Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.345
Filter
1.
Commun Biol ; 7(1): 1028, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39169072

ABSTRACT

Chemotaxis-the movement of cells along chemical gradients-leads to collective behaviors when cells coordinate their movements. Here, using Escherichia coli as a model, we demonstrate a distinct type of bacterial collective response in acidic environments containing organic acids. Bacterial populations immersed in such environments collectively condensed into millimeter-sized focal points. Furthermore, this bacterial condensation fostered the formation of small, tightly packed cell aggregates, resembling non-surface-attached biofilms. These cell aggregates were physically displaced by the free-swimming condensing cells, leading to the segregation of the two cell populations. Bacterial condensation relied on feedback between the tendency of these bacteria to neutralize the pH and their chemotactic repulsion from low pH. Sustained cell condensation occurred when the bacteria occupied only part of the acidic environment, either dynamically or due to physical constraints. Such condensed bacterial populations can mitigate acid stress more efficiently, a principle that may be applicable to other stress conditions.


Subject(s)
Chemotaxis , Escherichia coli , Escherichia coli/physiology , Hydrogen-Ion Concentration , Chemotaxis/physiology , Acids/metabolism , Biofilms/growth & development
2.
Bioresour Technol ; 409: 131227, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39117241

ABSTRACT

Screening and isolating acid-tolerant bacteria capable of efficient hydrogen production can mitigate the inhibitory effects on microbial activity caused by rapid pH drops during fermentation. In this study, we isolated an acid-tolerant and highly efficient hydrogen-producing bacterium, named Clostridium sp. BLY-1, from acidic soil. Compared to the model strain Clostridium pasteurianum DSM 525, BLY-1 demonstrates a faster growth rate and superior hydrogen production capabilities. At an initial pH of 4.0, BLY-1's hydrogen production is 7.5 times greater than that of DSM 525, and under optimal conditions (pH=5.0), BLY-1's hydrogen production rate is 42.13% higher than DSM 525. Genomic analysis revealed that BLY-1 possesses a complete CiaRH two-component system and several stress-resistance components absent in DSM 525, which enhance its growth and hydrogen production in acidic environments. These findings provide a novel avenue for boosting the hydrogen production capabilities of Clostridium strains, offering new resources for advancing the green hydrogen industry.


Subject(s)
Clostridium , Fermentation , Hydrogen , Hydrogen/metabolism , Clostridium/metabolism , Hydrogen-Ion Concentration , Acids/metabolism , Phylogeny
3.
Cell Commun Signal ; 22(1): 393, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118129

ABSTRACT

BACKGROUND: Disruptions in intracellular pH (pHi) homeostasis, causing deviations from the physiological range, can damage renal epithelial cells. However, the existence of an adaptive mechanism to restore pHi to normalcy remains unclear. Early research identified H+ as a critical mediator of ischemic preconditioning (IPC), leading to the concept of acidic preconditioning (AP). This concept proposes that short-term, repetitive acidic stimulation can enhance a cell's capacity to withstand subsequent adverse stress. While AP has demonstrated protective effects in various ischemia-reperfusion (I/R) injury models, its application in kidney injury remains largely unexplored. METHODS: An AP model was established in human kidney (HK2) cells by treating them with an acidic medium for 12 h, followed by a recovery period with a normal medium for 6 h. To induce hypoxia/reoxygenation (H/R) injury, HK2 cells were subjected to hypoxia for 24 h and reoxygenation for 1 h. In vivo, a mouse model of IPC was established by clamping the bilateral renal pedicles for 15 min, followed by reperfusion for 4 days. Conversely, the I/R model involved clamping the bilateral renal pedicles for 35 min and reperfusion for 24 h. Western blotting was employed to evaluate the expression levels of cleaved caspase 3, cleaved caspase 9, NHE1, KIM1, FAK, and NOX4. A pH-sensitive fluorescent probe was used to measure pHi, while a Hemin/CNF microelectrode monitored kidney tissue pH. Immunofluorescence staining was performed to visualize the localization of NHE1, NOX4, and FAK, along with the actin cytoskeleton structure in HK2 cells. Cell adhesion and scratch assays were conducted to assess cell motility. RESULTS: Our findings demonstrated that AP could effectively mitigate H/R injury in HK2 cells. This protective effect and the maintenance of pHi homeostasis by AP involved the upregulation of Na+/H+ exchanger 1 (NHE1) expression and activity. The activity of NHE1 was regulated by dynamic changes in pHi-dependent phosphorylation of Focal Adhesion Kinase (FAK) at Y397. This process was associated with NOX4-mediated reactive oxygen species (ROS) production. Furthermore, AP induced the co-localization of FAK, NOX4, and NHE1 in focal adhesions, promoting cytoskeletal remodeling and enhancing cell adhesion and migration capabilities. CONCLUSIONS: This study provides compelling evidence that AP maintains pHi homeostasis and promotes cytoskeletal remodeling through FAK/NOX4/NHE1 signaling. This signaling pathway ultimately contributes to alleviated H/R injury in HK2 cells.


Subject(s)
Reperfusion Injury , Sodium-Hydrogen Exchanger 1 , Animals , Humans , Male , Mice , Acids/metabolism , Cell Line , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Hydrogen-Ion Concentration , Ischemic Preconditioning , Kidney/metabolism , Kidney/pathology , Mice, Inbred C57BL , NADPH Oxidase 4/metabolism , NADPH Oxidase 4/genetics , Phosphorylation , Reactive Oxygen Species/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Sodium-Hydrogen Exchanger 1/metabolism , Sodium-Hydrogen Exchanger 1/genetics
4.
FEMS Microbiol Lett ; 3712024 Jan 09.
Article in English | MEDLINE | ID: mdl-39118365

ABSTRACT

The ability to sense and respond effectively to acidic stress is important for microorganisms to survive and proliferate in fluctuating environments. As specific metabolic activities can serve to buffer the cytoplasmic pH, microorganisms rewire their metabolism to favour these reactions and thereby mitigate acid stress. The orally acquired pathogen Listeria monocytogenes exploits alternative metabolic activities to overcome the acidic stress encountered in the human stomach or food products. In this minireview, we discuss the metabolic processes in L. monocytogenes that mitigate acid stress, with an emphasis on the proton-depleting reactions, including glutamate decarboxylation, arginine/agmatine deimination, and fermentative acetoin production. We also summarize the recent findings on regulatory mechanisms that control the expression of genes that are responsible for these metabolic activities, including the general stress response regulator SigB, arginine repressor ArgR, and the recently discovered RofA-like transcriptional regulatory GadR. We further discuss the importance of this metabolic reprogramming in the context of food products and within the host. Finally, we highlight some outstanding challenges in the field, including an understanding of acid-sensing mechanisms, the role of intraspecies heterogeneity in acid resistance, and how a fundamental understanding of acid stress response can be exploited for food formulation to improve food safety and reduce food waste.


Subject(s)
Acids , Gene Expression Regulation, Bacterial , Listeria monocytogenes , Metabolic Reprogramming , Stress, Physiological , Humans , Acids/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Food Microbiology , Hydrogen-Ion Concentration , Listeria monocytogenes/genetics , Listeria monocytogenes/metabolism
5.
J Hazard Mater ; 478: 135478, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39137550

ABSTRACT

The microbially-mediated reduction processes have potential for the bioremediation of acid mine drainage (AMD), which represents a worldwide environment problem. However, we know little about the microbial interactions in anaerobic AMD sediments. Here we utilized genome-resolved metagenomics to uncover the nature of cooperative and competitive metabolic interactions in 90 AMD sediments across Southern China. Our analyses recovered well-represented prokaryotic communities through the reconstruction of 2625 population genomes. Functional analyses of these genomes revealed extensive metabolic handoffs which occurred more frequently in nitrogen metabolism than in sulfur metabolism, as well as stable functional redundancy across sediments resulting from populations with low genomic relatedness. Genome-scale metabolic modeling showed that metabolic competition promoted microbial co-occurrence relationships, suggesting that community assembly was dominated by habitat filtering in sediments. Notably, communities colonizing more extreme conditions tended to be highly competitive, which was typically accompanied with increased network complexity but decreased stability of the microbiome. Finally, our results demonstrated that heterotrophic Thermoplasmatota associated with ferric iron and sulfate reduction contributed most to the elevated levels of competition. Our study shed light on the cooperative and competitive metabolisms of microbiome in the hazardous AMD sediments, which may provide preliminary clues for the AMD bioremediation in the future.


Subject(s)
Biodegradation, Environmental , Geologic Sediments , Microbiota , Mining , Geologic Sediments/microbiology , Bacteria/metabolism , Bacteria/genetics , China , Metagenomics , Acids/metabolism , Microbial Interactions
6.
Microb Pathog ; 194: 106793, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39004154

ABSTRACT

Genetically, Listeria monocytogenes is closely related to non-L. monocytogenes (L. innocua, L. welshimeri, L. grayi, L. aquatica, and L. fleischimannii). This bacterium is well known for its resistance to harsh conditions including acidity, low temperatures, and high salt concentrations. This study explored the responses of 65 Listeria strains to stress conditions and characterized the prevalence of stress-related genes. The 65 Listeria strains were isolated from different environments and their viability was assessed in four different tests: independent tests for pH 3, 1 °C, and 5 % salt concentration and multiple resistance tests that combined pH 3, 1 °C, 5 % salt. From the data, the 65 strains were categorized into stress-resistant (56) or stress-sensitive groups (9), with approximately 4 log CFU/mL differences. The PCR assay analyzed the prevalence of two virulence genes prfA and inlA, and eight stress-related genes: three acid (gadB, gadC, and atpD), two low temperature (betL and opuCA) and three salt resistance genes (flaA, cysS, and fbp). Two low temperature (bet and opuCA) and salt resistance (fbp) genes were more prevalent in the stress-resistant strains than in the stress-sensitive Listeria group.


Subject(s)
Cold Temperature , Listeria monocytogenes , Listeria , Stress, Physiological , Hydrogen-Ion Concentration , Listeria/genetics , Listeria/drug effects , Listeria/classification , Listeria/isolation & purification , Listeria monocytogenes/genetics , Listeria monocytogenes/drug effects , Microbial Viability/drug effects , Virulence Factors/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Virulence/genetics , Acids/pharmacology , Acids/metabolism , Genes, Bacterial/genetics , Temperature , Sodium Chloride/metabolism , Sodium Chloride/pharmacology
7.
Environ Res ; 260: 119596, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39009212

ABSTRACT

The treatment efficiency of acidic phenol-containing wastewater is hindered by the absence of efficient acid-resistant phenol-degrading bacteria, and the acid-resistant mechanism of such bacteria remains poorly studied. In this study, the acid-resistant strain Hly3 was used as a research model to investigate its ability to degrade phenol and its underlying mechanism of acid resistance. Strain Hly3 exhibited robust acid resistance, capable of surviving in extremely acidic environments (pH 3) and degrading 1700 mg L-1 phenol in 72 h. Through the physiological response analysis of strain Hly3 to pH, the results indicated: firstly, the strain could reduce the relative permeability of the cell membrane and increase EPS secretion to prevent H+ from entering the cell (shielding effect); secondly, the strain could accumulate more buffering substances to neutralize the intracellular H+ (neutralization effect); thirdly, the strain could expel H+ from the cell by enhancing H+-ATPase activity (pumping effect); finally, the strain produced more active scavengers to reduce the toxicity of acid stress on cells (antioxidant effect). Subsequently, combining liquid chromatography-mass spectrometry (LC-MS) technology with exogenous addition experiments, it was verified that the acid resistance mechanism of microorganisms is achieved through the activation of acid-resistant response systems by glutamine, thereby enhancing functions such as shielding, neutralization, efflux, and antioxidation. This study elucidated the acid resistance mechanism of Acinetobacter pittii, providing a theoretical basis and guidance for the treatment of acidic phenol-containing wastewater.


Subject(s)
Acinetobacter , Phenol , Acinetobacter/metabolism , Phenol/metabolism , Hydrogen-Ion Concentration , Biodegradation, Environmental , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Wastewater/microbiology , Acids/metabolism
8.
Physiol Plant ; 176(3): e14404, 2024.
Article in English | MEDLINE | ID: mdl-38922894

ABSTRACT

Soil acidity is a global issue; soils with pH <4.5 are widespread in Europe. This acidity adversely affects nutrient availability to plants; pH levels <5.0 lead to aluminum (Al3+) toxicity, a significant problem that hinders root growth and nutrient uptake in faba bean (Vicia faba L.) and its symbiotic relationship with Rhizobium. However, little is known about the specific traits and tolerant genotypes among the European faba beans. This study aimed to identify response traits associated with tolerance to root zone acidity and Al3+ toxicity and potentially tolerant genotypes for future breeding efforts. Germplasm survey was conducted using 165 genotypes in a greenhouse aquaponics system. Data on the root and shoot systems were collected. Subsequently, 12 genotypes were selected for further phenotyping in peat medium, where data on physiological and morphological parameters were recorded along with biochemical responses in four selected genotypes. In the germplasm survey, about 30% of genotypes showed tolerance to acidity and approximately 10% exhibited tolerance to Al3+, while 7% showed tolerance to both. The phenotyping experiment indicated diverse morphological and physiological responses among treatments and genotypes. Acid and Al3+ increased proline concentration. Interaction between genotype and environment was observed for ascorbate peroxidase activity, malondialdehyde, and proline concentrations. Genomic markers associated with acidity and acid+Al3+-toxicity tolerances were identified using GWAS analysis. Four faba bean genotypes with varying levels of tolerance to acidity and Al3+ toxicity were identified.


Subject(s)
Aluminum , Genotype , Phenotype , Vicia faba , Vicia faba/genetics , Vicia faba/drug effects , Vicia faba/growth & development , Vicia faba/metabolism , Aluminum/toxicity , Soil/chemistry , Hydrogen-Ion Concentration , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/metabolism , Plant Roots/growth & development , Proline/metabolism , Adaptation, Physiological/genetics , Adaptation, Physiological/drug effects , Acids/metabolism
9.
Reprod Biol Endocrinol ; 22(1): 63, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835018

ABSTRACT

BACKGROUND: The epidemiologic evidence on the association between acid load potential of diet and the risk of diminished ovarian reserve (DOR) is scarce. We aim to explore the possible relationship between dietary acid load (DAL), markers of ovarian reserve and DOR risk in a case-control study. METHODS: 370 women (120 women with DOR and 250 women with normal ovarian reserve as controls), matched by age and BMI, were recruited. Dietary intake was obtained using a validated 80-item semi-quantitative food frequency questionnaire (FFQ). The DAL scores including the potential renal acid load (PRAL) and net endogenous acid production (NEAP) were calculated based on nutrients intake. NEAP and PRAL scores were categorized by quartiles based on the distribution of controls. Antral follicle count (AFC), serum antimullerian hormone (AMH) and anthropometric indices were measured. Logistic regression models were used to estimate multivariable odds ratio (OR) of DOR across quartiles of NEAP and PRAL scores. RESULTS: Following increase in PRAL and NEAP scores, serum AMH significantly decreased in women with DOR. Also, AFC count had a significant decrease following increase in PRAL score (P = 0.045). After adjustment for multiple confounding variables, participants in the top quartile of PRAL had increased OR for DOR (OR: 1.26; 95%CI: 1.08-1.42, P = 0.254). CONCLUSION: Diets with high acid-forming potential may negatively affect ovarian reserve in women with DOR. Also, high DAL may increase the risk of DOR. The association between DAL and markers of ovarian reserve should be explored in prospective studies and clinical trials.


Subject(s)
Diet , Ovarian Reserve , Humans , Female , Case-Control Studies , Ovarian Reserve/physiology , Adult , Diet/adverse effects , Acids/metabolism , Acids/adverse effects , Anti-Mullerian Hormone/blood , Risk Factors , Ovarian Follicle , Young Adult
10.
Plant Physiol ; 195(4): 2772-2786, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38728429

ABSTRACT

In fleshy fruit, sugars and acids are central components of fruit flavor and quality. To date, the mechanisms underlying transcriptional regulation of sugar and acid during fruit development remain largely unknown. Here, we combined ATAC-seq with RNA-seq to investigate the genome-wide chromatin accessibility and to identify putative transcription factors related to sugar and acid accumulation during apple (Malus domestica) fruit development. By integrating the differentially accessible regions and differentially expressed genes, we generated a global data set of promoter-accessibility and expression-increased genes. Using this strategy, we constructed a transcriptional regulatory network enabling screening for key transcription factors and target genes involved in sugar and acid accumulation. Among these transcription factors, 5 fruit-specific DNA binding with one finger genes were selected to confirm their regulatory effects, and our results showed that they could affect sugar or acid concentration by regulating the expression of sugar or acid metabolism-related genes in apple fruits. Our transcriptional regulatory network provides a suitable platform to identify candidate genes that control sugar and acid accumulation. Meanwhile, our data set will aid in analyzing other characteristics of apple fruit that have not been illuminated previously. Overall, these findings support a better understanding of the regulatory dynamics during apple fruit development and lay a foundation for quality improvement of apple.


Subject(s)
Fruit , Gene Expression Regulation, Plant , Malus , Sugars , Malus/genetics , Malus/metabolism , Malus/growth & development , Fruit/genetics , Fruit/growth & development , Fruit/metabolism , Sugars/metabolism , Gene Regulatory Networks , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Acids/metabolism , Carbohydrate Metabolism/genetics
11.
J Hazard Mater ; 473: 134610, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38776812

ABSTRACT

Mg-K homeostasis is essential for plant response to abiotic stress, but its regulation remains largely unknown. MsWRKY44 cloned from alfalfa was highly expressed in leaves and petioles. Overexpression of it inhibited alfalfa growth, and promoted leaf senescence and alfalfa sensitivities to acid and Al stresses. The leaf tips, margins and interveins of old leaves occurred yellow spots in MsWRKY44-OE plants under pH4.5 and pH4.5 +Al conditions. Meanwhile, Mg-K homeostasis was substantially changed with reduction of K accumulation and increases of Mg as well as Al accumulation in shoots of MsWRKY44-OE plants. Further, MsWRKY44 was found to directly bind to the promoters of MsMGT7 and MsCIPK23, and positively activated their expression. Transiently overexpressed MsMGT7 and MsCIPK23 in tobacco leaves increased the Mg and Al accumulations but decreased K accumulation. These results revealed a novel regulatory module MsWRKY44-MsMGT7/MsCIPK23, which affects the transport and accumulation of Mg and K in shoots, and promotes alfalfa sensitivities to acid and Al stresses.


Subject(s)
Aluminum , Homeostasis , Magnesium , Medicago sativa , Plant Proteins , Plant Shoots , Potassium , Stress, Physiological , Medicago sativa/genetics , Medicago sativa/metabolism , Medicago sativa/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Shoots/metabolism , Plant Shoots/drug effects , Potassium/metabolism , Aluminum/toxicity , Magnesium/metabolism , Plants, Genetically Modified , Gene Expression Regulation, Plant/drug effects , Plant Leaves/metabolism , Plant Leaves/drug effects , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/drug effects , Transcription Factors/metabolism , Transcription Factors/genetics , Acids/metabolism
12.
Planta ; 259(6): 145, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709313

ABSTRACT

MAIN CONCLUSION: Soil acidity in Ethiopian highlands impacts barley production, affecting root system architecture. Study on 300 accessions showed significant trait variability, with potential for breeding enhancement. Soil acidity poses a significant challenge to crop production in the highland regions of Ethiopia, particularly impacting barley, a crucial staple crop. This acidity serves as a key stressor affecting the root system architecture (RSA) of this crop. Hence, the objective of this study was to assess the RSA traits variability under acidic soil conditions using 300 barley accessions in a greenhouse experiment. The analysis of variance indicated substantial variations among the accessions across all traits studied. The phenotypic coefficient of variation ranged from 24.4% for shoot dry weight to 11.1% for root length, while the genotypic coefficient variation varied between 18.83 and 9.2% for shoot dry weight and root length, respectively. The broad-sense heritability ranged from 36.7% for leaf area to 69.9% for root length, highlighting considerable heritability among multiple traits. The genetic advances as a percent of the mean ranged from 13.63 to 29.9%, suggesting potential for enhancement of these traits through breeding efforts. Principal component analysis and cluster analysis grouped the genotypes into two major clusters, each containing varying numbers of genotypes with contrasting traits. This diverse group presents an opportunity to access a wide range of potential parent candidates to enhance genetic variablity in breeding programs. The Pearson correlation analysis revealed significant negative associations between root angle (RA) and other RSA traits. This helps indirect selection of accessions for further improvement in soil acidity. In conclusion, this study offers valuable insights into the RSA characteristics of barley in acidic soil conditions, aiding in the development of breeding strategies to enhance crop productivity in acidic soil environments.


Subject(s)
Genotype , Hordeum , Plant Roots , Seedlings , Soil , Hordeum/genetics , Hordeum/physiology , Hordeum/growth & development , Hordeum/anatomy & histology , Soil/chemistry , Plant Roots/anatomy & histology , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/physiology , Seedlings/genetics , Seedlings/growth & development , Seedlings/physiology , Seedlings/anatomy & histology , Phenotype , Hydrogen-Ion Concentration , Plant Breeding , Ethiopia , Genetic Variation , Principal Component Analysis , Acids/metabolism
13.
J Agric Food Chem ; 72(20): 11652-11662, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38738910

ABSTRACT

Pectin lyases (PNLs) can enhance juice clarity and flavor by degrading pectin in highly esterified fruits, but their inadequate acid resistance leads to rapid activity loss in juice. This study aimed to improve the acid resistance of Aspergillus niger PNL pelA through surface charge design. A modification platform was established by fusing pelA with a protein tag and expressing the fusion enzyme in Escherichia coli. Four single-point mutants were identified to increase the surface charge using computational tools. Moreover, the combined mutant M6 (S514D/S538E) exhibited 99.8% residual activity at pH 3.0. The M6 gene was then integrated into the A. niger genome using a multigene integration system to obtain the recombinant PNL AM6. Notably, AM6 improved the light transmittance of orange juice to 45.3%, which was 8.39 times higher than that of pelA. In conclusion, AM6 demonstrated the best-reported acid resistance, making it a promising candidate for industrial juice clarification.


Subject(s)
Aspergillus niger , Fruit and Vegetable Juices , Fungal Proteins , Polysaccharide-Lyases , Aspergillus niger/enzymology , Aspergillus niger/genetics , Fruit and Vegetable Juices/analysis , Polysaccharide-Lyases/genetics , Polysaccharide-Lyases/metabolism , Polysaccharide-Lyases/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Hydrogen-Ion Concentration , Food Handling , Acids/chemistry , Acids/metabolism , Acids/pharmacology , Citrus sinensis/chemistry , Pectins/chemistry , Pectins/metabolism , Enzyme Stability
14.
Gut Microbes ; 16(1): 2356642, 2024.
Article in English | MEDLINE | ID: mdl-38769708

ABSTRACT

Adherent-invasive Escherichia coli (AIEC) strain LF82, isolated from patients with Crohn's disease, invades gut epithelial cells, and replicates in macrophages contributing to chronic inflammation. In this study, we found that RstAB contributing to the colonization of LF82 in a mouse model of chronic colitis by promoting bacterial replication in macrophages. By comparing the transcriptomes of rstAB mutant- and wild-type when infected macrophages, 83 significant differentially expressed genes in LF82 were identified. And we identified two possible RstA target genes (csgD and asr) among the differentially expressed genes. The electrophoretic mobility shift assay and quantitative real-time PCR confirmed that RstA binds to the promoters of csgD and asr and activates their expression. csgD deletion attenuated LF82 intracellular biofilm formation, and asr deletion reduced acid tolerance compared with the wild-type. Acidic pH was shown by quantitative real-time PCR to be the signal sensed by RstAB to activate the expression of csgD and asr. We uncovered a signal transduction pathway whereby LF82, in response to the acidic environment within macrophages, activates transcription of the csgD to promote biofilm formation, and activates transcription of the asr to promote acid tolerance, promoting its replication within macrophages and colonization of the intestine. This finding deepens our understanding of the LF82 replication regulation mechanism in macrophages and offers new perspectives for further studies on AIEC virulence mechanisms.


Subject(s)
Bacterial Adhesion , Biofilms , Escherichia coli Infections , Escherichia coli Proteins , Escherichia coli , Gene Expression Regulation, Bacterial , Macrophages , Macrophages/microbiology , Animals , Mice , Escherichia coli/genetics , Escherichia coli/pathogenicity , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Biofilms/growth & development , Escherichia coli Infections/microbiology , Humans , Hydrogen-Ion Concentration , Virulence , Colitis/microbiology , Crohn Disease/microbiology , Disease Models, Animal , Signal Transduction , Acids/metabolism
15.
Microbiol Spectr ; 12(6): e0054424, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38651876

ABSTRACT

Many neutralophilic bacterial species try to evade acid stress with an escape strategy, which is reflected in the increased expression of genes coding for flagellar components. Extremely acid-tolerant bacteria, such as Escherichia coli, survive the strong acid stress, e.g., in the stomach of vertebrates. Recently, we were able to show that the induction of motility genes in E. coli is strictly dependent on the degree of acid stress, i.e., they are induced under mild acid stress but not under severe acid stress. However, it was not known to what extent fine-tuned expression of motility genes is related to fitness and the ability to survive periods of acid shock. In this study, we demonstrate that the expression of FlhDC, the master regulator of flagellation, is inversely correlated with the acid shock survival of E. coli. We encountered this phenomenon when analyzing mutants from the Keio collection, in which the expression of flhDC was altered by an insertion sequence element. These results suggest a fitness trade-off between acid tolerance and motility.IMPORTANCEEscherichia coli is extremely acid-resistant, which is crucial for survival in the gastrointestinal tract of vertebrates. Recently, we systematically studied the response of E. coli to mild and severe acidic conditions using Ribo-Seq and RNA-Seq. We found that motility genes are induced at pH 5.8 but not at pH 4.4, indicating stress-dependent synthesis of flagellar components. In this study, we demonstrate that motility-activating mutations upstream of flhDC, encoding the master regulator of flagella genes, reduce the ability of E. coli to survive periods of acid shock. Furthermore, we show an inverse correlation between motility and acid survival using a chromosomal isopropyl ß-D-thio-galactopyranoside (IPTG)-inducible flhDC promoter and by sampling differentially motile subpopulations from swim agar plates. These results reveal a previously undiscovered trade-off between motility and acid tolerance and suggest a differentiation of E. coli into motile and acid-tolerant subpopulations, driven by the integration of insertion sequence elements.


Subject(s)
Acids , Escherichia coli Proteins , Escherichia coli , Flagella , Gene Expression Regulation, Bacterial , Mutation , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Acids/metabolism , Acids/pharmacology , Flagella/genetics , Flagella/metabolism , Stress, Physiological/genetics , Trans-Activators/genetics , Trans-Activators/metabolism , Hydrogen-Ion Concentration
16.
EMBO J ; 43(11): 2264-2290, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38671253

ABSTRACT

Transient receptor potential (TRP) ion channels are involved in the surveillance or regulation of the acid-base balance. Here, we demonstrate that weak carbonic acids, including acetic acid, lactic acid, and CO2 activate and sensitize TRPV2 through a mechanism requiring permeation through the cell membrane. TRPV2 channels in cell-free inside-out patches maintain weak acid-sensitivity, but protons applied on either side of the membrane do not induce channel activation or sensitization. The involvement of proton modulation sites for weak acid-sensitivity was supported by the identification of titratable extracellular (Glu495, Glu561) and intracellular (His521) residues on a cryo-EM structure of rat TRPV2 (rTRPV2) treated with acetic acid. Molecular dynamics simulations as well as patch clamp experiments on mutant rTRPV2 constructs confirmed that these residues are critical for weak acid-sensitivity. We also demonstrate that the pore residue Glu609 dictates an inhibition of weak acid-induced currents by extracellular calcium. Finally, TRPV2-expression in HEK293 cells is associated with an increased weak acid-induced cytotoxicity. Together, our data provide new insights into weak acids as endogenous modulators of TRPV2.


Subject(s)
TRPV Cation Channels , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , TRPV Cation Channels/chemistry , Humans , HEK293 Cells , Animals , Rats , Molecular Dynamics Simulation , Cryoelectron Microscopy , Calcium/metabolism , Patch-Clamp Techniques , Acids/metabolism
17.
Microb Cell Fact ; 23(1): 101, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38566056

ABSTRACT

BACKGROUND: Short-chain fatty acids (SCFAs) are cost-effective carbon sources for an affordable production of lipids. Hexanoic acid, the acid with the longest carbon chain in the SCFAs pool, is produced in anaerobic fermentation of organic residues and its use is very challenging, even inhibiting oleaginous yeasts growth. RESULTS: In this investigation, an adaptive laboratory evolution (ALE) was performed to improve Yarrowia lipolytica ACA DC 50109 tolerance to high hexanoic acid concentrations. Following ALE, the transcriptomic analysis revealed several genetic adaptations that improved the assimilation of this carbon source in the evolved strain compared to the wild type (WT). Indeed, the evolved strain presented a high expression of the up-regulated gene YALI0 E16016g, which codes for FAT1 and is related to lipid droplets formation and responsible for mobilizing long-chain acids within the cell. Strikingly, acetic acid and other carbohydrate transporters were over-expressed in the WT strain. CONCLUSIONS: A more tolerant yeast strain able to attain higher lipid content under the presence of high concentrations of hexanoic acid has been obtained. Results provided novel information regarding the assimilation of hexanoic acid in yeasts.


Subject(s)
Yarrowia , Fermentation , Yarrowia/metabolism , Caproates/metabolism , Fatty Acids, Volatile/metabolism , Fatty Acids/metabolism , Acids/metabolism , Gene Expression Profiling , Carbon/metabolism
18.
Sci Rep ; 14(1): 7663, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38561404

ABSTRACT

Heavy metal contamination is an urgent ecological governance problem in mining areas. In order to seek for a green and environmentally friendly reagent with better plant restoration effect to solve the problem of low efficiency in plant restoration in heavy metal pollution soil. In this study, we evaluated the effects of three biodegradable chelating agents, namely citric acid (CA), fulvic acid (FA) and polyaspartic acid (PASP), on the physicochemical properties of copper tailings, growth of ryegrass (Lolium perenne L.) and heavy metal accumulation therein. The results showed that the chelating agent application improved the physicochemical properties of copper tailings, increased the biomass of ryegrass and enriched more Cu and Cd in copper tailings. In the control group, the main existing forms of Cu and Cd were oxidizable state, followed by residual, weak acid soluble and reducible states. After the CA, FA or PASP application, Cu and Cd were converted from the residual and oxidizable states to the reducible and weak acid soluble states, whose bioavailability in copper tailings were thus enhanced. Besides, the chelating agent incorporation improved the Cu and Cd extraction efficiencies of ryegrass from copper tailings, as manifested by increased root and stem contents of Cu and Cd by 30.29-103.42%, 11.43-74.29%, 2.98-110.98% and 11.11-111.11%, respectively, in comparison with the control group. In the presence of multiple heavy metals, CA, FA or PASP showed selectivity regarding the ryegrass extraction of heavy metals from copper tailings. PCA analysis revealed that the CA-4 and PASP-7 treatment had great remediation potentials against Cu and Cd in copper tailings, respectively, as manifested by increases in Cu and Cd contents in ryegrass by 90.98% and 74.29% compared to the CK group.


Subject(s)
Lolium , Metals, Heavy , Soil Pollutants , Copper/metabolism , Cadmium/metabolism , Chelating Agents/pharmacology , Biodegradation, Environmental , Soil Pollutants/metabolism , Metals, Heavy/analysis , Acids/metabolism , Soil/chemistry
19.
J Agric Food Chem ; 72(18): 10487-10496, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38683727

ABSTRACT

The current study aimed to improve the acid resistance and thermostability of Bacillus velezensis α-amylase through site-directed mutagenesis, with a specific focus on its applicability to the feed industry. Four mutation sites, P546E, H572D, A614E, and K622E, were designed in the C domain of α-amylase, and three mutants, Mut1 (E), Mut2 (ED), and Mut3 (EDEE), were produced. The results showed that the specific activity of Mut3 was 50 U/mg higher than the original α-amylase (Ori) after incubation at 40 °C for 4 h. Compared to Ori, the acid resistance of Mut3 showed a twofold increase in specific activity at pH 2.0. Moreover, the results of preliminary feed hydrolysis were compared between Ori and Mut3 by designing three factors, three levels of orthogonal experiment for enzymatic hydrolysis time, feed quantity, and amount of amylase. It was observed that the enzymatic hydrolysis time and feed quantity showed an extremely significant difference (p < 0.01) in Mut3 compared to Ori. However, the amount of enzyme showed significant (p < 0.05) improvement in the enzymatic hydrolysis in Mut3 as compared to Ori. The study identified Mut3 as a promising candidate for the application of α-amylase in the feed industry.


Subject(s)
Bacillus , Bacterial Proteins , Mutagenesis, Site-Directed , alpha-Amylases , Acids/metabolism , Acids/chemistry , Acids/pharmacology , alpha-Amylases/genetics , alpha-Amylases/chemistry , alpha-Amylases/metabolism , Animal Feed , Bacillus/enzymology , Bacillus/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Enzyme Stability , Hot Temperature , Hydrogen-Ion Concentration , Hydrolysis , Kinetics
20.
J Bacteriol ; 206(4): e0006924, 2024 04 18.
Article in English | MEDLINE | ID: mdl-38488356

ABSTRACT

Bacteria are capable of withstanding large changes in osmolality and cytoplasmic pH, unlike eukaryotes that tightly regulate their pH and cellular composition. Previous studies on the bacterial acid stress response described a rapid, brief acidification, followed by immediate recovery. More recent experiments with better pH probes have imaged single living cells, and we now appreciate that following acid stress, bacteria maintain an acidic cytoplasm for as long as the stress remains. This acidification enables pathogens to sense a host environment and turn on their virulence programs, for example, enabling survival and replication within acidic vacuoles. Single-cell analysis identified an intracellular pH threshold of ~6.5. Acid stress reduces the internal pH below this threshold, triggering the assembly of a type III secretion system in Salmonella and the secretion of virulence factors in the host. These pathways are significant because preventing intracellular acidification of Salmonella renders it avirulent, suggesting that acid stress pathways represent a potential therapeutic target. Although we refer to the acid stress response as singular, it is actually a complex response that involves numerous two-component signaling systems, several amino acid decarboxylation systems, as well as cellular buffering systems and electron transport chain components, among others. In a recent paper in the Journal of Bacteriology, M. G. Gorelik, H. Yakhnin, A. Pannuri, A. C. Walker, C. Pourciau, D. Czyz, T. Romeo, and P. Babitzke (J Bacteriol 206:e00354-23, 2024, https://doi.org/10.1128/jb.00354-23) describe a new connection linking the carbon storage regulator CsrA to the acid stress response, highlighting new additional layers of complexity.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/metabolism , Onions/metabolism , Bacterial Proteins/metabolism , Cytoplasm/metabolism , Vacuoles/metabolism , Salmonella/metabolism , Acids/metabolism , Repressor Proteins/metabolism , RNA-Binding Proteins/metabolism , Escherichia coli Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL