Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 971
Filter
1.
Sci Rep ; 14(1): 2586, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38297132

ABSTRACT

Disease modeling using human induced pluripotent stem cells (hiPSCs) from patients with genetic disease is a powerful approach for dissecting pathophysiology and drug discovery. Nevertheless, isogenic controls are required to precisely compare phenotypic outcomes from presumed causative mutations rather than differences in genetic backgrounds. Moreover, 2D cellular models often fail to exhibit authentic disease phenotypes resulting in poor validation in vitro. Here we show that a combination of precision gene editing and bioengineered 3D tissue models can establish advanced isogenic hiPSC-derived cardiac disease models, overcoming these drawbacks. To model inherited cardiac arrhythmias we selected representative N588D and N588K missense mutations affecting the same codon in the hERG potassium channel gene KCNH2, which are reported to cause long (LQTS) and short (SQTS) QT syndromes, respectively. We generated compound heterozygous variants in normal hiPSCs, and differentiated cardiomyocytes (CMs) and mesenchymal cells (MCs) to form 3D cardiac tissue sheets (CTSs). In hiPSC-derived CM monolayers and 3D CTSs, electrophysiological analysis with multielectrode arrays showed prolonged and shortened repolarization, respectively, compared to the isogenic controls. When pharmacologically inhibiting the hERG channels, mutant 3D CTSs were differentially susceptible to arrhythmic events than the isogenic controls. Thus, this strategy offers advanced disease models that can reproduce clinically relevant phenotypes and provide solid validation of gene mutations in vitro.


Subject(s)
Induced Pluripotent Stem Cells , Long QT Syndrome , Humans , Induced Pluripotent Stem Cells/physiology , Long QT Syndrome/genetics , ERG1 Potassium Channel/genetics , Arrhythmias, Cardiac/genetics , Mutation , Myocytes, Cardiac/physiology , Phenotype , Action Potentials/genetics
2.
J Mol Cell Cardiol ; 183: 42-53, 2023 10.
Article in English | MEDLINE | ID: mdl-37579942

ABSTRACT

BACKGROUND: Among the monogenic inherited causes of atrial fibrillation is the short QT syndrome (SQTS), a rare channelopathy causing atrial and ventricular arrhythmias. One of the limitations in studying the mechanisms and optimizing treatment of SQTS-related atrial arrhythmias has been the lack of relevant human atrial tissues models. OBJECTIVE: To generate a unique model to study SQTS-related atrial arrhythmias by combining the use of patient-specific human induced pluripotent stem cells (hiPSCs), atrial-specific differentiation schemes, two-dimensional tissue modeling, optical mapping, and drug testing. METHODS AND RESULTS: SQTS (N588K KCNH2 mutation), isogenic-control, and healthy-control hiPSCs were coaxed to differentiate into atrial cardiomyocytes using a retinoic-acid based differentiation protocol. The atrial identity of the cells was confirmed by a distinctive pattern of MLC2v downregulation, connexin 40 upregulation, shorter and triangular-shaped action potentials (APs), and expression of the atrial-specific acetylcholine-sensitive potassium current. In comparison to the healthy- and isogenic control cells, the SQTS-hiPSC atrial cardiomyocytes displayed abbreviated APs and refractory periods along with an augmented rapidly activating delayed-rectifier potassium current (IKr). Optical mapping of a hiPSC-based atrial tissue model of the SQTS displayed shortened APD and altered biophysical properties of spiral waves induced in this model, manifested by accelerated spiral-wave frequency and increased rotor curvature. Both AP shortening and arrhythmia irregularities were reversed by quinidine and vernakalant treatment, but not by sotalol. CONCLUSIONS: Patient-specific hiPSC-based atrial cellular and tissue models of the SQTS were established, which provide examples on how this type of modeling can shed light on the pathogenesis and pharmacological treatment of inherited atrial arrhythmias.


Subject(s)
Atrial Fibrillation , Induced Pluripotent Stem Cells , Humans , Atrial Fibrillation/genetics , Atrial Fibrillation/metabolism , Myocytes, Cardiac/metabolism , Potassium/metabolism , Action Potentials/genetics
3.
Cell Mol Life Sci ; 79(12): 613, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36454480

ABSTRACT

Calcium/calmodulin-dependent kinase II delta (CaMKIIδ) is the predominant cardiac isoform and it is alternatively spliced to generate multiple variants. Variable variants allow for distinct localization and potentially different functions in the heart. Dysregulation of CaMKIIδ splicing has been demonstrated to be involved in the pathogenesis of heart diseases, such as cardiac hypertrophy, arrhythmia, and diastolic dysfunction. However, the mechanisms that regulate CaMKIIδ are incompletely understood. Here, we show that RNA binding motif protein 24 (RBM24) is a key splicing regulator of CaMKIIδ. RBM24 ablation leads to the aberrant shift of CaMKIIδ towards the δ-C isoform, which is known to activate the L-type Ca current. In line with this, we found marked alteration in Ca2+ handling followed by prolongation of the ventricular cardiac action potential and QT interval in RBM24 knockout mice, and these changes could be attenuated by treatment with an inhibitor of CaMKIIδ. Importantly, knockdown of RBM24 in human embryonic stem cell-derived cardiomyocytes showed similar electrophysiological abnormalities, suggesting the important role of RBM24 in the human heart. Thus, our data suggest that RBM24 is a critical regulator of CaMKIIδ to control the cardiac QT interval, highlighting the key role of splicing regulation in cardiac rhythm.


Subject(s)
Heart Diseases , RNA Splicing , Humans , Animals , Mice , RNA Splicing/genetics , Heart Ventricles , Myocytes, Cardiac , Action Potentials/genetics , Mice, Knockout , RNA-Binding Proteins/genetics
4.
NPJ Syst Biol Appl ; 8(1): 43, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36333337

ABSTRACT

Short QT syndrome (SQTS) is a rare but dangerous genetic disease. In this research, we conducted a comprehensive in silico investigation into the arrhythmogenesis in KCNH2 T618I-associated SQTS using a multi-scale human ventricle model. A Markov chain model of IKr was developed firstly to reproduce the experimental observations. It was then incorporated into cell, tissue, and organ models to explore how the mutation provided substrates for ventricular arrhythmias. Using this T618I Markov model, we explicitly revealed the subcellular level functional alterations by T618I mutation, particularly the changes of ion channel states that are difficult to demonstrate in wet experiments. The following tissue and organ models also successfully reproduced the changed dynamics of reentrant spiral waves and impaired rate adaptions in hearts of T618I mutation. In terms of pharmacotherapy, we replicated the different effects of a drug under various conditions using identical mathematical descriptions for drugs. This study not only simulated the actions of an effective drug (quinidine) at various physiological levels, but also elucidated why the IKr inhibitor sotalol failed in SQT1 patients through profoundly analyzing its mutation-dependent actions.


Subject(s)
Quinidine , Sotalol , Humans , Quinidine/pharmacology , Quinidine/therapeutic use , Sotalol/pharmacology , Anti-Arrhythmia Agents/pharmacology , Anti-Arrhythmia Agents/therapeutic use , Action Potentials/genetics , Mutation/genetics , ERG1 Potassium Channel/genetics
5.
Seizure ; 101: 218-224, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36087422

ABSTRACT

Purpose The voltage-gated potassium channel Kv3.2, encoded by KCNC2, facilitates fast-spiking GABAergic interneurons to fire action potentials at high frequencies. It is pivotal to maintaining excitation/inhibition balance in mammalian brains. This study identified two novel de novo KCNC2 variants, p.Pro470Ser (P470S) and p.Phe382Leu (F382L), in patients with early onset developmental and epileptic encephalopathy (DEE). Methods To examine the molecular basis of DEE, we studied the functional characteristics of variant channels using patch-clamp techniques and computational modeling. Results Whole-cell patch clamp recordings from infected HEK293 cells revealed that channel activation and deactivation kinetics strongly decreased in both Kv3.2 P470S and F382L variant channels. This decrease also occurred in Kv3.2 p.Val471Leu (V471L) channels, known to be associated with DEE. In addition, Kv3.2 F382L and V471L variants exhibited a significant increase in channel conductance and a ∼20 mV negative shift in the threshold for voltage-dependent activation. Simulations of model GABAergic interneurons revealed that all variants decreased neuronal firing frequency. Thus, the variants' net loss-of-function effects disinhibited neural networks. Conclusion Our findings provide compelling evidence supporting the role of KCNC2 as a disease-causing gene in human neurodevelopmental delay and epilepsy.


Subject(s)
Brain Diseases , Potassium Channels, Voltage-Gated , Action Potentials/genetics , Animals , HEK293 Cells , Humans , Mammals , Patch-Clamp Techniques , Potassium Channels, Voltage-Gated/pharmacology , Shaw Potassium Channels/genetics
6.
Sci Rep ; 12(1): 2851, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35181728

ABSTRACT

Plants do not have neurons but operate transmembrane ion channels and can get electrical excited by physical and chemical clues. Among them the Venus flytrap is characterized by its peculiar hapto-electric signaling. When insects collide with trigger hairs emerging the trap inner surface, the mechanical stimulus within the mechanosensory organ is translated into a calcium signal and an action potential (AP). Here we asked how the Ca2+ wave and AP is initiated in the trigger hair and how it is feed into systemic trap calcium-electrical networks. When Dionaea muscipula trigger hairs matures and develop hapto-electric excitability the mechanosensitive anion channel DmMSL10/FLYC1 and voltage dependent SKOR type Shaker K+ channel are expressed in the sheering stress sensitive podium. The podium of the trigger hair is interface to the flytrap's prey capture and processing networks. In the excitable state touch stimulation of the trigger hair evokes a rise in the podium Ca2+ first and before the calcium signal together with an action potential travel all over the trap surface. In search for podium ion channels and pumps mediating touch induced Ca2+ transients, we, in mature trigger hairs firing fast Ca2+ signals and APs, found OSCA1.7 and GLR3.6 type Ca2+ channels and ACA2/10 Ca2+ pumps specifically expressed in the podium. Like trigger hair stimulation, glutamate application to the trap directly evoked a propagating Ca2+ and electrical event. Given that anesthetics affect K+ channels and glutamate receptors in the animal system we exposed flytraps to an ether atmosphere. As result propagation of touch and glutamate induced Ca2+ and AP long-distance signaling got suppressed, while the trap completely recovered excitability when ether was replaced by fresh air. In line with ether targeting a calcium channel addressing a Ca2+ activated anion channel the AP amplitude declined before the electrical signal ceased completely. Ether in the mechanosensory organ did neither prevent the touch induction of a calcium signal nor this post stimulus decay. This finding indicates that ether prevents the touch activated, glr3.6 expressing base of the trigger hair to excite the capture organ.


Subject(s)
Calcium/chemistry , Droseraceae/physiology , Electricity , Hair/physiology , Action Potentials/genetics , Anesthetics/pharmacology , Calcium/metabolism , Calcium Channels/genetics , Droseraceae/drug effects , Ether/pharmacology , Oxylipins/chemistry , Plant Leaves/genetics , Plant Leaves/growth & development , Signal Transduction/genetics , Touch/physiology , Touch Perception/genetics , Touch Perception/physiology
7.
Biochem Biophys Res Commun ; 596: 49-55, 2022 03 12.
Article in English | MEDLINE | ID: mdl-35114584

ABSTRACT

The T618I KCNH2-encoded hERG mutation is the most frequently observed mutation in genotyped cases of the congenital short QT syndrome (SQTS), a cardiac condition associated with ventricular fibrillation and sudden death. Most T618I hERG carriers exhibit a pronounced U wave on the electrocardiogram and appear vulnerable to ventricular, but not atrial fibrillation (AF). The basis for these effects is unclear. This study used the action potential (AP) voltage clamp technique to determine effects of the T618I mutation on hERG current (IhERG) elicited by APs from different cardiac regions. Whole-cell patch-clamp recordings were made at 37 °C of IhERG from hERG-transfected HEK-293 cells. Maximal IhERG during a ventricular AP command was increased ∼4-fold for T618I IhERG and occurred much earlier during AP repolarization. The mutation also increased peak repolarizing currents elicited by Purkinje fibre (PF) APs. Maximal wild-type (WT) IhERG current during the PF waveform was 87.2 ± 4.5% of maximal ventricular repolarizing current whilst for the T618I mutant, the comparable value was 47.7 ± 2.7%. Thus, the T618I mutation exacerbated differences in repolarizing IhERG between PF and ventricular APs; this could contribute to heterogeneity of ventricular-PF repolarization and consequently to the U waves seen in T618I carriers. The comparatively shorter duration and lack of pronounced plateau of the atrial AP led to a smaller effect of the T618I mutation during the atrial AP, which may help account for the lack of reported AF in T618I carriers. Use of a paired ventricular AP protocol revealed an alteration to protective IhERG transients that affect susceptibility to premature excitation late in AP repolarization/early in diastole. These observations may help explain altered arrhythmia susceptibility in this form of the SQTS.


Subject(s)
Action Potentials/genetics , Arrhythmias, Cardiac/genetics , ERG1 Potassium Channel/genetics , Mutation , Patch-Clamp Techniques/methods , Electrocardiography/methods , HEK293 Cells , Heart Atria/metabolism , Heart Ventricles/metabolism , Humans , Purkinje Fibers/metabolism
8.
Int J Mol Sci ; 23(3)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35163304

ABSTRACT

Nav1.5 is the predominant cardiac sodium channel subtype, encoded by the SCN5A gene, which is involved in the initiation and conduction of action potentials throughout the heart. Along its biosynthesis process, Nav1.5 undergoes strict genomic and non-genomic regulatory and quality control steps that allow only newly synthesized channels to reach their final membrane destination and carry out their electrophysiological role. These regulatory pathways are ensured by distinct interacting proteins that accompany the nascent Nav1.5 protein along with different subcellular organelles. Defects on a large number of these pathways have a tremendous impact on Nav1.5 functionality and are thus intimately linked to cardiac arrhythmias. In the present review, we provide current state-of-the-art information on the molecular events that regulate SCN5A/Nav1.5 and the cardiac channelopathies associated with defects in these pathways.


Subject(s)
Arrhythmias, Cardiac/genetics , NAV1.5 Voltage-Gated Sodium Channel/genetics , Action Potentials/genetics , Animals , Channelopathies/metabolism , Genomics/methods , Humans , Signal Transduction/genetics
9.
Pain ; 163(4): 753-764, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34326297

ABSTRACT

ABSTRACT: Human NaV1.9 (hNaV1.9), encoded by SCN11A, is preferentially expressed in nociceptors, and its mutations have been linked to pain disorders. NaV1.9 could be a promising drug target for pain relief. However, the modulation of NaV1.9 activity has remained elusive. Here, we identified a new candidate NaV1.9-interacting partner, protein arginine methyltransferase 7 (PRMT7). Whole-cell voltage-clamp recordings showed that coelectroporation of human SCN11A and PRMT7 in dorsal root ganglion (DRG) neurons of Scn11a-/- mice increased the hNaV1.9 current density. By contrast, a PRMT7 inhibitor (DS-437) reduced mNaV1.9 currents in Scn11a+/+ mice. Using the reporter molecule CD4, we observed an increased distribution of hLoop1 on the cell surface of PRMT7-overexpressing HKE293T cells. Furthermore, we found that PRMT7 mainly binds to residues 563 to 566 within the first intracellular loop of hNaV1.9 (hLoop1) and methylates hLoop1 at arginine residue 519. Moreover, overexpression of PRMT7 increased the number of action potential fired in DRG neurons of Scn11a+/+ mice but not Scn11a-/- mice. However, DS-437 significantly inhibited the action potential frequency of DRG neurons and relieved pain hypersensitivity in Scn11aA796G/A796G mice. In summary, our observations revealed that PRMT7 modulates neuronal excitability by regulating NaV1.9 currents, which may provide a potential method for pain treatment.


Subject(s)
Ganglia, Spinal , Protein-Arginine N-Methyltransferases , Action Potentials/genetics , Animals , Mice , NAV1.8 Voltage-Gated Sodium Channel/genetics , NAV1.9 Voltage-Gated Sodium Channel/genetics , Neurons/metabolism , Pain/genetics , Pain/metabolism , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism
10.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Article in English | MEDLINE | ID: mdl-34911758

ABSTRACT

Receptors for bitter, sugar, and other tastes have been identified in the fruit fly Drosophila melanogaster, while a broadly tuned receptor for the taste of acid has been elusive. Previous work showed that such a receptor was unlikely to be encoded by a gene within one of the two major families of taste receptors in Drosophila, the "gustatory receptors" and "ionotropic receptors." Here, to identify the acid taste receptor, we tested the contributions of genes encoding proteins distantly related to the mammalian Otopertrin1 (OTOP1) proton channel that functions as a sour receptor in mice. RNA interference (RNAi) knockdown or mutation by CRISPR/Cas9 of one of the genes, Otopetrin-Like A (OtopLA), but not of the others (OtopLB or OtopLC) severely impaired the behavioral rejection to a sweet solution laced with high levels of HCl or carboxylic acids and greatly reduced acid-induced action potentials measured from taste hairs. An isoform of OtopLA that we isolated from the proboscis was sufficient to restore behavioral sensitivity and acid-induced action potential firing in OtopLA mutant flies. At lower concentrations, HCl was attractive to the flies, and this attraction was abolished in the OtopLA mutant. Cell type-specific rescue experiments showed that OtopLA functions in distinct subsets of gustatory receptor neurons for repulsion and attraction to high and low levels of protons, respectively. This work highlights a functional conservation of a sensory receptor in flies and mammals and shows that the same receptor can function in both appetitive and repulsive behaviors.


Subject(s)
Acids/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , Membrane Transport Proteins/metabolism , Taste/physiology , Action Potentials/genetics , Animals , Drosophila Proteins/genetics , Gene Silencing , Hydrogen-Ion Concentration , Membrane Transport Proteins/genetics , Mutation , Protein Isoforms , Taste Buds/metabolism , Taste Buds/physiology
11.
Clin Transl Med ; 11(11): e609, 2021 11.
Article in English | MEDLINE | ID: mdl-34841674

ABSTRACT

BACKGROUND AND AIMS: Mutations in KCNH2 cause long or short QT syndromes (LQTS or SQTS) predisposing to life-threatening arrhythmias. Over 1000 hERG variants have been described by clinicians, but most remain to be characterised. The objective is to standardise and accelerate the phenotyping process to contribute to clinician diagnosis and patient counselling. In silico evaluation was also included to characterise the structural impact of the variants. METHODS: We selected 11 variants from known LQTS patients and two variants for which diagnosis was problematic. Using the Gibson assembly strategy, we efficiently introduced mutations in hERG cDNA despite GC-rich sequences. A pH-sensitive fluorescent tag was fused to hERG for efficient evaluation of channel trafficking. An optimised 35-s patch-clamp protocol was developed to evaluate hERG channel activity in transfected cells. R software was used to speed up analyses. RESULTS: In the present work, we observed a good correlation between cell surface expression, assessed by the pH-sensitive tag, and current densities. Also, we showed that the new biophysical protocol allows a significant gain of time in recording ion channel properties and provides extensive information on WT and variant channel biophysical parameters, that can all be recapitulated in a single parameter defined herein as the repolarisation power. The impacts of the variants on channel structure were also reported where structural information was available. These three readouts (trafficking, repolarisation power and structural impact) define three pathogenicity indexes that may help clinical diagnosis. CONCLUSIONS: Fast-track characterisation of KCNH2 genetic variants shows its relevance to discriminate mutants that affect hERG channel activity from variants with undetectable effects. It also helped the diagnosis of two new variants. This information is meant to fill a patient database, as a basis for personalised medicine. The next steps will be to further accelerate the process using an automated patch-clamp system.


Subject(s)
Arrhythmias, Cardiac/genetics , ERG1 Potassium Channel/genetics , Long QT Syndrome/genetics , Action Potentials/genetics , Humans , Transcriptional Regulator ERG/genetics , Virulence/drug effects
12.
Epilepsy Res ; 178: 106824, 2021 12.
Article in English | MEDLINE | ID: mdl-34847423

ABSTRACT

SCN8A, encoding the voltage-gated sodium channel subunit NaV1.6, has been associated with a wide spectrum of neuropsychiatric disorders. Missense variants in SCN8A which increase the channel activity can cause a severe developmental and epileptic encephalopathy (DEE). One DEE variant (p.(Arg223Gly)) was described to cause a predominant loss-of-function (LOF) mechanism when expressed in neuroblastoma cells, which is not consistent with the genotype-phenotype correlations in this gene. To resolve this discrepancy and understand the pathophysiological mechanism of this variant, we performed comprehensive electrophysiological studies in both neuroblastoma cells and primary hippocampal neuronal cultures. Although we also found that p.(Arg223Gly) significantly decreased Na+ current density and enhanced fast inactivation compared to the wild type (WT) channel in transfected neuroblastoma cells (both LOF mechanisms), it also caused a strong hyperpolarizing shift of steady-state activation and accelerated the recovery from fast inactivation (both gain-of-function (GOF) mechanisms). In cultured neurons transfected with mutant vs. WT NaV1.6 channels, we found more depolarized resting membrane potentials and a decreased rheobase leading to enhanced action potential firing. We conclude that SCN8A p.(Arg223Gly) leads to a net GOF resulting in neuronal hyperexcitability and a higher firing rate, fitting with the central role of GOF mechanisms in DEE.


Subject(s)
Epilepsy , NAV1.6 Voltage-Gated Sodium Channel , Action Potentials/genetics , Epilepsy/genetics , Gain of Function Mutation , Humans , Membrane Potentials/physiology , Mutation , NAV1.6 Voltage-Gated Sodium Channel/genetics
13.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Article in English | MEDLINE | ID: mdl-34686597

ABSTRACT

Complex body movements require complex dynamics and coordination among neurons in motor cortex. Conversely, a long-standing theoretical notion supposes that if many neurons in motor cortex become excessively synchronized, they may lack the necessary complexity for healthy motor coding. However, direct experimental support for this idea is rare and underlying mechanisms are unclear. Here we recorded three-dimensional body movements and spiking activity of many single neurons in motor cortex of rats with enhanced synaptic inhibition and a transgenic rat model of Rett syndrome (RTT). For both cases, we found a collapse of complexity in the motor system. Reduced complexity was apparent in lower-dimensional, stereotyped brain-body interactions, neural synchrony, and simpler behavior. Our results demonstrate how imbalanced inhibition can cause excessive synchrony among movement-related neurons and, consequently, a stereotyped motor code. Excessive inhibition and synchrony may underlie abnormal motor function in RTT.


Subject(s)
Brain/physiopathology , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/physiology , Motor Activity/genetics , Motor Activity/physiology , Rett Syndrome/genetics , Rett Syndrome/physiopathology , Action Potentials/genetics , Action Potentials/physiology , Animals , Disease Models, Animal , Electrophysiological Phenomena , Female , Gene Knockdown Techniques , Humans , Male , Methyl-CpG-Binding Protein 2/deficiency , Models, Neurological , Motor Cortex/physiopathology , Motor Neurons/physiology , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Stereotyped Behavior/physiology
14.
Int J Mol Sci ; 22(13)2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34281161

ABSTRACT

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are used for genetic models of cardiac diseases. We report an arrhythmia syndrome consisting of Early Repolarization Syndrome (ERS) and Short QT Syndrome (SQTS). The index patient (MMRL1215) developed arrhythmia-mediated syncope after electrocution and was found to carry six mutations. Functional alterations resulting from these mutations were examined in patient-derived hiPSC-CMs. Electrophysiological recordings were made in hiPSC-CMs from MMRL1215 and healthy controls. ECG analysis of the index patient showed slurring of the QRS complex and QTc = 326 ms. Action potential (AP) recordings from MMRL1215 myocytes showed slower spontaneous activity and AP duration was shorter. Field potential recordings from MMRL1215 hiPSC-CMs lack a "pseudo" QRS complex suggesting reduced inward current(s). Voltage clamp analysis of ICa showed no difference in the magnitude of current. Measurements of INa reveal a 60% reduction in INa density in MMRL1215 hiPSC-CMs. Steady inactivation and recovery of INa was unaffected. mRNA analysis revealed ANK2 and SCN5A are significantly reduced in hiPSC-CM derived from MMRL1215, consistent with electrophysiological recordings. The polygenic cause of ERS/SQTS phenotype is likely due to a loss of INa due to a mutation in PKP2 coupled with and a gain of function in IK,ATP due to a mutation in ABCC9.


Subject(s)
Arrhythmias, Cardiac/genetics , Myocytes, Cardiac/metabolism , Action Potentials/genetics , Adenosine Triphosphate/metabolism , Ankyrins/genetics , Ankyrins/metabolism , Arrhythmias, Cardiac/physiopathology , Electrophysiological Phenomena , Genetic Variation/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/physiology , Myocytes, Cardiac/physiology , NAV1.5 Voltage-Gated Sodium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Patch-Clamp Techniques/methods , Plakophilins/genetics , Potassium/metabolism , Sodium/metabolism , Sulfonylurea Receptors/genetics
15.
Sci Rep ; 11(1): 15437, 2021 07 29.
Article in English | MEDLINE | ID: mdl-34326453

ABSTRACT

The serotonin 5-HT2A receptor (5-HT2AR) has been receiving increasing attention because its genetic variants have been associated with a variety of neurological diseases. To elucidate the pathogenesis of the neurological diseases associated with 5-HT2AR gene (HTR2A) variants, we have previously established a protocol to induce HTR2A-expressing neurons from human-induced pluripotent stem cells (hiPSCs). Here, we investigated the maturation stages and electrophysiological properties of HTR2A-positive neurons induced from hiPSCs and constructed an HTR2A promoter-specific reporter lentivirus to label the neurons. We found that neuronal maturity increased over time and that HTR2A expression was induced at the late stage of neuronal maturation. Furthermore, we demonstrated successful labelling of the HTR2A-positive neurons, which had fluorescence and generated repetitive action potentials in response to depolarizing currents and an inward current during the application of TCB-2, a selective agonist of 5-HT2ARs, respectively. These results indicated that our in vitro model mimicked the in vivo dynamics of 5-HT2AR. Therefore, in vitro monitoring of the function of HTR2A-positive neurons induced from hiPSCs could help elucidate the pathophysiological mechanisms of neurological diseases associated with genetic variations of the HTR2A gene.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Neurogenesis/genetics , Neurons/cytology , Neurons/metabolism , Receptor, Serotonin, 5-HT2A/metabolism , Signal Transduction/genetics , Action Potentials/genetics , Adult , Blood Donors , Cells, Cultured , Healthy Volunteers , Humans , Patch-Clamp Techniques/methods , Promoter Regions, Genetic , Receptor, Serotonin, 5-HT2A/genetics , Transfection
16.
Glia ; 69(10): 2419-2428, 2021 10.
Article in English | MEDLINE | ID: mdl-34139039

ABSTRACT

Elovl5 elongates fatty acids with 18 carbon atoms and in cooperation with other enzymes guarantees the normal levels of very long-chain fatty acids, which are necessary for a proper membrane structure. Action potential conduction along myelinated axons depends on structural integrity of myelin, which is maintained by a correct amount of fatty acids and a proper interaction between fatty acids and myelin proteins. We hypothesized that in Elovl5-/- mice, the lack of elongation of Elovl5 substrates might cause alterations of myelin structure. The analysis of myelin ultrastructure showed an enlarged periodicity with reduced G-ratio across all axonal diameters. We hypothesized that the structural alteration of myelin might affect the conduction of action potentials. The sciatic nerve conduction velocity was significantly reduced without change in the amplitude of the nerve compound potential, suggesting a myelin defect without a concomitant axonal degeneration. Since Elovl5 is important in attaining normal amounts of polyunsaturated fatty acids, which are the principal component of myelin, we performed a lipidomic analysis of peripheral nerves of Elovl5-deficient mice. The results revealed an unbalance, with reduction of fatty acids longer than 18 carbon atoms relative to shorter ones. In addition, the ratio of saturated to unsaturated fatty acids was strongly increased. These findings point out the essential role of Elovl5 in the peripheral nervous system in supporting the normal structure of myelin, which is the key element for a proper conduction of electrical signals along myelinated nerves.


Subject(s)
Axons , Myelin Sheath , Action Potentials/genetics , Animals , Axons/physiology , Fatty Acid Elongases/genetics , Fatty Acids/metabolism , Mice , Myelin Sheath/metabolism , Neural Conduction/genetics , Peripheral Nerves
17.
Int J Mol Sci ; 22(9)2021 May 01.
Article in English | MEDLINE | ID: mdl-34062838

ABSTRACT

BACKGROUND: Phosphodiesterases (PDE) critically regulate myocardial cAMP and cGMP levels. PDE2 is stimulated by cGMP to hydrolyze cAMP, mediating a negative crosstalk between both pathways. PDE2 upregulation in heart failure contributes to desensitization to ß-adrenergic overstimulation. After isoprenaline (ISO) injections, PDE2 overexpressing mice (PDE2 OE) were protected against ventricular arrhythmia. Here, we investigate the mechanisms underlying the effects of PDE2 OE on susceptibility to arrhythmias. METHODS: Cellular arrhythmia, ion currents, and Ca2+-sparks were assessed in ventricular cardiomyocytes from PDE2 OE and WT littermates. RESULTS: Under basal conditions, action potential (AP) morphology were similar in PDE2 OE and WT. ISO stimulation significantly increased the incidence of afterdepolarizations and spontaneous APs in WT, which was markedly reduced in PDE2 OE. The ISO-induced increase in ICaL seen in WT was prevented in PDE2 OE. Moreover, the ISO-induced, Epac- and CaMKII-dependent increase in INaL and Ca2+-spark frequency was blunted in PDE2 OE, while the effect of direct Epac activation was similar in both groups. Finally, PDE2 inhibition facilitated arrhythmic events in ex vivo perfused WT hearts after reperfusion injury. CONCLUSION: Higher PDE2 abundance protects against ISO-induced cardiac arrhythmia by preventing the Epac- and CaMKII-mediated increases of cellular triggers. Thus, activating myocardial PDE2 may represent a novel intracellular anti-arrhythmic therapeutic strategy in HF.


Subject(s)
Arrhythmias, Cardiac/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Cyclic Nucleotide Phosphodiesterases, Type 2/genetics , Guanine Nucleotide Exchange Factors/genetics , Action Potentials/drug effects , Action Potentials/genetics , Animals , Anti-Arrhythmia Agents/pharmacology , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/pathology , Calcium/metabolism , Cyclic AMP/genetics , Cyclic GMP/genetics , Gene Expression Regulation/genetics , Heart/physiopathology , Humans , Isoproterenol/toxicity , Mice , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism
18.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Article in English | MEDLINE | ID: mdl-34021086

ABSTRACT

In cardiomyocytes, NaV1.5 channels mediate initiation and fast propagation of action potentials. The Ca2+-binding protein calmodulin (CaM) serves as a de facto subunit of NaV1.5. Genetic studies and atomic structures suggest that this interaction is pathophysiologically critical, as human mutations within the NaV1.5 carboxy-terminus that disrupt CaM binding are linked to distinct forms of life-threatening arrhythmias, including long QT syndrome 3, a "gain-of-function" defect, and Brugada syndrome, a "loss-of-function" phenotype. Yet, how a common disruption in CaM binding engenders divergent effects on NaV1.5 gating is not fully understood, though vital for elucidating arrhythmogenic mechanisms and for developing new therapies. Here, using extensive single-channel analysis, we find that the disruption of Ca2+-free CaM preassociation with NaV1.5 exerts two disparate effects: 1) a decrease in the peak open probability and 2) an increase in persistent NaV openings. Mechanistically, these effects arise from a CaM-dependent switch in the NaV inactivation mechanism. Specifically, CaM-bound channels preferentially inactivate from the open state, while those devoid of CaM exhibit enhanced closed-state inactivation. Further enriching this scheme, for certain mutant NaV1.5, local Ca2+ fluctuations elicit a rapid recruitment of CaM that reverses the increase in persistent Na current, a factor that may promote beat-to-beat variability in late Na current. In all, these findings identify the elementary mechanism of CaM regulation of NaV1.5 and, in so doing, unravel a noncanonical role for CaM in tuning ion channel gating. Furthermore, our results furnish an in-depth molecular framework for understanding complex arrhythmogenic phenotypes of NaV1.5 channelopathies.


Subject(s)
Action Potentials/genetics , Calcium/metabolism , Calmodulin/chemistry , Myocytes, Cardiac/metabolism , NAV1.5 Voltage-Gated Sodium Channel/chemistry , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/pathology , Binding Sites , Calcium Signaling , Calmodulin/genetics , Calmodulin/metabolism , Fluorescence Resonance Energy Transfer , Gene Expression , HEK293 Cells , Humans , Ion Channel Gating , Kinetics , Models, Molecular , Mutation , Myocytes, Cardiac/cytology , NAV1.5 Voltage-Gated Sodium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Patch-Clamp Techniques , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sodium/metabolism
19.
Hum Mol Genet ; 30(10): 902-907, 2021 05 29.
Article in English | MEDLINE | ID: mdl-33822038

ABSTRACT

De novo mutations of neuronal sodium channels are responsible for ~5% of developmental and epileptic encephalopathies, but the role of somatic mutation of these genes in adult-onset epilepsy is not known. We evaluated the role of post-zygotic somatic mutation by adult activation of a conditional allele of the pathogenic variant Scn8aR1872W in the mouse. After activation of CAG-Cre-ER by tamoxifen, the mutant transcript was expressed throughout the brain at a level proportional to tamoxifen dose. The threshold for generation of spontaneous seizures was reached when the proportion of mutant transcript reached 8% of total Scn8a transcript, equivalent to expression of the epileptogenic variant in 16% of heterozygous neurons. Expression below this level did not result in spontaneous seizures, but did increase susceptibility to seizure induction by kainate or auditory stimulation. The relatively high threshold for spontaneous seizures indicates that somatic mutation of sodium channels is unlikely to contribute to the elevated incidence of epilepsy in the elderly population. However, somatic mutation could increase susceptibility to other seizure stimuli.


Subject(s)
Epilepsy/genetics , NAV1.6 Voltage-Gated Sodium Channel/genetics , Seizures/genetics , Action Potentials/genetics , Alleles , Animals , Disease Models, Animal , Epilepsy/physiopathology , Gene Expression Regulation/drug effects , Heterozygote , Humans , Mice , Mutation/genetics , Neurons/metabolism , Neurons/pathology , Seizures/pathology , Tamoxifen/pharmacology
20.
Circulation ; 144(3): 229-242, 2021 07 20.
Article in English | MEDLINE | ID: mdl-33910361

ABSTRACT

BACKGROUND: Genetic variants in SCN10A, encoding the neuronal voltage-gated sodium channel NaV1.8, are strongly associated with atrial fibrillation, Brugada syndrome, cardiac conduction velocities, and heart rate. The cardiac function of SCN10A has not been resolved, however, and diverging mechanisms have been proposed. Here, we investigated the cardiac expression of SCN10A and the function of a variant-sensitive intronic enhancer previously linked to the regulation of SCN5A, encoding the major essential cardiac sodium channel NaV1.5. METHODS: The expression of SCN10A was investigated in mouse and human hearts. With the use of CRISPR/Cas9 genome editing, the mouse intronic enhancer was disrupted, and mutant mice were characterized by transcriptomic and electrophysiological analyses. The association of genetic variants at SCN5A-SCN10A enhancer regions and gene expression were evaluated by genome-wide association studies single-nucleotide polymorphism mapping and expression quantitative trait loci analysis. RESULTS: We found that cardiomyocytes of the atria, sinoatrial node, and ventricular conduction system express a short transcript comprising the last 7 exons of the gene (Scn10a-short). Transcription occurs from an intronic enhancer-promoter complex, whereas full-length Scn10a transcript was undetectable in the human and mouse heart. Expression quantitative trait loci analysis revealed that the genetic variants in linkage disequilibrium with genetic variant rs6801957 in the intronic enhancer associate with SCN10A transcript levels in the heart. Genetic modification of the enhancer in the mouse genome led to reduced cardiac Scn10a-short expression in atria and ventricles, reduced cardiac sodium current in atrial cardiomyocytes, atrial conduction slowing and arrhythmia, whereas the expression of Scn5a, the presumed enhancer target gene, remained unaffected. In patch-clamp transfection experiments, expression of Scn10a-short-encoded NaV1.8-short increased NaV1.5-mediated sodium current. We propose that noncoding genetic variation modulates transcriptional regulation of Scn10a-short in cardiomyocytes that impacts NaV1.5-mediated sodium current and heart rhythm. CONCLUSIONS: Genetic variants in and around SCN10A modulate enhancer function and expression of a cardiac-specific SCN10A-short transcript. We propose that noncoding genetic variation modulates transcriptional regulation of a functional C-terminal portion of NaV1.8 in cardiomyocytes that impacts on NaV1.5 function, cardiac conduction velocities, and arrhythmia susceptibility.


Subject(s)
Enhancer Elements, Genetic , Gene Expression Regulation , Heart Conduction System/physiology , Introns , NAV1.8 Voltage-Gated Sodium Channel/genetics , Action Potentials/genetics , Animals , Biomarkers , Cardiac Conduction System Disease/diagnosis , Cardiac Conduction System Disease/genetics , Cardiac Conduction System Disease/physiopathology , Cardiac Electrophysiology , Disease Susceptibility , Electrocardiography , Female , Genetic Association Studies , Male , Mice , NAV1.5 Voltage-Gated Sodium Channel/genetics , Quantitative Trait Loci , Quantitative Trait, Heritable
SELECTION OF CITATIONS
SEARCH DETAIL
...