Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 424
Filter
1.
Int J Biol Macromol ; 273(Pt 2): 133116, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38889832

ABSTRACT

A biochar (KBC) enriched with O functional groups was prepared by torrefaction using lignin-rich kiwifruit branches (KBM) as a raw material, which was characterized, and then KBC was used to adsorb hexavalent chromium (Cr6+) from water. The results showed that KBC contained more functional groups compared to KBM. The maximum adsorption of Cr6+ by KBC could reach 143.64 mg·g-1 and also had better adsorption performance than other adsorbents reported in some other reports. Cr6+ absorption by KBC was mainly a mechanism of electrostatic interaction and adsorption-reduction coupling. FTIR and XPS revealed that -OH, -COOH, CO and CC on KBC participated in Cr6+ adsorption and new groups (C=O) were generated during the process of adsorption, which implied that a redox reaction occurred. 2D-COS and DFT calculations showed that the order of functional groups on KBC interacting with Cr6+ was -OCH3 > -COOH > -OH > phenolic hydroxyl, and the binding tightness of the different functional groups to Cr6+ was -OCH3 (the shortest displacement of both groups after the adsorption) > -COOH > -OH > phenolic hydroxyl. KBC has good regeneration performance, and it is a good adsorbent for Cr6+.


Subject(s)
Actinidia , Charcoal , Chromium , Lignin , Water Pollutants, Chemical , Water , Chromium/chemistry , Chromium/isolation & purification , Charcoal/chemistry , Adsorption , Lignin/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Water/chemistry , Actinidia/chemistry , Density Functional Theory , Water Purification/methods , Spectroscopy, Fourier Transform Infrared
2.
Sci Rep ; 14(1): 13799, 2024 06 14.
Article in English | MEDLINE | ID: mdl-38877048

ABSTRACT

Cardiovascular diseases (CVDs), mainly caused by thrombosis complications, are the leading cause of mortality worldwide, making the development of alternative treatments highly desirable. In this study, the thrombolytic potential of green kiwifruit (Actinidia deliciosa cultivar Hayward) was assessed using in-vitro and in-silico approaches. The crude green kiwifruit extract demonstrated the ability to reduce blood clots significantly by 73.0 ± 1.12% (P < 0.01) within 6 h, with rapid degradation of Aα and Bß fibrin chains followed by the γ chain in fibrinolytic assays. Molecular docking revealed six favorable conformations for the kiwifruit enzyme actinidin (ADHact) and fibrin chains, supported by spontaneous binding energies and distances. Moreover, molecular dynamics simulation confirmed the binding stability of the complexes of these conformations, as indicated by the stable binding affinity, high number of hydrogen bonds, and consistent distances between the catalytic residue Cys25 of ADHact and the peptide bond. The better overall binding affinity of ADHact to fibrin chains Aα and Bß may contribute to their faster degradation, supporting the fibrinolytic results. In conclusion, this study demonstrated the thrombolytic potential of the green kiwifruit-derived enzyme and highlighted its potential role as a natural plant-based prophylactic and therapeutic agent for CVDs.


Subject(s)
Actinidia , Fibrinolytic Agents , Molecular Docking Simulation , Molecular Dynamics Simulation , Actinidia/chemistry , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Fruit/chemistry , Fibrin/metabolism , Fibrin/chemistry , Animals , Humans , Computer Simulation , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism
3.
Int J Mol Sci ; 25(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891815

ABSTRACT

The growing trend in fruit wine production reflects consumers' interest in novel, diverse drinking experiences and the increasing demand for healthier beverage options. Fruit wines made from kiwi, pomegranates, and persimmons fermented using S. bayanus Lalvin strain EC1118 demonstrate the versatility of winemaking techniques. Kiwifruit, persimmon, and pomegranate wines were analyzed using HPLC and GC-TOFMS analyses to determine their concentrations of phenolic acids and volatile compounds. These results were supported by Fourier transform infrared (FTIR) spectroscopy to characterize and compare chemical shifts in the polyphenol regions of these wines. The wines' characterization included an anti-inflammatory assay based on NO, TNF-alpha, and IL-6 production in the RAW 264.7 macrophage model. FTIR spectroscopy predicted the antioxidant and phenolic contents in the wines. In terms of polyphenols, predominantly represented by chlorogenic, caffeic, and gallic acids, pomegranate and kiwifruit wines showed greater benefits. However, kiwifruit wines exhibited a highly diverse profile of volatile compounds. Further analysis is necessary, particularly regarding the use of other microorganisms in the fermentation process and non-Saccharomyces strains methods. These wines exhibit high biological antioxidant potential and health properties, providing valuable insights for future endeavors focused on designing healthy functional food products.


Subject(s)
Anti-Inflammatory Agents , Fermentation , Fruit , Saccharomyces cerevisiae , Volatile Organic Compounds , Wine , Wine/analysis , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Mice , Saccharomyces cerevisiae/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/analysis , Anti-Inflammatory Agents/chemistry , Fruit/chemistry , Fruit/metabolism , Animals , RAW 264.7 Cells , Spectroscopy, Fourier Transform Infrared/methods , Polyphenols/analysis , Antioxidants/analysis , Actinidia/chemistry , Pomegranate/chemistry
4.
Tissue Cell ; 88: 102426, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38833941

ABSTRACT

Diabetes mellitus (DM) is a well-known hyperglycemic metabolic condition identified by oxidative stress and biological function disruption. Kiwifruit is a valuable source of polyphenols and vitamin C with great antioxidant, nutritional, and health-promoting effects. Therefore, this study was initiated to explore the antioxidant and anti-hyperglycemic effects of kiwifruit aqueous extract (KFE) against oxidative injury and testis dysfunction in rats with diabetes. Twenty-four male Wistar Albino rats (160-170 g) were divided into four groups: Group 1 served as the control, Group 2 supplemented orally with kiwifruit extract (KFE; 1 g/kg/day) for one month, Group 3 was treated with a single streptozotocin dose (STZ; 50 mg/kg ip), and Group 4 where the diabetic rats were administered with KFE, respectively. According to the results, the GC-MS analysis of KFE revealed several main components with strong antioxidant properties. In diabetic rats, lipid peroxidation and hyperglycemia were accompanied by perturbations in hormone levels and sperm characteristics. Antioxidant enzymes, glutathione content, aminotransferase, phosphatase activities, and protein content were decreased. Furthermore, histology, immunohistochemical PCNA expression, and histochemical analysis of collagen, DNA, RNA, and total protein. were altered in rat testis sections, supporting the changes in biochemistry. Furthermore, diabetic rats supplemented with KFE manifested considerable amendment in all the tested parameters besides improved tissue structure and gene expressions (NF-kB, p53, IL-1ß, Bax, IL-10, and Bcl2) relative to the diabetic group. In conclusion, KFE has beneficial effects as it can improve glucose levels and testis function, so it might be used as a complementary therapy in DM.


Subject(s)
Actinidia , Apoptosis , Diabetes Mellitus, Experimental , Hyperglycemia , Inflammation , Oxidative Stress , Plant Extracts , Rats, Wistar , Testis , Animals , Male , Actinidia/chemistry , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Rats , Testis/drug effects , Testis/metabolism , Testis/pathology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/metabolism , Apoptosis/drug effects , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Hyperglycemia/pathology , Inflammation/drug therapy , Inflammation/pathology , Streptozocin , Antioxidants/pharmacology
5.
Eur J Med Res ; 29(1): 291, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764054

ABSTRACT

BACKGROUND: Renal cell carcinoma (RCC) is a malignant tumor. Radix Actinidiae chinensis (RAC) is the root of Actinidia arguta (Sieb. et Zucc) Planch. ex Miq. In clinical research, RAC was confirmed to have a certain anti-tumor effect, including liver cancer and cholangiocarcinoma. This study investigated the anticancer effect and mechanism of RAC in RCC cells. METHODS: The 786-O and A498 cells were intervened with varying concentrations of RAC (0-100 mg/mL) to detect the half maximal inhibitory concentration (IC50) of RAC. The cells were then co-cultured with 0-50 mg/mL RAC for 0-72 h to assess the effect of RAC on cell viability using the cell counting kit-8. The effects on cell proliferation, cell cycle or apoptosis, migration or invasion, and autophagy were detected using cloning, flow cytometry, Transwell, AOPI assay and Western blot. The number of autophagolysosomes was quantified using a transmission electron microscope. PI3K/AKT/mTOR pathway-related proteins were detected by Western blot. Additionally, an autophagy inhibitor 3-MA was used to explore the underlying mechanism of RAC. RESULTS: IC50 values of RAC in 786-O and A498 were 14.76 mg/mL and 13.09 mg/mL, respectively. RAC demonstrated the ability to reduce the cell malignant phenotype of RCC cells, blocked the S phase of cells, promoted apoptosis and autophagy in cells. Furthermore, RAC was observed to increase autophagy-related proteins LC3II/I and Beclin-1, while decreasing the level of P62. The expression of apoptosis-related proteins was increased, while the ratios of p-PI3K/PI3K, p-AKT/AKT, p-mTOR/mTOR, p-P38/P38 and p-ERK/ERK were reduced by RAC. However, the addition of 3-MA reduced the apoptosis and autophagy- promotion effects of RAC on RCC cells. CONCLUSION: RAC induced the apoptosis and autophagy, to inhibit the progression of RCC cells. This study may provide a theoretical and experimental basis for clinical anti-cancer application of RAC for RCC.


Subject(s)
Apoptosis , Autophagy , Carcinoma, Renal Cell , Cell Proliferation , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Autophagy/drug effects , Apoptosis/drug effects , Kidney Neoplasms/drug therapy , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Cell Proliferation/drug effects , Actinidia/chemistry , Cell Line, Tumor , Cell Movement/drug effects , TOR Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cell Survival/drug effects
6.
Food Chem ; 451: 139497, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38692240

ABSTRACT

The objective of this study was to evaluate the impacts of different drying technologies including microwave drying (MD), vacuum microwave drying (VMD), sun drying (SD), vacuum drying (VD), hot air drying (HAD), and vacuum freeze drying (VFD) on the physical characteristics, nutritional properties and antioxidant capacities of kiwifruit pomace in order to realize by-product utilization and improve energy efficiency. Results showed that both MD and VMD significantly reduced drying time by >94.6%, compared to traditional thermal drying which took 14-48 h. MD exhibited the highest content of soluble dietary fiber (9.5%) and the lowest energy consumption. Furthermore, VMD resulted in the highest content of vitamin C (198.78 mg/100 g) and reducing sugar (73.78%), and the antioxidant capacities ranked only second to VFD. Given the financial advantages and product quality, VMD was suggested to be advantageous technology in actual industrial production.


Subject(s)
Actinidia , Antioxidants , Desiccation , Fruit , Nutritive Value , Antioxidants/chemistry , Antioxidants/analysis , Actinidia/chemistry , Fruit/chemistry , Desiccation/methods , Desiccation/instrumentation , Freeze Drying , Food Handling/instrumentation , Food Handling/methods , Vacuum , Dietary Fiber/analysis
7.
J Med Food ; 27(5): 419-427, 2024 May.
Article in English | MEDLINE | ID: mdl-38656897

ABSTRACT

The primary inflammatory process in atherosclerosis, a major contributor to cardiovascular disease, begins with monocyte adhering to vascular endothelial cells. Actinidia arguta (kiwiberry) is an edible fruit that contains various bioactive components. While A. arguta extract (AAE) has been recognized for its anti-inflammatory characteristics, its specific inhibitory effect on early atherogenic events has not been clarified. We used tumor necrosis factor-α (TNF-α)-stimulated human umbilical vein endothelial cells (HUVECs) for an in vitro model. AAE effectively hindered the attachment of THP-1 monocytes and reduced the expression of vascular cell adhesion molecule-1 (VCAM-1) in HUVECs. Transcriptome analysis revealed that AAE treatment upregulated phosphatase and tensin homolog (PTEN), subsequently inhibiting phosphorylation of AKT and glycogen synthase kinase 3ß (GSK3ß) in HUVECs. AAE further hindered phosphorylation of AKT downstream of the nuclear factor kappa B (NF-κB) signaling pathway, leading to suppression of target gene expression. Oral administration of AAE suppressed TNF-α-stimulated VCAM-1 expression, monocyte-derived macrophage infiltration, and proinflammatory cytokine expression in C57BL/6 mouse aortas. Myo-inositol, identified as the major compound in AAE, played a key role in suppressing THP-1 monocyte adhesion in HUVECs. These findings suggest that AAE could serve as a nutraceutical for preventing atherosclerosis by inhibiting its initial pathogenesis.


Subject(s)
Actinidia , Cell Adhesion , Glycogen Synthase Kinase 3 beta , Human Umbilical Vein Endothelial Cells , Inositol , Monocytes , NF-kappa B , PTEN Phosphohydrolase , Plant Extracts , Proto-Oncogene Proteins c-akt , Signal Transduction , Tumor Necrosis Factor-alpha , Vascular Cell Adhesion Molecule-1 , Vascular Cell Adhesion Molecule-1/metabolism , Vascular Cell Adhesion Molecule-1/genetics , Humans , NF-kappa B/metabolism , NF-kappa B/genetics , Monocytes/drug effects , Monocytes/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Actinidia/chemistry , Animals , Plant Extracts/pharmacology , Signal Transduction/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Cell Adhesion/drug effects , Mice , Inositol/pharmacology , Inositol/analogs & derivatives , Mice, Inbred C57BL , Atherosclerosis/metabolism , Atherosclerosis/drug therapy , Male
8.
Food Funct ; 15(10): 5238-5250, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38632897

ABSTRACT

Exosome-like nanoparticles (ELNs) are novel naturally occurring plant ultrastructures and contain unique bioactive components. However, the potential applications and biological functions of plant ELNs, especially in the context of health promotion and disease prevention, remain largely unexplored. This study aimed to explore the biological activities and functional mechanisms of Actinidia arguta-derived exosome-like nanoparticles (AAELNs). We reported the development of AAELNs, which possess particle sizes of 157.8 nm and a negative surface charge of -23.07 mV, uptaking by RAW264.7 cells, and reduction of oxidative stress by decreasing the activity of GSH-Px and T-SOD and increasing the content of MDA. Through the use of high-throughput sequencing technology, 12 known miRNA families and 23 additional miRNAs were identified in AAELNs, GO and KEGG term enrichment analysis revealed the potential of AAELNs-miRNAs in modulating neural-relevant behaviors. Additionally, LC-MS/MS analysis detected a total of 32 major lipid classes, 430 lipid subclasses, and 1345 proteins in AAELNs. Furthermore, in vivo fluorescence disappearance and in vitro fermentation experiments demonstrated that AAELNs were able to enter the colon and improve the microbial structure. These findings suggest that AAELNs could serve as nanoshuttles in food, potentially offering health-enhancing properties.


Subject(s)
Actinidia , Exosomes , Gastrointestinal Microbiome , Nanoparticles , Mice , Actinidia/chemistry , Animals , Nanoparticles/chemistry , RAW 264.7 Cells , Exosomes/metabolism , Oxidative Stress/drug effects , MicroRNAs/metabolism , MicroRNAs/genetics , Plant Extracts/pharmacology , Plant Extracts/chemistry , Male
9.
Rev Alerg Mex ; 71(1): 79, 2024 Feb 01.
Article in Spanish | MEDLINE | ID: mdl-38683096

ABSTRACT

OBJECTIVE: Determine the electrophoretic profiles of the extracts of Manihot esculenta, Actinidia Deliciosa and Persea Americana and their possible relationship with Latex-Fruit Syndrome. METHODS: Protein extracts of M. esculenta, P. Americana and A. Deliciosa were prepared through the processes of maceration and solvent extraction from plant samples. In the case of the avocado, a prior extraction by soxhlet was carried out to eliminate the fat. The extracts were vacuum filtered, dialyzed and finally lyophilized. Separation of proteins based on molecular weight was performed by SDS PAGE electrophoresis. The electrophoretic profiles obtained were compared with the allergenic proteins previously identified in the latex extract, in order to determine a possible relationship with Latex-Fruit Syndrome, depending on the molecular weight. RESULTS: The extracts of M. esculenta and P. Americana showed a wide range of protein fractions with molecular weights varying from 10 to 250 KD, finding that the region with the highest concentration of bands was between 20 and 89 KD, (60 and 65%), respectively. A 20-band profile was obtained for the M. esculenta extract (Figure 1), with seven bands sharing similar weights with the latex allergens (Hev b 1, Hev b 2, Hev b3, Hev b 4, Hev b 5, Hev b 6.03, Hev b 8 and Hev b 10) (3-5). For the P. Americana extract, 20 bands were also observed (Figure 2), seven of which presented approximate weights to the Latex allergens (Hev b 1, Hev b 2 Hev b 4 Hev b 6.01 Hev b 6.03 Hev b 8 , Hev b 10 Hev b 11 Hev b 14). The Kiwi extract showed two bands of 19.1 and 22.9 KD, with weights close to latex proteins (figure 3), (Hev b 3 and Hev b 6.01), and allergens (Act d 2 and Act d 6), reported in the literature for this fruit. CONCLUSIONS: When analyzing the relationship between the separated protein fractions and the latex allergens described in the literature, a possible association of 35% was found for the extracts of M. esculenta and P. Americana, and 10% for A. Delicious, with great relevance being the association found with the allergens Hev b 4, Hev b 2, Hev 8 and Hev b 11, which are involved in Latex-Fruit Syndrome. The electrophoretic profiles of the prepared extracts were determined and compared with the Latex allergens. This information generates a contribution for the development of new research and advances in the standardization of these extracts on a large scale and for their future use in diagnostic tests.


OBJETIVO: Determinar los perfiles electroforéticos de los extractos de Manihot esculenta, Actinidia deliciosa y Persea americana y su posible relación con el Síndrome de Látex ­ Fruta. MÉTODOS: Se prepararon extractos proteicos de M. esculenta, P. Americana y A. Deliciosa, a través de los procesos de macerado y extracción con solventes a partir muestras vegetales. En el caso del aguacate, se realizó una extracción previa por soxhlet, para eliminar la grasa. Los extractos se filtraron al vacío, se sometieron a diálisis y por último se liofilizaron. La separación de las proteínas en función del peso molecular se realizó mediante electroforesis SDS PAGE. Se compararon los perfiles electroforéticos obtenidos con las proteínas alergénicas previamente identificadas en el extracto de látex, con el fin de determinar una posible relación con el Síndrome de Látex-Fruta, en función del peso molecular. RESULTADOS: Los extractos de M. esculenta y P. americana mostraron una amplia gama de fracciones proteicas con pesos moleculares que varían desde 10 a 250 KD, encontrando que la región con mayor concentración de bandas se situó entre 20 y 89 KD, (60 y 65 %), respectivamente. Se obtuvo un perfil de 20 bandas para el extracto de M. esculenta (figura 1), con siete bandas que comparten pesos similares con los alérgenos del látex (Hev b 1, Hev b 2, Hev b3, Hev b 4, Hev b 5, Hev b 6.03, Hev b 8 y Hev b 10) (3-5). Para el extracto de P. americana, también se observaron 20 bandas (figura 2), siete de las cuales presentaron pesos aproximados a los alérgenos de Látex (Hev b 1, Hev b 2 Hev b 4 Hev b 6.01 Hev b 6.03 Hev b 8, Hev b 10 Hev b 11 Hev b 14). El extracto de Kiwi mostró dos bandas de 19,1 y 22,9 KD, con pesos cercanos a proteínas de látex (figura 3), (Hev b 3 y Hev b 6.01), y los alérgenos (Act d 2 y Act d 6), reportados en la literatura para esta fruta. CONCLUSIONES: Al analizar la relación existente entre las fracciones proteicas separadas y los alérgenos de los látex descritos en la literatura, se encontró una posible asociación del 35% para los extractos de M. esculenta y P. Americana, y del 10% para A. Deliciosa, siendo de gran relevancia la asociación encontrada con los alérgenos Hev b 4, Hev b 2, Hev 8 y Hev b 11, los cuales se encuentran implicados en el Síndrome de Látex-Fruto. Se lograron determinar los perfiles electroforéticos de los extractos elaborados y se compararon con los alérgenos del Látex. Está información genera un aporte para el desarrollo de nuevas investigaciones y avances en la estandarización de estos extractos a gran escala y para su uso futuro en pruebas diagnósticas.


Subject(s)
Actinidia , Allergens , Latex Hypersensitivity , Manihot , Persea , Plant Proteins , Manihot/chemistry , Allergens/analysis , Actinidia/chemistry , Persea/chemistry , Plant Proteins/analysis , Plant Proteins/immunology , Fruit/chemistry , Latex/chemistry , Plant Extracts/chemistry , Electrophoresis, Polyacrylamide Gel , Syndrome , Molecular Weight
10.
Nutrients ; 16(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38674790

ABSTRACT

Kiwifruit (KF) has shown neuroprotective potential in cell-based and rodent models by augmenting the capacity of endogenous antioxidant systems. This study aimed to determine whether KF consumption modulates the antioxidant capacity of plasma and brain tissue in growing pigs. Eighteen male pigs were divided equally into three groups: (1) bread, (2) bread + Actinidia deliciosa cv. 'Hayward' (green-fleshed), and (3) bread + A. chinensis cv. 'Hort16A' (yellow-fleshed). Following consumption of the diets for eight days, plasma and brain tissue (brain stem, corpus striatum, hippocampus, and prefrontal cortex) were collected and measured for biomarkers of antioxidant capacity, enzyme activity, and protein expression assessments. Green KF significantly increased ferric-reducing antioxidant potential (FRAP) in plasma and all brain regions compared with the bread-only diet. Gold KF increased plasma ascorbate concentration and trended towards reducing acetylcholinesterase activity in the brain compared with the bread-only diet. Pearson correlation analysis revealed a significant positive correlation between FRAP in the brain stem, prefrontal cortex, and hippocampus with the total polyphenol concentration of dietary interventions. These findings provide exploratory evidence for the benefits of KF constituents in augmenting the brain's antioxidant capacity that may support neurological homeostasis during oxidative stress.


Subject(s)
Actinidia , Antioxidants , Fruit , Neuroprotective Agents , Animals , Actinidia/chemistry , Antioxidants/pharmacology , Antioxidants/metabolism , Male , Fruit/chemistry , Neuroprotective Agents/pharmacology , Swine , Brain/metabolism , Brain/drug effects , Humans , Oxidative Stress/drug effects , Diet , Bread , Polyphenols/pharmacology , Models, Animal , Ascorbic Acid/pharmacology
11.
J Pharm Biomed Anal ; 244: 116105, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38552420

ABSTRACT

BACKGROUND: Actinidia arguta leaves (AAL) are traditionally consumed as a vegetable and as tea in folk China and Korea. Previous studies have reported the anti-diabetic effect of AAL, but its bioactive components and mechanism of action are still unclear. AIM OF THE STUDY: This study aims to identify the hypoglycemic active components of AAL by combining serum pharmacochemistry and network pharmacology and to elucidate its possible mechanism of action. METHODS: Firstly, the effective components in mice serum samples were characterized by UPLC-Q/TOF-MSE. Furthermore, based on these active ingredients, network pharmacology analysis was performed to establish an "H-C-T-P-D" interaction network and reveal possible biological mechanisms. Finally, the affinity between serum AAL components and the main proteins in the important pathways above was investigated through molecular docking analysis. RESULTS: Serum pharmacochemistry analysis showed that 69 compounds in the serum samples were identified, including 23 prototypes and 46 metabolites. The metabolic reactions mainly included deglycosylation, dehydration, hydrogenation, methylation, acetylation, glucuronidation, and sulfation. Network pharmacology analysis showed that the key components quercetin, pinoresinol diglucoside, and 5-O-trans-p-coumaroyl quinic acid butyl ester mainly acted on the core targets PTGS2, HRAS, RELA, PRKCA, and BCL2 targets and through the PI3K-Akt signaling pathway, endocrine resistance, and MAPK signaling pathway to exert a hypoglycemic effect. Likewise, molecular docking results showed that the three potential active ingredients had good binding effects on the five key targets. CONCLUSION: This study provides a basis for elucidating the pharmacodynamic substance basis of AA against T2DM and further exploring the mechanism of action.


Subject(s)
Actinidia , Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Molecular Docking Simulation , Network Pharmacology , Plant Extracts , Plant Leaves , Actinidia/chemistry , Plant Leaves/chemistry , Animals , Mice , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Male , Chromatography, High Pressure Liquid/methods , Signal Transduction/drug effects
12.
J Sci Food Agric ; 104(7): 4320-4330, 2024 May.
Article in English | MEDLINE | ID: mdl-38318646

ABSTRACT

BACKGROUND: This study aimed to investigate the effect of 6, 12, and 24 h short-term anaerobic treatment on kiwiberry quality and antioxidant properties at 5 °C. RESULTS: Short-term anaerobic treatment was found to delay ripening and softening in kiwiberries, evident from changes in ethylene release, total soluble solids, starch, protopectin, and fruit texture. The 24 h treatment group exhibited the lowest decay rate of 12% on day 49, a 38% reduction compared with the control group. Anaerobic treatment reduced flesh translucency and decay in the fruit. The 12 h and 24 h treatments enhanced the activities of superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase, and increased the level of total phenolics, flavonoids, anthocyanins, and ascorbic acid. Moreover, it lowered oxidative damage in cell membranes, evidenced by reduced malondialdehyde content and relative conductivity. CONCLUSION: These results indicate that anaerobic treatment maintains the fruit quality by stimulating its antioxidant defense system. Therefore, short-term anaerobic treatment emerges as a promising method for kiwiberry storage. © 2024 Society of Chemical Industry.


Subject(s)
Actinidia , Antioxidants , Antioxidants/analysis , Actinidia/chemistry , Anthocyanins/analysis , Anaerobiosis , Ascorbic Acid/analysis , Fruit/chemistry
13.
J Food Sci ; 89(4): 2001-2016, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38369949

ABSTRACT

Kiwifruit ripening and senescence after harvesting are closely related to its economic value. Transcriptome analysis and biochemical parameters were used to investigate the differences in gene expression levels and the potential regulation of cell wall metabolism in kiwifruit treated with ozone, thereby regulating fruit softening and prolonging postharvest life. Compared to the control group, the activities of the cell wall modification enzyme were lower under ozone treatment, the content of polysaccharide in the cell wall of primary pectin and cellulose was higher, and the content of soluble pectin was lower. Meanwhile, ozone treatment delayed the degradation of the cell wall mesosphere during storage. A total of 20 pectinesterase (PE)-related genes were identified by sequencing analysis. The data analysis and quantitative polymerase chain reaction results confirmed that cell wall modifying enzyme genes played an important role in softening and senescence after harvesting, which may reduce or induce the expression of certain genes affecting cell wall metabolism. Ozone treatment not only regulates active genes such as xyloglucan endo glycosyltransferase/hydrolase, cellulose synthase, polygalacturonase, and PE to maintain the quality of fruit after harvest but also acts synergically with cell wall modifying enzymes to inhibit the degradation of cell wall, resulting in changes in the ultrastructure of cell wall, thereby reducing the hardness of kiwifruit. In addition, according to the results of cis-acting elements, cell wall degradation is also related to downstream hormone signaling, especially PE-related genes. These results provide a theoretical basis for studying the mechanism of firmness and cell wall metabolism difference of kiwifruit and also lay a good foundation for further research.


Subject(s)
Actinidia , Ozone , Humans , Ozone/pharmacology , Treatment Delay , Gene Expression Profiling , Pectins/metabolism , Actinidia/chemistry , Cell Wall , Fruit/chemistry
14.
Prep Biochem Biotechnol ; 54(1): 95-102, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37167555

ABSTRACT

Three phase partitioning (TPP) method was effectively utilized for the extraction and purification of milk clotting protease (actinidin) from the kiwifruit pulp. The different purification parameters of TPP such as ammonium sulfate saturation, ratio of the crude kiwifruit extract to tert-butanol, and the pH value of extract were optimized. The 40% (w/v) salt saturation having 1.0:0.75 (v/v) ratio of crude kiwifruit extract to tert-butanol at 6.0 pH value exhibited 3.14 purification fold along with 142.27% recovery, and the protease was concentrated exclusively at intermediate phase (IP). This fraction showed milk-clotting activity (MCA), but there was no such activity in lower aqueous phase (AP). The enzyme molecular weight was found to be 24 kDa from Tricine SDS-PAGE analysis. Recovered protease demonstrated greater stability at pH 7.0 and temperature 50 °C. The Vmax and Km values were 121.9 U/ml and 3.2 mg/ml respectively. Its cysteine nature was demonstrated by inhibition studies. This study highlighted that the TPP is an economic and effective method for extraction and purification of actinidin from kiwifruit, and it could be used as a vegetable coagulant for cheesemaking.


Subject(s)
Actinidia , Actinidia/chemistry , tert-Butyl Alcohol/chemistry , Cysteine Endopeptidases , Peptide Hydrolases , Plant Extracts
15.
Int J Biol Macromol ; 257(Pt 1): 128450, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38035965

ABSTRACT

Kiwifruit (Actinidia spp.) is a commercially important horticultural fruit crop worldwide. Kiwifruit contains numerous minerals, vitamins, and dietary phytochemicals, that not only responsible for the flavor but can also serve as adjuncts in the treatment of diabetes, digestive disorders, cardiovascular system, cancer and heart disease. However, fruit quality and shelf life affect consumer's acceptance and production chain. Understanding the methods of fruit storage preservation, as well as their biochemical, physiological, and molecular basis is essential. In recent years, eco-friendly (comprehensive and environmentally friendly) treatments such as hot water, ozone, chitosan, quercetin, and antifungal additive from biocontrol bacteria or yeast have been applied to improve postharvest fruit quality with longer shelf life. This review provides a comprehensive overview of the latest advancements in control measures, applications, and mechanisms related to water loss, chilling injury, and pathogen diseases in postharvest kiwifruit. Further studies should utilize genome editing techniques to enhance postharvest fruit quality and disease resistance through site-directed bio-manipulation of the kiwifruit genome.


Subject(s)
Actinidia , Food Preservation , Food Preservation/methods , Actinidia/chemistry , Vitamins , Fruit/chemistry , Water/analysis
16.
J Sci Food Agric ; 104(4): 2142-2155, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37926484

ABSTRACT

BACKGROUND: Kiwifruit pomace, which contains abundant phenolic compounds, is typically discarded during the juicing process, leading to wastage of valuable resources. To address this issue, various indicators (including total acidity, sugar/acid ratio, vitamin C, total polyphenols, polyphenol monomers, and soluble solids content) of 15 kiwifruit cultivars were evaluated and juiced. Then, a polyphenol-concentrated solution from kiwifruit pomace was backfilled into kiwi juice to prepare whole nutritious compound kiwi juice, and its anti-hyperlipidemic activity on obese model mice was then investigated. RESULTS: Through grey relational analysis and the technique for order preference by similarity to an ideal solution (TOPSIS), Kuimi and Huayou were identified as the predominant varieties for juicing, with weighted relevance scores of 0.695 and 0.871 respectively and TOPSIS scores of 0.6509 and 0.8220 respectively. The polyphenol content of Cuixiang pomace was 43.97 mg g-1 , making it the most suitable choice for polyphenol extraction. By backfilling a polyphenol-concentrated solution derived from Cuixiang pomace into compound kiwi juice of Huayou and Kuimi, the whole nutritious compound kiwi juice with polyphenols was produced and exhibited superior bioactivities, including enhanced hepatic oxidative stress defense, and alleviated serum lipid abnormalities. Furthermore, whole nutritious compound kiwi juice with polyphenols ameliorated host intestinal microbiota dysbiosis by increasing the relative abundance of the phyla Bacteroidota and Verrucomicrobiota. CONCLUSION: A hypolipidemic dietary supplement based on kiwifruit pomace polyphenols has been successfully developed, providing an effective solution for hyperlipidemia intervention. © 2023 Society of Chemical Industry.


Subject(s)
Actinidia , Hyperlipidemias , Animals , Mice , Polyphenols/chemistry , Hyperlipidemias/drug therapy , Fruit/chemistry , Plant Extracts/chemistry , Dietary Supplements/analysis , Actinidia/chemistry
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123749, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38113558

ABSTRACT

Forchlorfenuron (1-(2-chloropyridin-4-yl)-3-phenylurea, CPPU) and thidiazuron (N-Phenyl-N'-1,2,3-thiadiazol-5-ylurea, TDZ) are two widely used plant growth regulators in kiwifruit cultivation. They can promote fruit size, but it is unclear whether they have same effect on internal qualities, optical properties and cell structure of kiwifruit, and whether the kiwifruits treated with CPPU and TDZ can be identified based on optical properties. To answer these questions, the kiwifruits treated with 20 mg/L CPPU and 2 mg/L TDZ solutions were used as samples, and the untreated kiwifruits were used as control to investigate the optical properties (absorption coefficient µa and reduced scattering coefficient µs'), internal qualities (soluble solids content (SSC), firmness and moisture content) and microstructure of pulp tissue during the growth. Moreover, the relationship between the optical properties and internal qualities were analyzed, and the potential for identifying the kiwifruits treated with CPPU and TDZ based on optical properties was evaluated. The results showed that CPPU and TDZ increased the SSC and reduced the firmness of kiwifruits, but had some different effects on the moisture content and cell size. CPPU and TDZ did not influence the change trend of µa and µs' with wavelength, but affected their values and the relationship with internal qualities. In general, the mean µa of the kiwifruits treated with CPPU and with TDZ was the largest and the smallest at the absorption peaks (980 nm, 1190 nm and 1420 nm), respectively. The linear discriminant analysis modeling results showed that the spectra of µa with µs' had greater potential in identifying the kiwifruits treated with CPPU/TDZ with accuracy of 75.76 %.


Subject(s)
Actinidia , Plant Growth Regulators , Polyethylene Glycols , Polyurethanes , Pyridines , Thiadiazoles , Plant Growth Regulators/pharmacology , Phenylurea Compounds/pharmacology , Phenylurea Compounds/chemistry , Actinidia/chemistry
18.
Molecules ; 28(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38067549

ABSTRACT

Actinidia arguta (Siebold & Zucc.) Planch ex Miq. (A. arguta) is a highly valued vine plant belonging to the Actinidia lindl genus. It is extensively utilized for its edible and medicinal properties. The various parts of A. arguta serve diverse purposes. The fruit is rich in vitamins, amino acids, and vitamin C, making it a nutritious and flavorful raw material for producing jam, canned food, and wine. The flowers yield volatile oils suitable for essential oil extraction. The leaves contain phenolic compounds and can be used for tea production. Additionally, the roots, stems, and leaves of A. arguta possess significant medicinal value, as they contain a wide array of active ingredients that exert multiple pharmacological and therapeutic effects. These effects include quenching thirst, relieving heat, stopping bleeding, promoting blood circulation, reducing swelling, dispelling wind, and alleviating dampness. Comprehensive information on A. arguta was collected from scientific databases covering the period from 1970 to 2023. The databases used for this review included Web of Science, PubMed, ProQuest, and CNKI. The objective of this review was to provide a detailed explanation of A. arguta from multiple perspectives, such as phytochemistry and pharmacological effects. By doing so, it aimed to establish a solid foundation and propose new research ideas for further exploration of the plant's potential applications and industrial development. To date, a total of 539 compounds have been isolated and identified from A. arguta. These compounds include terpenoids, flavonoids, phenolics, phenylpropanoids, lignin, organic acids, volatile components, alkanes, coumarins, anthraquinones, alkaloids, polysaccharides, and inorganic elements. Flavonoids, phenolics, alkaloids, and polysaccharides are the key bioactive constituents of A. arguta. Moreover, phenolics and flavonoids in A. arguta exhibit remarkable antioxidant, anti-inflammatory, and anti-tumor properties. Additionally, they show promising potential in improving glucose metabolism, combating aging, reducing fatigue, and regulating the immune system. While some fundamental studies on A. arguta have been conducted, further research is necessary to enhance our understanding of its mechanism of action, quality evaluation, and compatibility mechanisms. A more comprehensive investigation is highly warranted to explore the mechanism of action and expand the range of drug resources associated with A. arguta. This will contribute to the current hot topics of anti-aging and anti-tumor drug research and development, thereby promoting its further development and utilization.


Subject(s)
Actinidia , Alkaloids , Actinidia/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Polysaccharides , Vitamins , Flavonoids , Phenols , Phytochemicals/pharmacology , Ethnopharmacology
19.
Molecules ; 28(22)2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38005281

ABSTRACT

Actinidia arguta is a fruit crop with high nutritional and economic value. However, its flavor quality depends on various factors, such as variety, environment, and post-harvest handling. We analyzed the composition of total soluble sugars, titratable acids, organic acids, and flavor substances in the fruits of ten A. arguta varieties. The total soluble sugar content ranged from 4.22 g/L to 12.99 g/L, the titratable acid content ranged from 52.55 g/L to 89.9 g/L, and the sugar-acid ratio ranged from 5.39 to 14.17 at the soft ripe stage. High-performance liquid chromatography (HPLC) showed that citric, quinic, and malic acids were the main organic acids in the A. arguta fruits. Headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) detected 81 volatile compounds in 10 A. arguta varieties, including 24 esters, 17 alcohols, 23 aldehydes, 7 ketones, 5 terpenes, 2 acids, 1 Pyrazine, 1 furan, and 1 benzene. Esters and aldehydes had the highest relative content of total volatile compounds. An orthogonal partial least squares discriminant analysis (OPLS-DA) based on the odor activity value (OAV) revealed that myrcene, benzaldehyde, methyl isobutyrate, α-phellandrene, 3-methyl butanal, valeraldehyde, ethyl butyrate, acetoin, (E)-2-octenal, hexyl propanoate, terpinolene, 1-penten-3-one, and methyl butyrate were the main contributors to the differences in the aroma profiles of the fruits of different A. arguta varieties. Ten A. arguta varieties have different flavors. This study can clarify the differences between varieties and provide a reference for the evaluation of A. arguta fruit flavor, variety improvement and new variety selection.


Subject(s)
Actinidia , Volatile Organic Compounds , Chromatography, High Pressure Liquid , Fruit/chemistry , Actinidia/chemistry , Gas Chromatography-Mass Spectrometry/methods , Ion Mobility Spectrometry , Volatile Organic Compounds/analysis , Aldehydes/analysis , Odorants/analysis , Esters/analysis , Sugars/analysis
20.
Food Res Int ; 173(Pt 1): 113324, 2023 11.
Article in English | MEDLINE | ID: mdl-37803635

ABSTRACT

The aim of this study was to investigate the inhibitory effects of Actinidia arguta ('Weiki', 'Skarlet September Kiwi') and Actinidia kolomikta ('Lande') fruit extracts against advanced glycation end-products (AGEs) formation and acetylcholinesterase (AChE) activity. The extracts were also tested regarding polyphenol profile and Lascorbic acid content (UHPLC-DAD-MS), and antioxidant capacity (DPPH, ABTS). 'Scarlet September Kiwi' showed the strongest anti-AGEs activity studied with BSAGLU (IC50 = 2.68) and BSA-MGO (IC50 = 18.06) models. The highest anti-AChE activity was found for the 'Lande' extract (IC50 = 4.56). 'Lande' showed the highest L-ascorbic acid content (8271.96 µg/g dw), ABTS (312.42 µmol TE/g dw) and DPPH (282.01 µmol TE/g dw) values. 'Scarlet September Kiwi' revealed the highest individual phenolics concentration (2321.43 µg/g dw). The contents of (+)-catechin and L-ascorbic acid were significantly correlated with anti-AChE activity. This research sheds new light on the bioactivity of Actinidia arguta and Actinidia kolomikta fruit elucidating the role of (+)-catechin and L-ascorbic acid in prevention of Alzheimer's disease.


Subject(s)
Actinidia , Catechin , Antioxidants/analysis , Polyphenols/pharmacology , Polyphenols/analysis , Actinidia/chemistry , Fruit/chemistry , Catechin/analysis , Cholinergic Antagonists/analysis , Acetylcholinesterase , Plant Extracts/chemistry , Ascorbic Acid/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...