradients were set; no phosphorus application was used as the control. The morphology and physiology of D. barbatus were also investigated. Low-to-medium- and low-phosphorus treatments promoted the growth of D. barbatus in the above and underground parts of the plants grown on both substrates. Chlorophyll content, flower quantity, and acid phosphatase activity in the rhizosphere soil were significantly increased in the H1 and H2 treatments of loess and in the C4 treatment of vegetable soil. Thus, D. barbatus seems to reduce the damage caused by phosphorus stress by increasing chlorophyll content and root acid phosphatase activity. The latter was significantly higher in vegetable soil than in loess. Vegetable soil was more conducive to D. barbatus growth than loess.


Subject(s)
Chlorophyll , Dianthus , Phosphorus , Plant Roots , Soil , Phosphorus/metabolism , Soil/chemistry , Chlorophyll/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/drug effects , Dianthus/growth & development , Dianthus/metabolism , Dianthus/physiology , Acid Phosphatase/metabolism , Flowers/metabolism , Flowers/growth & development , Rhizosphere
11.
Int J Biol Macromol ; 270(Pt 2): 132222, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729468

ABSTRACT

Fungal polysaccharides have been explored by many for both structural studies and biological activities, but few studies have been done on the extracellular polysaccharides of Dictyophora rubrovalvata, so a new exopolysaccharide was isolated from Dictyophora rubrovalvata and its structure and its immunological activity were investigated. The crude exopolysaccharide (EPS) was purified by DEAE52 cellulose and Sephadex G-200 to obtain a new acidic polysaccharide (DR-EPS). DR-EPS (2.66 × 103 kDa) was consisted mainly of mannose, glucose, galactose and glucuronic acid with a molar ratio of 1: 0.86: 0.20: 0.01. In addition, DR-EPS increased the phagocytic activity of RAW264.7 cells up to 2.67 times of the blank control group. DR-EPS improved intracellular nucleic acid and glycogen metabolism as observed by AO and PAS staining. DR-EPS(40 µg/mL) promoted NO production up to 30.66 µmol, enhanced acid phosphatase (ACP) and superoxide dismutase (SOD) activities, with activity maxima of 660 U/gprot and 96.27 U/mgprot, respectively, and DR-EPS (160 µg / mL) significantly increased the lysozyme content as 2.73 times of the control group. The good immunological activity of extracellular polysaccharides of Dictyophora rubrovalvata provides directions for the use of fermentation broths.


Subject(s)
Fungal Polysaccharides , Mice , Animals , RAW 264.7 Cells , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/isolation & purification , Nitric Oxide/metabolism , Immunologic Factors/pharmacology , Immunologic Factors/chemistry , Immunologic Factors/isolation & purification , Phagocytosis/drug effects , Immunomodulating Agents/pharmacology , Immunomodulating Agents/chemistry , Immunomodulating Agents/isolation & purification , Superoxide Dismutase/metabolism , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Acid Phosphatase/metabolism
12.
Chemosphere ; 359: 142288, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750729

ABSTRACT

Helicoverpa armigera, a ubiquitous polyphagous pest, poses a significant threat to global agriculture, causing substantial economic losses and demonstrating resistance to synthetic pesticides. This study investigates the potential of emamectin benzoate (EMB), an avermectin derivative, as an effective control agent against H. armigera. The larvae of the NBII-MP-NOC-01 strain of H. armigera were reared on an artificial diet. The impact of dietary EMB was examined on four midgut enzymes; alanine aminotransferase (ALT), aspartate aminotransferase (AST), acid phosphatase (ACP), and alkaline phosphatase (ALP). Results showed a dose-dependent and time-dependent reduction in ALT and AST activity, while an initial increase and subsequent decline in ACP and ALP activity at higher EMB concentrations. Computational modelling of enzyme structures and molecular docking studies revealed differential binding of EMB with the midgut enzymes. The strongest interaction was observed between EMB and ALT residues, contrasting with weakest interactions observed with AST. The study also showed that decreased activity of transaminases in H. armigera caused by EMB may be because of stability-activity trade-off, while in phosphatases reverse may be the case. This research provides crucial insights into the biochemical responses and the intricate insecticide-enzyme interactions in H. armigera caused by EMB exposure. This study lays the foundation for further research aimed at developing environmentally friendly approaches for managing H. armigera, addressing the challenges associated with conventional pesticides.


Subject(s)
Acid Phosphatase , Alanine Transaminase , Alkaline Phosphatase , Aspartate Aminotransferases , Insecticides , Ivermectin , Larva , Molecular Docking Simulation , Moths , Animals , Ivermectin/analogs & derivatives , Ivermectin/toxicity , Larva/drug effects , Moths/drug effects , Insecticides/toxicity , Insecticides/chemistry , Insecticides/metabolism , Alkaline Phosphatase/metabolism , Acid Phosphatase/metabolism , Alanine Transaminase/metabolism , Aspartate Aminotransferases/metabolism , Helicoverpa armigera
13.
J Sex Med ; 21(7): 596-604, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38808370

ABSTRACT

BACKGROUND: There are varying reports of immunohistochemically detected prostatic marker protein distribution in glands associated with the female urethra that may be related to tissue integrity at the time of fixation. AIM: In this study we used tissue derived from rapid autopsies of female patients to determine the distribution of glandular structures expressing prostate-specific antigen (PSA) and prostate-specific acid phosphatase (PSAP) along the female urethra and in surrounding tissues, including the anterior vaginal wall (AVW). METHODS: Tissue blocks from 7 donors that contained the entire urethra and adjacent AVW were analyzed. These tissue samples were fixed within 4-12 hours of death and divided into 5-mm transverse slices that were paraffin embedded. Sections cut from each slice were immunolabeled for PSA or PSAP and a neighboring section was stained with hematoxylin and eosin. The sections were reviewed by light microscopy and analyzed using QuPath software. OBSERVATIONS: In tissue from all donors, glandular structures expressing PSA and/or PSAP were located within the wall of the urethra and were present along its whole length. RESULTS: In the proximal half of the urethra from all donors, small glands expressing PSAP, but not PSA, were observed adjacent to the and emptying into the lumen. In the distal half of the urethra from 5 of the 7 donors, tubuloacinar structures lined by a glandular epithelium expressed both PSA and PSAP. In addition, columnar cells at the surface of structures with a multilayered transitional epithelium in the distal half of the urethra from all donors expressed PSAP. No glands expressing PSA or PSAP were found in tissues surrounding the urethra, including the AVW. CLINICAL IMPLICATIONS: Greater understanding of the distribution of urethral glands expressing prostatic proteins in female patients is important because these glands are reported to contribute to the female sexual response and to urethral pathology, including urethral cysts, diverticula, and adenocarcinoma. STRENGTHS AND LIMITATIONS: Strengths of the present study include the use of rapid autopsy to minimize protein degradation and autolysis, and the preparation of large tissue sections to demonstrate precise anatomical relations within all the tissues surrounding the urethral lumen. Limitations include the sample size and that all donors had advanced malignancy and had undergone previous therapy which may have had unknown tissue effects. CONCLUSION: Proximal and distal glands expressing prostate-specific proteins were observed in tissue from all donors, and these glands were located only within the wall of the urethra.


Subject(s)
Acid Phosphatase , Autopsy , Prostate-Specific Antigen , Urethra , Vagina , Humans , Female , Urethra/pathology , Vagina/pathology , Vagina/chemistry , Prostate-Specific Antigen/analysis , Acid Phosphatase/analysis , Acid Phosphatase/metabolism , Middle Aged , Aged , Protein Tyrosine Phosphatases/metabolism , Protein Tyrosine Phosphatases/analysis , Adult , Biomarkers/metabolism , Immunohistochemistry
14.
Int J Biol Macromol ; 266(Pt 2): 131339, 2024 May.
Article in English | MEDLINE | ID: mdl-38574925

ABSTRACT

The AcPase exhibits a specific activity of 31.32 U/mg of protein with a 728-fold purification, and the yield of the enzyme is raised to 3.15 %. The Zn2+-dependent AcPase showed a purification factor of 1.34 specific activity of 14 U/mg of proteins and a total recovery of 5.14. The SDS-PAGE showed a single band corresponding to a molecular weight of 18 kDa of AcPase and 29 kDa of Zn2+-dependent AcPase. The AcPase enzyme has shown a wide range of substrate specificity for p-NPP, phenyl phosphate and FMN, while in the case of ZnAcPase α and ß-Naphthyl phosphate and p-NPP were proved to be superior substrates. The divalent metal ions like Mg2+, Mn2+, and Ca2+ increased the activity, while other substrates decreased the enzyme activity. The Km (0.14 mM) and Vmax (21 µmol/min/mg) values of AcPase were higher than those of Zn2+-AcPase (Km = 0.5 mM; Vmax = 9.7 µmol/min/mg). The Zn2+ ions activate the Zn2+-AcPase while Fe3+, Al3+, Pb2+, and Hg2+ showed inhibition on enzyme activity. Molybdate, vanadate and phosphate were found to be competitive inhibitors of AcPase with Ki values 316 µM, 185 µM, and 1.6 mM, while in Zn2+-AcPase tartrate and phosphate also showed competitive inhibition with Ki values 3 mM and 0.5 mM respectively.


Subject(s)
Acid Phosphatase , Brain , Chickens , Zinc , Animals , Zinc/chemistry , Substrate Specificity , Acid Phosphatase/metabolism , Acid Phosphatase/chemistry , Acid Phosphatase/isolation & purification , Brain/enzymology , Kinetics , Hydrogen-Ion Concentration , Molecular Weight
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124263, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38593539

ABSTRACT

Fluorescence analysis has attracted much attention due to its rapidity and sensitivity. The present work describes a novel fluorescence detection method for acid phosphatase (ACP) on the basis of inner-filter effect (IFE), where MnO2 nanosheets (MnO2 NSs) and vitamin B2 (VB2) are served as absorbers and fluorophores, respectively. In the absence of ACP, the absorption band of MnO2 NSs overlaps well with the excitation band of VB2, resulting in effective IFE and inhibition of VB2 fluorescence. In the presence of ACP, 2-phospho-L-ascorbic acid trisodium salt (AAP) is hydrolyzed to generate ascorbic acid (AA), which efficiently trigger the reduction of MnO2 NSs into Mn2+ ions, causing the weakening of the MnO2 NSs absorption band and the recovery of VB2 fluorescence. Further investigation indicates that the fluorescence recovery degree of VB2 increases with the increase of ACP concentration. Under selected experimental conditions, the proposed method can achieve sensitive detection of ACP in the ranges of 0.5-4.0 mU/mL and 4.0-15 mU/mL along with a limit of detection (LOD) as low as 0.14 mU/mL. Finally, this method was successfully applied for the detection of ACP in human serum samples with satisfactory recoveries in the range of 95.0 %-108 %.


Subject(s)
Acid Phosphatase , Limit of Detection , Manganese Compounds , Nanostructures , Oxides , Spectrometry, Fluorescence , Manganese Compounds/chemistry , Oxides/chemistry , Spectrometry, Fluorescence/methods , Humans , Acid Phosphatase/blood , Acid Phosphatase/metabolism , Acid Phosphatase/analysis , Nanostructures/chemistry , Ascorbic Acid/analysis , Ascorbic Acid/pharmacology
16.
Microb Biotechnol ; 17(4): e14404, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38588312

ABSTRACT

Acid phosphatases are enzymes that play a crucial role in the hydrolysis of various organophosphorous molecules. A putative acid phosphatase called FS6 was identified using genetic profiles and sequences from different environments. FS6 showed high sequence similarity to type C acid phosphatases and retained more than 30% of consensus residues in its protein sequence. A histidine-tagged recombinant FS6 produced in Escherichia coli exhibited extremophile properties, functioning effectively in a broad pH range between 3.5 and 8.5. The enzyme demonstrated optimal activity at temperatures between 25 and 50°C, with a melting temperature of 51.6°C. Kinetic parameters were determined using various substrates, and the reaction catalysed by FS6 with physiological substrates was at least 100-fold more efficient than with p-nitrophenyl phosphate. Furthermore, FS6 was found to be a decamer in solution, unlike the dimeric forms of crystallized proteins in its family.


Subject(s)
Acid Phosphatase , Extremophiles , Acid Phosphatase/metabolism , Extremophiles/genetics , Extremophiles/metabolism , Hydrolysis , Amino Acid Sequence , Substrate Specificity , Hydrogen-Ion Concentration
17.
Ying Yong Sheng Tai Xue Bao ; 35(3): 631-638, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38646750

ABSTRACT

Litter input triggers the secretion of soil extracellular enzymes and facilitates the release of carbon (C), nitrogen (N), and phosphorus (P) from decomposing litter. However, how soil extracellular enzyme activities were controlled by litter input with various substrates is not fully understood. We examined the activities and stoichiometry of five enzymes including ß-1,4-glucosidase, ß-D-cellobiosidase, ß-1,4-N-acetyl-glucosaminidase, leucine aminopeptidase and acidic phosphatase (AP) with and without litter input in 10-year-old Castanopsis carlesii and Cunninghamia lanceolata plantations monthly during April to August, in October, and in December 2021 by using an in situ microcosm experiment. The results showed that: 1) There was no significant effect of short-term litter input on soil enzyme activity, stoichiometry, and vector properties in C. carlesii plantation. In contrast, short-term litter input significantly increased the AP activity by 1.7% in May and decreased the enzymatic C/N ratio by 3.8% in August, and decreased enzymatic C/P and N/P ratios by 11.7% and 10.3%, respectively, in October in C. lanceolata plantation. Meanwhile, litter input increased the soil enzymatic vector angle to 53.8° in October in C. lanceolata plantations, suggesting a significant P limitation for soil microorganisms. 2) Results from partial least squares regression analyses showed that soil dissolved organic matter and microbial biomass C and N were the primary factors in explaining the responses of soil enzymatic activity to short-term litter input in both plantations. Overall, input of low-quality (high C/N) litter stimulates the secretion of soil extracellular enzymes and accelerates litter decomposition. There is a P limitation for soil microorganisms in the study area.


Subject(s)
Carbon , Cunninghamia , Fagaceae , Nitrogen , Phosphorus , Soil Microbiology , Soil , Soil/chemistry , Cunninghamia/growth & development , Cunninghamia/metabolism , Carbon/metabolism , Carbon/analysis , Nitrogen/metabolism , Nitrogen/analysis , Phosphorus/metabolism , Phosphorus/analysis , Fagaceae/growth & development , Fagaceae/metabolism , Leucyl Aminopeptidase/metabolism , Cellulose 1,4-beta-Cellobiosidase/metabolism , Ecosystem , Plant Leaves/metabolism , Plant Leaves/chemistry , Acetylglucosaminidase/metabolism , Acid Phosphatase/metabolism , beta-Glucosidase/metabolism , China
18.
Plant Commun ; 5(7): 100885, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38504521

ABSTRACT

Inorganic phosphorus (Pi) deficiency significantly impacts plant growth, development, and photosynthetic efficiency. This study evaluated 206 rice accessions from a MiniCore population under both Pi-sufficient (Pi+) and Pi-starvation (Pi-) conditions in the field to assess photosynthetic phosphorus use efficiency (PPUE), defined as the ratio of AsatPi- to AsatPi+. A genome-wide association study and differential gene expression analyses identified an acid phosphatase gene (ACP2) that responds strongly to phosphate availability. Overexpression and knockout of ACP2 led to a 67% increase and 32% decrease in PPUE, respectively, compared with wild type. Introduction of an elite allele A, by substituting the v5 SNP G with A, resulted in an 18% increase in PPUE in gene-edited ACP2 rice lines. The phosphate-responsive gene PHR2 was found to transcriptionally activate ACP2 in parallel with PHR2 overexpression, resulting in an 11% increase in PPUE. Biochemical assays indicated that ACP2 primarily catalyzes the hydrolysis of phosphoethanolamine and phospho-L-serine. In addition, serine levels increased significantly in the ACP2v8G-overexpression line, along with a concomitant decrease in the expression of all nine genes involved in the photorespiratory pathway. Application of serine enhanced PPUE and reduced photorespiration rates in ACP2 mutants under Pi-starvation conditions. We deduce that ACP2 plays a crucial role in promoting photosynthesis adaptation to Pi starvation by regulating serine metabolism in rice.


Subject(s)
Genome-Wide Association Study , Oryza , Phosphates , Photosynthesis , Serine , Oryza/genetics , Oryza/metabolism , Photosynthesis/genetics , Phosphates/metabolism , Phosphates/deficiency , Serine/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Acid Phosphatase/genetics , Acid Phosphatase/metabolism
19.
Plant Physiol Biochem ; 208: 108389, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38377886

ABSTRACT

Purple acid phosphatases (PAPs) are involved in activating the rhizosphere's organic phosphorus (P) and promoting P recycling during plant development, especially under the long-term P deficiency conditions in acid soil. However, the function of BnaPAPs in response to P deficiency stress in Brassica napus has rarely been explored. In this study, we found that the acid phosphatase activities (APA) of rapeseed shoot and root increased under P deficienct conditions. Genome-wide identification found that 82 PAP genes were unevenly distributed on 19 chromosomes in B. napus, which could be divided into eight subfamilies. The segmental duplication events were the main driving force for expansion during evolution, and the gene structures and conserved motifs of most members within the same subfamily were highly conservative. Moreover, the expression levels of 37 and 23 different expressed genes were induced by low P in leaf and root, respectively. BnaA09.PAP10a and BnaC09.PAP10a were identified as candidate genes via interaction networks. Significantly, both BnaPAP10a overexpression lines significantly increased root-related APA and total phosphate concentration under P deficiency and ATP supply conditions, thereby improving plant growth and root length. In summary, our results provided a valuable foundation for further study of BnaPAP functions.


Subject(s)
Brassica napus , Brassica napus/metabolism , Multigene Family , Homeostasis , Acid Phosphatase/genetics , Acid Phosphatase/metabolism , Phosphates/metabolism , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/metabolism
20.
Biochem Biophys Res Commun ; 702: 149652, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38341922

ABSTRACT

Prostatic acid phosphatase (PAP) is a glycoprotein that plays a crucial role in the hydrolysis of phosphate ester present in prostatic exudates. It is a well-established indicator for prostate cancer due to its elevated serum levels in disease progression. Despite its abundance in semen, PAP's influence on male fertility has not been extensively studied. In our study, we report a significantly optimized method for purifying human endogenous PAP, achieving remarkably high efficiency and active protein recovery rate. This achievement allowed us to better analyze and understand the PAP protein. We determined the cryo-electron microscopic (Cryo-EM) structure of prostatic acid phosphatase in its physiological state for the first time. Our structural and gel filtration analysis confirmed the formation of a tight homodimer structure of human PAP. This functional homodimer displayed an elongated conformation in the cryo-EM structure compared to the previously reported crystal structure. Additionally, there was a notable 5-degree rotation in the angle between the α domain and α/ß domain of each monomer. Through structural analysis, we revealed three potential glycosylation sites: Asn94, Asn220, and Asn333. These sites contained varying numbers and forms of glycosyl units, suggesting sugar moieties influence PAP function. Furthermore, we found that the active sites of PAP, His44 and Asp290, are located between the two protein domains. Overall, our study not only provide an optimized approach for PAP purification, but also offer crucial insights into its structural characteristics. These findings lay the groundwork for further investigations into the physiological function and potential therapeutic applications of this important protein.


Subject(s)
Prostatic Neoplasms , Semen , Humans , Male , Semen/chemistry , Semen/metabolism , Cryoelectron Microscopy , Prostate/metabolism , Acid Phosphatase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL