Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.854
Filter
1.
Front Cell Infect Microbiol ; 14: 1410997, 2024.
Article in English | MEDLINE | ID: mdl-39027135

ABSTRACT

Background: Acinetobacter baumannii (AB) has emerged as one of the most challenging pathogens worldwide, causing invasive infections in the critically ill patients due to their ability to rapidly acquire resistance to antibiotics. This study aimed to analyze antibiotic resistance genes harbored in AB and non-baumannii Acinetobacter calcoaceticus-baumannii (NB-ACB) complex causing invasive diseases in Korean children. Methods: ACB complexes isolated from sterile body fluid of children in three referral hospitals were prospectively collected. Colistin susceptibility was additionally tested via broth microdilution. Whole genome sequencing was performed and antibiotic resistance genes were analyzed. Results: During January 2015 to December 2020, a total of 67 ACB complexes were isolated from sterile body fluid of children in three referral hospitals. The median age of the patients was 0.6 (interquartile range, 0.1-7.2) years old. Among all the isolates, 73.1% (n=49) were confirmed as AB and others as NB-ACB complex by whole genome sequencing. Among the AB isolates, only 22.4% susceptible to carbapenem. In particular, all clonal complex (CC) 92 AB (n=33) showed multi-drug resistance, whereas 31.3% in non-CC92 AB (n=16) (P<0.001). NB-ACB showed 100% susceptibility to all classes of antibiotics except 3rd generation cephalosporin (72.2%). The main mechanism of carbapenem resistance in AB was the bla oxa23 gene with ISAba1 insertion sequence upstream. Presence of pmr gene and/or mutation of lpxA/C gene were not correlated with the phenotype of colistin resistance of ACB. All AB and NB-ACB isolates carried the abe and ade multidrug efflux pumps. Conclusions: In conclusion, monitoring and research for resistome in ACB complex is needed to identify and manage drug-resistant AB, particularly CC92 AB carrying the bla oxa23 gene.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Microbial Sensitivity Tests , Whole Genome Sequencing , Humans , Child , Child, Preschool , Infant , Republic of Korea/epidemiology , Acinetobacter Infections/microbiology , Acinetobacter Infections/epidemiology , Acinetobacter baumannii/genetics , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/isolation & purification , Anti-Bacterial Agents/pharmacology , Female , Male , COVID-19/epidemiology , Colistin/pharmacology , Acinetobacter calcoaceticus/genetics , Acinetobacter calcoaceticus/drug effects , Acinetobacter calcoaceticus/isolation & purification , Drug Resistance, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics , SARS-CoV-2/genetics , SARS-CoV-2/drug effects , Prospective Studies , beta-Lactamases/genetics , beta-Lactamases/metabolism
2.
Euro Surveill ; 29(28)2024 Jul.
Article in English | MEDLINE | ID: mdl-38994602

ABSTRACT

Carbapenem-resistant Acinetobacter baumannii (CRAb) is an important pathogen causing serious nosocomial infections. We describe an outbreak of CRAb in an intensive care unit in the Netherlands in 2021. During an outbreak of non-resistant A. baumannii, while infection control measures were in place, CRAb isolates carrying highly similar bla NDM-1 - and tet(x3)-encoding plasmids were isolated from three patients over a period of several months. The chromosomal and plasmid sequences of the CRAb and non-carbapenemase-carrying A. baumannii isolates cultured from patient materials were analysed using hybrid assemblies of short-read and long-read sequences. The CRAb isolates revealed that the CRAb outbreak consisted of two different strains, carrying similar plasmids. The plasmids contained multiple antibiotic resistance genes including the tetracycline resistance gene tet(x3), and the bla NDM-1 and bla OXA-97 carbapenemase genes. We determined minimal inhibitory concentrations (MICs) for 13 antibiotics, including the newly registered tetracycline antibiotics eravacycline and omadacycline. The CRAb isolates showed high MICs for tetracycline antibiotics including eravacycline and omadacycline, except for minocycline which had a low MIC. In this study we show the value of sequencing multidrug-resistant A. baumannii for outbreak tracking and guiding outbreak mitigation measures.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Cross Infection , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Tetracyclines , beta-Lactamases , Acinetobacter baumannii/genetics , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/isolation & purification , Acinetobacter baumannii/enzymology , Humans , Acinetobacter Infections/microbiology , Acinetobacter Infections/epidemiology , Tetracyclines/pharmacology , Anti-Bacterial Agents/pharmacology , Cross Infection/microbiology , Cross Infection/epidemiology , beta-Lactamases/genetics , Netherlands/epidemiology , Drug Resistance, Multiple, Bacterial/genetics , Plasmids/genetics , Disease Outbreaks , Bacterial Proteins/genetics , Carbapenems/pharmacology , Intensive Care Units
3.
Int J Mol Sci ; 25(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999924

ABSTRACT

Acinetobacter baumannii represents a significant concern in nosocomial settings, particularly in critically ill patients who are forced to remain in hospital for extended periods. The challenge of managing and preventing this organism is further compounded by its increasing ability to develop resistance due to its extraordinary genomic plasticity, particularly in response to adverse environmental conditions. Its recognition as a significant public health risk has provided a significant impetus for the identification of new therapeutic approaches and infection control strategies. Indeed, currently used antimicrobial agents are gradually losing their efficacy, neutralized by newer and newer mechanisms of bacterial resistance, especially to carbapenem antibiotics. A deep understanding of the underlying molecular mechanisms is urgently needed to shed light on the properties that allow A. baumannii enormous resilience against standard therapies. Among the most promising alternatives under investigation are the combination sulbactam/durlobactam, cefepime/zidebactam, imipenem/funobactam, xeruborbactam, and the newest molecules such as novel polymyxins or zosurabalpin. Furthermore, the potential of phage therapy, as well as deep learning and artificial intelligence, offer a complementary approach that could be particularly useful in cases where traditional strategies fail. The fight against A. baumannii is not confined to the microcosm of microbiological research or hospital wards; instead, it is a broader public health dilemma that demands a coordinated, global response.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/drug effects , Drug Resistance, Bacterial/drug effects
4.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000144

ABSTRACT

A growing body of experimental data indicates that ceragenins (CSAs), which mimic the physicochemical properties of the host's cationic antimicrobial peptide, hold promise for the development of a new group of broad-spectrum antimicrobials. Here, using a set of in vivo experiments, we assessed the potential of ceragenins in the eradication of an important etiological agent of nosocomial infections, Acinetobacter baumannii. Assessment of the bactericidal effect of ceragenins CSA-13, CSA-44, and CSA-131 on clinical isolates of A. baumannii (n = 65) and their effectiveness against bacterial cells embedded in the biofilm matrix after biofilm growth on abiotic surfaces showed a strong bactericidal effect of the tested molecules regardless of bacterial growth pattern. AFM assessment of bacterial cell topography, bacterial cell stiffness, and adhesion showed significant membrane breakdown and rheological changes, indicating the ability of ceragenins to target surface structures of A. baumannii cells. In the cell culture of A549 lung epithelial cells, ceragenin CSA-13 had the ability to inhibit bacterial adhesion to host cells, suggesting that it interferes with the mechanism of bacterial cell invasion. These findings highlight the potential of ceragenins as therapeutic agents in the development of antimicrobial strategies against bacterial infections caused by A. baumannii.


Subject(s)
Acinetobacter baumannii , Bacterial Adhesion , Biofilms , Steroids , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/growth & development , Humans , Biofilms/drug effects , Biofilms/growth & development , Steroids/pharmacology , Steroids/chemistry , Bacterial Adhesion/drug effects , A549 Cells , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology
5.
Article in English | MEDLINE | ID: mdl-38960471

ABSTRACT

Acinetobacter baumannii is a gram-negative bacterium well known for its multidrug resistance and connection to nosocomial infections under ESKAPE pathogens. This opportunistic pathogen is ubiquitously associated with nosocomial infections, posing significant threats within healthcare environments. Its critical clinical symptoms, namely, meningitis, urinary tract infections, bloodstream infections, ventilator-associated pneumonia, and pneumonia, catalyze the imperative demand for innovative therapeutic interventions. The proposed research focuses on delineating the role of Zinc, a crucial metallo-binding protein and micronutrient integral to bacterial metabolism and virulence, to enhance understanding of the pathogenicity of A. baumannii. RNA sequencing and subsequent DESeq2 analytical methods were used to identify differential gene expressions influenced by zinc exposure. Exploiting the STRING database for functional enrichment analysis has demonstrated the complex molecular mechanisms underlying the enhancement of pathogenicity prompted by Zinc. Moreover, hub genes like gltB, ribD, AIL77834.1, sdhB, nuoI, acsA_1, acoC, accA, accD were predicted using the cytohubba tool in Cytoscape. This investigation underscores the pivotal role of Zinc in the virulence of A. baumannii elucidates the underlying molecular pathways responsible for its pathogenicity. The research further accentuates the need for innovative therapeutic strategies to combat A. baumannii infections, particularly those induced by multidrug-resistant strains.


Subject(s)
Acinetobacter baumannii , Drug Resistance, Multiple, Bacterial , Zinc , Acinetobacter baumannii/genetics , Acinetobacter baumannii/pathogenicity , Acinetobacter baumannii/metabolism , Zinc/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Virulence/genetics , Humans , Gene Expression Profiling , Transcriptome , Acinetobacter Infections/microbiology , Acinetobacter Infections/metabolism , Acinetobacter Infections/drug therapy , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
6.
Clin Transl Sci ; 17(7): e13876, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38963161

ABSTRACT

Plerixafor is a CXCR4 antagonist approved in 2008 by the FDA for hematopoietic stem cell collection. Subsequently, plerixafor has shown promise as a potential pathogen-agnostic immunomodulator in a variety of preclinical animal models. Additionally, investigator-led studies demonstrated plerixafor prevents viral and bacterial infections in patients with WHIM syndrome, a rare immunodeficiency with aberrant CXCR4 signaling. Here, we investigated whether plerixafor could be repurposed to treat sepsis or severe wound infections, either alone or as an adjunct therapy. In a Pseudomonas aeruginosa lipopolysaccharide (LPS)-induced zebrafish sepsis model, plerixafor reduced sepsis mortality and morbidity assessed by tail edema. There was a U-shaped response curve with the greatest effect seen at 0.1 µM concentration. We used Acinetobacter baumannii infection in a neutropenic murine thigh infection model. Plerixafor did not show reduced bacterial growth at 24 h in the mouse thigh model, nor did it amplify the effects of a rifampin antibiotic therapy, in varying regimens. While plerixafor did not mitigate or treat bacterial wound infections in mice, it did reduce sepsis mortality in zebra fish. The observed mortality reduction in our LPS model of zebrafish was consistent with prior research demonstrating a mortality benefit in a murine model of sepsis. However, based on our results, plerixafor is unlikely to be successful as an adjunct therapy for wound infections. Further research is needed to better define the scope of plerixafor as a pathogen-agnostic therapy. Future directions may include the use of longer acting CXCR4 antagonists, biased CXCR4 signaling, and optimization of animal models.


Subject(s)
Benzylamines , Cyclams , Disease Models, Animal , Heterocyclic Compounds , Receptors, CXCR4 , Sepsis , Zebrafish , Animals , Cyclams/pharmacology , Cyclams/administration & dosage , Benzylamines/pharmacology , Sepsis/drug therapy , Sepsis/microbiology , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/administration & dosage , Mice , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/metabolism , Thigh/microbiology , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/isolation & purification , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Female , Lipopolysaccharides , Wound Infection/microbiology , Wound Infection/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
7.
Ann Clin Microbiol Antimicrob ; 23(1): 63, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026334

ABSTRACT

BACKGROUND: The wide spread of carbapenem-resistance clones of Acinetobacter baumannii has made it a global public problem. Some studies have shown that the prevalence of Acinetobacter baumannii clones can change over time. However, few studies with respect to the change of epidemiological clones in Acinetobacter baumannii during Corona Virus Disease 2019 (COVID-19) were reported. This study aims to investigate the molecular epidemiology and resistance mechanisms of Acinetobacter baumannii during COVID-19. RESULTS: A total of 95 non-replicated Acinetobacter baumannii isolates were enrolled in this study, of which 60.0% (n = 57) were identified as carbapenem-resistant Acinetobacter baumannii (CRAB). The positive rate of the blaOXA-23 gene in CRAB isolates was 100%. A total of 28 Oxford sequence types (STs) were identified, of which the most prevalent STs were ST540 (n = 13, 13.7%), ST469 (n = 13, 13.7%), ST373 (n = 8, 8.4%), ST938 (n = 7, 7.4%) and ST208 (n = 6, 6.3%). Differently, the most widespread clone of Acinetobacter baumannii in China during COVID-19 was ST208 (22.1%). Further study of multidrug-resistant ST540 showed that all of them were carrying blaOXA-23, blaOXA-66, blaADC-25 and blaTEM-1D, simultaneously, and first detected Tn2009 in ST540. The blaOXA-23 gene was located on transposons Tn2006 or Tn2009. In addition, the ST540 strain also contains a drug-resistant plasmid with msr(E), armA, sul1 and mph(E) genes. CONCLUSION: The prevalent clones of Acinetobacter baumannii in our organization have changed during COVID-19, which was different from that of China. ST540 strains which carried multiple drug-resistant mobile elements was spreading, indicating that it is essential to strengthen the molecular epidemiology of Acinetobacter baumannii.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , COVID-19 , Molecular Epidemiology , SARS-CoV-2 , beta-Lactamases , Acinetobacter baumannii/genetics , Acinetobacter baumannii/drug effects , Humans , COVID-19/epidemiology , China/epidemiology , Acinetobacter Infections/epidemiology , Acinetobacter Infections/microbiology , beta-Lactamases/genetics , SARS-CoV-2/genetics , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Microbial Sensitivity Tests , Bacterial Proteins/genetics , Hospitals , Drug Resistance, Multiple, Bacterial/genetics , Plasmids/genetics
8.
J Infect Dev Ctries ; 18(6): 943-949, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38991000

ABSTRACT

INTRODUCTION: Our goal was to investigate the antimicrobial resistance due to beta-lactamase genes and virulent determinants (biofilm-forming ability) expressed by Acinetobacter collected from health settings in Pakistan. A cross-sectional study was conducted for the molecular characterization of carbapenemases and biofilm-producing strains of Acinetobacter spp. METHODOLOGY: Two twenty-three imipenem-resistant Acinetobacter isolates were analyzed from 2020 to 2023.The combination disk test and modified hodge test were performed. Biofilm forming ability was determined by polystyrene tube assay. Multiplex polymerase chain reaction (PCR) for virulent and biofilm-forming genes, and 16S rRNA sequencing were performed. RESULTS: 118 (52.9%) carbapenem-resistant Acinetobacter (CR-AB) were isolated from wounds and pus, 121 (54.2%) from males, and 92 (41.2%) from 26-50-years-olds. More than 80% of strains produced ß-lactamases and carbapenemases. Based on the PCR amplification of the ITS gene, 174 (78.0%) CR-AB strains were identified from CR-Acinetobacter non-baumannii (ANB). Most CR-AB were strong and moderate biofilm producers. Genetic analysis revealed the blaOXA-23, blaTEM, blaCTX-M blaNDM-1 and blaVIM were prevalent in CR-AB with frequencies 91 (94.8%), 68 (70.8%), 19 (19.7%), 53 (55.2%), 2 (2.0%) respectively. Among virulence genes, OmpA was dominant in CR-AB isolates from wound (83, 86.4%), csuE 63 (80.7%) from non-wound specimens and significantly correlated with blaNDM and blaOXA genes. Phylogenetic analysis revealed three different clades for strains based on specimens. CONCLUSIONS: CR-AB was highly prevalent in Pakistan and associated with wound infections. The genes, blaOXA-23, blaTEM, blaCTX-M, and blaNDM-1 were detected in CR-AB. Most CR-AB were strong biofilm producers with virulent genes OmpA and csuE.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Biofilms , Carbapenems , beta-Lactamases , Biofilms/growth & development , beta-Lactamases/genetics , Humans , Pakistan , Acinetobacter baumannii/genetics , Acinetobacter baumannii/drug effects , Male , Cross-Sectional Studies , Adult , Middle Aged , Female , Acinetobacter Infections/microbiology , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Microbial Sensitivity Tests , Young Adult , Bacterial Proteins/genetics , Adolescent
9.
Clin Transl Sci ; 17(7): e13870, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952168

ABSTRACT

The AIDA randomized clinical trial found no significant difference in clinical failure or survival between colistin monotherapy and colistin-meropenem combination therapy in carbapenem-resistant Gram-negative infections. The aim of this reverse translational study was to integrate all individual preclinical and clinical pharmacokinetic-pharmacodynamic (PKPD) data from the AIDA trial in a pharmacometric framework to explore whether individualized predictions of bacterial burden were associated with the trial outcomes. The compiled dataset included for each of the 207 patients was (i) information on the infecting Acinetobacter baumannii isolate (minimum inhibitory concentration, checkerboard assay data, and fitness in a murine model), (ii) colistin plasma concentrations and colistin and meropenem dosing history, and (iii) disease scores and demographics. The individual information was integrated into PKPD models, and the predicted change in bacterial count at 24 h for each patient, as well as patient characteristics, was correlated with clinical outcomes using logistic regression. The in vivo fitness was the most important factor for change in bacterial count. A model-predicted growth at 24 h of ≥2-log10 (164/207) correlated positively with clinical failure (adjusted odds ratio, aOR = 2.01). The aOR for one unit increase of other significant predictors were 1.24 for SOFA score, 1.19 for Charlson comorbidity index, and 1.01 for age. This study exemplifies how preclinical and clinical anti-infective PKPD data can be integrated through pharmacodynamic modeling and identify patient- and pathogen-specific factors related to clinical outcomes - an approach that may improve understanding of study outcomes.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Meropenem , Microbial Sensitivity Tests , Humans , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/isolation & purification , Meropenem/pharmacokinetics , Meropenem/administration & dosage , Meropenem/pharmacology , Middle Aged , Female , Male , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Colistin/pharmacokinetics , Colistin/administration & dosage , Adult , Aged , Animals , Treatment Outcome , Mice , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Translational Research, Biomedical , Drug Therapy, Combination/methods , Models, Biological
10.
Ann Allergy Asthma Immunol ; 133(1): 47-48, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38960565
11.
J Microbiol Methods ; 223: 106972, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38871227

ABSTRACT

Recently, considerable uncertainty has arisen concerning the appropriate susceptibility testing for cefiderocol in gram-negative bacilli, particularly in the context of its application to Acinetobacter spp. The optimal method for assessing the susceptibility levels of Acinetobacter spp. to cefiderocol remains a subject of debate due to substantial disparities observed in the values obtained through various testing procedures. This study employed four minimum inhibitory concentration (MIC) methodologies and the disk diffusion to assess the susceptibility of twenty-seven carbapenem resistant (CR)-Acinetobacter strains to cefiderocol. The results from our study reveal significant variations in the minimum inhibitory concentration (MIC) values obtained with the different methods and in the level of agreement in interpretation categories between the different MIC methods and the disk diffusion test. Among the MIC methods, there was relatively more consistency in reporting the interpretation categories. For European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints, the categorical agreement (CA) for MIC methods ranged between 66.7 and 81.5%. On the other hand, the essential agreement (EA) values were as low as 18.5-29.6%. The CA between MIC methods and disk diffusion was 81.5%. These results emphasize the need for a reliable, accurate, and clinically validated methodology to effectively assess the susceptibility of Acinetobacter spp. to cefiderocol. The wide variability observed in our study highlights the importance of standardizing the susceptibility testing process for cefiderocol to ensure consistent and reliable results for clinical decision-making.


Subject(s)
Acinetobacter , Anti-Bacterial Agents , Cefiderocol , Cephalosporins , Microbial Sensitivity Tests , Microbial Sensitivity Tests/methods , Acinetobacter/drug effects , Anti-Bacterial Agents/pharmacology , Cephalosporins/pharmacology , Humans , Acinetobacter Infections/microbiology
12.
mBio ; 15(7): e0146824, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38916378

ABSTRACT

Pathogenic bacteria of the Acinetobacter genus pose a severe threat to human health worldwide due to their strong adaptability, tolerance, and antibiotic resistance. Most isolates of these bacteria harbor a type VI secretion system (T6SS) that allows them to outcompete co-residing microorganisms, but whether this system is involved in acquiring nutrients from preys remains less studied. In this study, we found that Ab25, a clinical isolate of Acinetobacter nosocomialis, utilizes a T6SS to kill taxonomically diverse microorganisms, including bacteria and fungi. The T6SS of Ab25 is constitutively expressed, and among the three predicted effectors, T6e1, a member of the RHS effector family, contributes the most for its antimicrobial activity. T6e1 undergoes self-cleavage, and a short carboxyl fragment with nuclease activity is sufficient to kill target cells via T6SS injection. Interestingly, strain Ab25 encodes an orphan VgrG protein, which when overexpressed blocks the firing of its T6SS. In niches such as dry plastic surfaces, the T6SS promotes prey microorganism-dependent survival of Ab25. These results reveal that A. nosocomialis employs T6SSs that are highly diverse in their regulation and effector composition to gain a competitive advantage in environments with scarce nutrient supply and competing microbes.IMPORTANCEThe type VI secretion system (T6SS) plays an important role in bacterial adaptation to environmental challenges. Members of the Acinetobacter genus, particularly A. baumannii and A. nosocomialis, are notorious for their multidrug resistance and their ability to survive in harsh environments. In contrast to A. baumannii, whose T6SS has been well-studied, few research works have focused on A. nosocomialis. In this study, we found that an A. nosocomialis strain utilizes a contitutively active T6SS to kill diverse microorganisms, including bacteria and fungi. Although T6SS structural proteins of A. nosocomialis are similar to those of A. baumannii, the effector repertoire differs greatly. Interestingly, the T6SS of the A. nosocomialis strain codes for an ophan VgrG protein, which blocks the firing of the system when overexpressed, suggesting the existence of a new regulatory mechanism for the T6SS. Importantly, although the T6SS does not provide an advantage when the bacterium is grown in nutrient-rich medium, it allows A. nosocomialis to survive better in dry surfaces that contain co-existing bacteria. Our results suggest that killing of co-residing microorganisms may increase the effectiveness of strategies designed to reduce the fitness of Acinetobacter bacteria by targeting their T6SS.


Subject(s)
Acinetobacter , Type VI Secretion Systems , Type VI Secretion Systems/metabolism , Type VI Secretion Systems/genetics , Acinetobacter/genetics , Acinetobacter/metabolism , Acinetobacter/physiology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Acinetobacter Infections/microbiology , Humans , Microbial Viability , Fungi/genetics , Fungi/metabolism , Fungi/physiology
13.
J Med Microbiol ; 73(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38842435

ABSTRACT

Introduction. Colistin (polymyxin E) has emerged as a last-resort treatment option for multidrug-resistant infections.Hypothesis/Gap Statement. Studies on the use, safety and efficacy of colistin in South Africa are limited.Aim. This study aims to describe the use of colistin and its clinical outcomes at a tertiary public hospital in South Africa.Methodology. We conducted a retrospective review of adult and paediatric patients who received parenteral colistin between 2015 and 2019.Results. A total of 69 patients (26 adults, 13 children and 30 neonates) were reviewed. Acinetobacter baumannii was the most common causative pathogen isolated (70.1 %). Colistin was predominately used to treat septicaemia (75.4 %). It was primarily administered as definitive therapy (71.0 %) and as monotherapy (56.5 %). It was used in 11.5 % of adults with infections susceptible to other antibiotics. Loading doses of intravenous colistin were administered in only 15 (57.7 %) adult patients. Neurotoxicity and nephrotoxicity occurred in 5.8 % and 43.5 % of patients, respectively. Clinical cure was achieved in 37 (53.6 %) patients. On multivariate logistic regression analysis, adults [adjusted odds ratio (aOR), 25.54; 95 % CI, 2.73-238.65; P < 0.01] and children (aOR, 8.56; 95 % CI, 1.06-69.10; P < 0.05) had higher odds of death than neonates.Conclusion. The study identified significant stewardship opportunities to improve colistin prescription and administration. Achieving optimal patient outcomes necessitates a multidisciplinary approach and vigilant monitoring of colistin use.


Subject(s)
Anti-Bacterial Agents , Antimicrobial Stewardship , Colistin , Tertiary Care Centers , Humans , Colistin/administration & dosage , Colistin/therapeutic use , Tertiary Care Centers/statistics & numerical data , South Africa , Retrospective Studies , Female , Adult , Male , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/administration & dosage , Infant , Middle Aged , Infant, Newborn , Child , Child, Preschool , Acinetobacter baumannii/drug effects , Adolescent , Young Adult , Aged , Drug Resistance, Multiple, Bacterial , Acinetobacter Infections/drug therapy , Sepsis/drug therapy , Sepsis/microbiology
14.
Antimicrob Resist Infect Control ; 13(1): 62, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38867312

ABSTRACT

OBJECTIVE: This study aimed to develop and apply a nomogram with good accuracy to predict the risk of CRAB infections in neuro-critically ill patients. In addition, the difficulties and expectations of application such a tool in clinical practice was investigated. METHODS: A mixed methods sequential explanatory study design was utilized. We first conducted a retrospective study to identify the risk factors for the development of CRAB infections in neuro-critically ill patients; and further develop and validate a nomogram predictive model. Then, based on the developed predictive tool, medical staff in the neuro-ICU were received an in-depth interview to investigate their opinions and barriers in using the prediction tool during clinical practice. The model development and validation is carried out by R. The transcripts of the interviews were analyzed by Maxqda. RESULTS: In our cohort, the occurrence of CRAB infections was 8.63% (47/544). Multivariate regression analysis showed that the length of neuro-ICU stay, male, diabetes, low red blood cell (RBC) count, high levels of procalcitonin (PCT), and number of antibiotics ≥ 2 were independent risk factors for CRAB infections in neuro-ICU patients. Our nomogram model demonstrated a good calibration and discrimination in both training and validation sets, with AUC values of 0.816 and 0.875. Additionally, the model demonstrated good clinical utility. The significant barriers identified in the interview include "skepticism about the accuracy of the model", "delay in early prediction by the indicator of length of neuro-ICU stay", and "lack of a proper protocol for clinical application". CONCLUSIONS: We established and validated a nomogram incorporating six easily accessed indicators during clinical practice (the length of neuro-ICU stay, male, diabetes, RBC, PCT level, and the number of antibiotics used) to predict the risk of CRAB infections in neuro-ICU patients. Medical staff are generally interested in using the tool to predict the risk of CRAB, however delivering clinical prediction tools in routine clinical practice remains challenging.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Carbapenems , Intensive Care Units , Nomograms , Humans , Acinetobacter baumannii/drug effects , Male , Female , Retrospective Studies , Middle Aged , Carbapenems/pharmacology , Carbapenems/therapeutic use , Acinetobacter Infections/epidemiology , Risk Factors , Aged , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Adult , Critical Illness
15.
Euro Surveill ; 29(24)2024 Jun.
Article in English | MEDLINE | ID: mdl-38873796

ABSTRACT

In 2003-2023, amid 5,436 Acinetobacter baumannii isolates collected globally through the Multidrug-Resistant Organism Repository and Surveillance Network, 97 were ST19PAS, 34 of which carbapenem-resistant. Strains (n = 32) sampled after 2019 harboured either bla OXA-23, bla OXA-72, and/or bla NDM-5. Phylogenetic analysis of the 97 isolates and 11 publicly available ST19 genomes revealed three sub-lineages of carbapenemase-producing isolates from mainly Ukraine and Georgia, including an epidemic clone carrying all three carbapenemase genes. Infection control and global surveillance of carbapenem-resistant A. baumannii remain important.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Bacterial Proteins , Microbial Sensitivity Tests , beta-Lactamases , beta-Lactamases/genetics , Acinetobacter baumannii/genetics , Acinetobacter baumannii/isolation & purification , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/enzymology , Humans , Acinetobacter Infections/microbiology , Acinetobacter Infections/epidemiology , Bacterial Proteins/genetics , Ukraine/epidemiology , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Phylogeny , Drug Resistance, Multiple, Bacterial/genetics , Georgia (Republic)/epidemiology , Multilocus Sequence Typing
16.
Am J Trop Med Hyg ; 111(1): 136-140, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38834085

ABSTRACT

Acinetobacter baumannii (Ab) is a well-known nosocomial pathogen that has emerged as a cause of community-acquired pneumonia (CAP) in tropical regions. Few global epidemiological studies of CAP-Ab have been published to date, and no data are available on this disease in France. We conducted a retrospective chart review of severe cases of CAP-Ab admitted to intensive care units in Réunion University Hospital between October 2014 and October 2022. Eight severe CAP-Ab cases were reviewed. Median patient age was 56.5 years. Sex ratio (male-to-female) was 3:1. Six cases (75.0%) occurred during the rainy season. Chronic alcohol use and smoking were found in 75.0% and 87.5% of cases, respectively. All patients presented in septic shock and with severe acute respiratory distress syndrome. Seven patients (87.5%) presented in cardiogenic shock, and renal replacement therapy was required for six patients (75.0%). Five cases (62.5%) presented with bacteremic pneumonia. The mortality rate was 62.5%. The median time from hospital admission to death was 3 days. All patients received inappropriate initial antibiotic therapy. Acinetobacter baumannii isolates were all susceptible to ceftazidime, cefepime, piperacillin-tazobactam, ciprofloxacin, gentamicin, and imipenem. Six isolates (75%) were also susceptible to ticarcillin, piperacillin, and cotrimoxazole. Severe CAP-Ab has a fulminant course and high mortality. A typical case is a middle-aged man with smoking and chronic alcohol use living in a tropical region and developing severe CAP during the rainy season. This clinical presentation should prompt administration of antibiotic therapy targeting Ab.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Community-Acquired Infections , Humans , Male , Middle Aged , Female , Community-Acquired Infections/microbiology , Community-Acquired Infections/epidemiology , Community-Acquired Infections/drug therapy , Reunion/epidemiology , Acinetobacter Infections/epidemiology , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Anti-Bacterial Agents/therapeutic use , Aged , Retrospective Studies , Adult , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/epidemiology , Pneumonia, Bacterial/complications , Pneumonia, Bacterial/drug therapy , Shock, Septic/microbiology , Shock, Septic/epidemiology , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/microbiology
17.
Lett Appl Microbiol ; 77(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38942450

ABSTRACT

The increasing resistance to polymyxins in Acinetobacter baumannii has made it even more urgent to develop new treatments. Anti-virulence compounds have been researched as a new solution. Here, we evaluated the modification of virulence features of A. baumannii after acquiring resistance to polymyxin B. The results showed lineages attaining unstable resistance to polymyxin B, except for Ab7 (A. baumannii polymyxin B resistant lineage), which showed stable resistance without an associated fitness cost. Analysis of virulence by a murine sepsis model indicated diminished virulence in Ab7 (A. baumannii polymyxin B resistant lineage) compared with Ab0 (A. baumannii polymyxin B susceptible lineage). Similarly, downregulation of virulence genes was observed by qPCR at 1 and 3 h of growth. However, an increase in bauE, abaI, and pgAB expression was observed after 6 h of growth. Comparison analysis of Ab0, Ab7, and Pseudomonas aeruginosa suggested no biofilm formation by Ab7. In general, although a decrease in virulence was observed in Ab7 when compared with Ab0, some virulence feature that enables infection could be maintained. In light of this, virulence genes bauE, abaI, and pgAB showed a potential relevance in the maintenance of virulence in polymyxin B-resistant strains, making them promising anti-virulence targets.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Drug Resistance, Bacterial , Polymyxin B , Polymyxin B/pharmacology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/pathogenicity , Acinetobacter baumannii/genetics , Animals , Anti-Bacterial Agents/pharmacology , Virulence , Mice , Acinetobacter Infections/microbiology , Virulence Factors/genetics , Microbial Sensitivity Tests , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Disease Models, Animal , Sepsis/microbiology , Biofilms/drug effects , Biofilms/growth & development
18.
J Virol ; 98(7): e0046724, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38864621

ABSTRACT

Acinetobacter baumannii, an opportunistic pathogen, poses a significant threat in intensive care units, leading to severe nosocomial infections. The rise of multi-drug-resistant strains, particularly carbapenem-resistant A. baumannii, has created formidable challenges for effective treatment. Given the prolonged development cycle and high costs associated with antibiotics, phages have garnered clinical attention as an alternative for combating infections caused by drug-resistant bacteria. However, the utilization of phage therapy encounters notable challenges, including the narrow host spectrum, where each phage targets a limited subset of bacteria, increasing the risk of phage resistance development. Additionally, uncertainties in immune system dynamics during treatment hinder tailoring symptomatic interventions based on patient-specific states. In this study, we isolated two A. baumannii phages from wastewater and conducted a comprehensive assessment of their potential applications. This evaluation included sequencing analysis, genome classification, pH and temperature stability assessments, and in vitro bacterial inhibition assays. Further investigations involved analyzing histological and cytokine alterations in rats undergoing phage cocktail treatment for pneumonia. The therapeutic efficacy of the phages was validated, and transcriptomic studies of rat lung tissue during phage treatment revealed crucial changes in the immune system. The findings from our study underscore the potential of phages for future development as a treatment strategy and offer compelling evidence regarding immune system dynamics throughout the treatment process.IMPORTANCEDue to the growing problem of multi-drug-resistant bacteria, the use of phages is being considered as an alternative to antibiotics, and the genetic safety and application stability of phages determine the potential of phage application. The absence of drug resistance genes and virulence genes in the phage genome can ensure the safety of phage application, and the fact that phage can remain active in a wide range of temperatures and pH is also necessary for application. In addition, the effect evaluation of preclinical studies is especially important for clinical application. By simulating the immune response situation during the treatment process through mammalian models, the changes in animal immunity can be observed, and the effect of phage therapy can be further evaluated. Our study provides compelling evidence that phages hold promise for further development as therapeutic agents for Acinetobacter baumannii infections.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Bacteriophages , Carbapenems , Disease Models, Animal , Phage Therapy , Acinetobacter baumannii/virology , Acinetobacter baumannii/drug effects , Animals , Acinetobacter Infections/therapy , Acinetobacter Infections/microbiology , Rats , Phage Therapy/methods , Carbapenems/pharmacology , Bacteriophages/physiology , Bacteriophages/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Multiple, Bacterial , Male , Genome, Viral , Wastewater , Pneumonia/therapy , Pneumonia/microbiology , Pneumonia/virology
19.
Acta Microbiol Immunol Hung ; 71(2): 134-139, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38837239

ABSTRACT

The rate of pandrug-resistant Acinetobacter baumannii strains is on the rise in all continents. This bacterium can acquire resistance to all antibiotics, even to colistin. Alterations in the lipid A or/and the two-component pmrAB were earlier detected in colistin resistance. We investigated and analyzed two strains of A. baumannii (ABRC1 and ABRC2) isolated from two patients admitted to intensive care unit with a septic shock. Both strains were resistant to all tested antibiotics including colistin with a MIC >256 mg L-1. Colistin resistance genes (pmrA, pmrB, lpxA, lpxC, lpxD, and lpsB) of two strains (ABRC1 and ABRC2) were investigated by PCR and sequencing. Obtained nucleic acid sequences were aligned with reference sequences of ATCC 19606 and 17987. In this study two amino acid mutations, N287D in the lpxC gene and E117K in the lpxD gene, were detected in both ABRC1 and ABRC2 strains. ABRC1 had an additional H200L mutation in the pmrA gene. Both colistin resistant strains harbored the same A138T mutation in the pmrB gene. The ABRC2 strain also had an alteration in the kinase domain, specifically an R263S substitution of the histidine kinase domain. Three identical mutations were found in the lpsB gene of both A. baumannii strains: Q216K + H218G + S219E. As a result, a newly deduced protein sequence in both ABRC1 and ABRC2 strains differed from those described in ATCC 17978 and 19606 strains was determined. Colistin resistance is multifactorial in A. baumannii. In our study we detected novel mutations in colistin resistant A. baumannii clinical isolates.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Bacterial Proteins , Lipid A , Microbial Sensitivity Tests , Acinetobacter baumannii/genetics , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/metabolism , Humans , Lipid A/genetics , Lipid A/metabolism , Lipid A/biosynthesis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Acinetobacter Infections/microbiology , Drug Resistance, Bacterial/genetics , Polymyxins/pharmacology , Colistin/pharmacology , Transcription Factors/genetics , Transcription Factors/metabolism , Mutation
20.
BMC Vet Res ; 20(1): 274, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38918815

ABSTRACT

BACKGROUND: Acinetobacter lwoffii (A. lwoffii) is a Gram-negative bacteria common in the environment, and it is the normal flora in human respiratory and digestive tracts. The bacteria is a zoonotic and opportunistic pathogen that causes various infections, including nosocomial infections. The aim of this study was to identify A. lwoffii strains isolated from bovine milk with subclinical mastitis in China and get a better understanding of its antimicrobial susceptibility and resistance profile. This is the first study to analyze the drug resistance spectrum and corresponding mechanisms of A. lwoffii isolated in raw milk. RESULTS: Four A. lwoffii strains were isolated by PCR method. Genetic evolution analysis using the neighbor-joining method showed that the four strains had a high homology with Acinetobacter lwoffii. The strains were resistant to several antibiotics and carried 17 drug-resistance genes across them. Specifically, among 23 antibiotics, the strains were completely susceptible to 6 antibiotics, including doxycycline, erythromycin, polymyxin, clindamycin, imipenem, and meropenem. In addition, the strains showed variable resistance patterns. A total of 17 resistance genes, including plasmid-mediated resistance genes, were detected across the four strains. These genes mediated resistance to 5 classes of antimicrobials, including beta-lactam, aminoglycosides, fluoroquinolones, tetracycline, sulfonamides, and chloramphenicol. CONCLUSION: These findings indicated that multi-drug resistant Acinetobacter lwoffii strains exist in raw milk of bovine with subclinical mastitis. Acinetobacter lwoffii are widespread in natural environmental samples, including water, soil, bathtub, soap box, skin, pharynx, conjunctiva, saliva, gastrointestinal tract, and vaginal secretions. The strains carry resistance genes in mobile genetic elements to enhance the spread of these genes. Therefore, more attention should be paid to epidemiological surveillance and drug resistant A. lwoffii.


Subject(s)
Acinetobacter , Anti-Bacterial Agents , Mastitis, Bovine , Milk , Animals , Cattle , Mastitis, Bovine/microbiology , Mastitis, Bovine/epidemiology , Female , Acinetobacter/isolation & purification , Acinetobacter/genetics , Acinetobacter/drug effects , Milk/microbiology , China/epidemiology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests/veterinary , Acinetobacter Infections/veterinary , Acinetobacter Infections/microbiology , Acinetobacter Infections/epidemiology , Drug Resistance, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics
SELECTION OF CITATIONS
SEARCH DETAIL