Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.801
Filter
1.
Am Nat ; 204(1): 43-54, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38857343

ABSTRACT

AbstractLocal adaptation frequently evolves in patches or environments that are connected via migration. In these cases, genomic regions that are linked to a locally adapted locus experience reduced effective migration rates. Via individual-based simulations of a two-patch system, we show that this reduced effective migration results in the accumulation of conditionally deleterious mutations, but not universally deleterious mutations, adjacent to adaptive loci. When there is redundancy in the genetic basis of local adaptation (i.e., genotypic redundancy), turnover of locally adapted polymorphisms allows conditionally deleterious mutation load to be purged. The amount of mutational load that accumulates adjacent to locally adapted loci is dependent on redundancy, recombination rate, migration rate, population size, strength of selection, and the phenotypic effect size of adaptive alleles. Our results highlight the need to be cautious when interpreting patterns of local adaptation at the level of phenotype or fitness, as the genetic basis of local adaptation can be transient, and evolution may confer a degree of maladaptation to nonlocal environments.


Subject(s)
Genotype , Models, Genetic , Genomic Islands , Adaptation, Physiological/genetics , Adaptation, Biological , Selection, Genetic , Mutation , Biological Evolution , Mutation Accumulation
2.
Am Nat ; 204(1): 15-29, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38857340

ABSTRACT

AbstractAdaptation to replicated environmental conditions can be remarkably predictable, suggesting that parallel evolution may be a common feature of adaptive radiation. An open question, however, is how phenotypic variation itself evolves during repeated adaptation. Here, we use a dataset of morphological measurements from 35 populations of threespine stickleback, consisting of 16 parapatric lake-stream pairs and three marine populations, to understand how phenotypic variation has evolved during transitions from marine to freshwater environments and during subsequent diversification across the lake-stream boundary. We find statistical support for divergent phenotypic covariance (P) across populations, with most diversification of P occurring among freshwater populations. Despite a close correspondence between within-population phenotypic variation and among-population divergence, we find that variation in P is unrelated to total variation in population means across the set of populations. For lake-stream pairs, we find that theoretical predictions for microevolutionary change can explain more than 30% of divergence in P matrices across the habitat boundary. Together, our results indicate that divergence in variance structure occurs primarily in dimensions of trait space with low phenotypic integration, correlated with disparate lake and stream environments. Our findings illustrate how conserved and divergent features of multivariate variation can underlie adaptive radiation.


Subject(s)
Biological Evolution , Lakes , Smegmamorpha , Animals , Smegmamorpha/genetics , Smegmamorpha/physiology , Smegmamorpha/anatomy & histology , Ecosystem , Phenotype , Adaptation, Physiological , Rivers , Adaptation, Biological
3.
Mol Biol Evol ; 41(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38693911

ABSTRACT

Modeling the rate at which adaptive phenotypes appear in a population is a key to predicting evolutionary processes. Given random mutations, should this rate be modeled by a simple Poisson process, or is a more complex dynamics needed? Here we use analytic calculations and simulations of evolving populations on explicit genotype-phenotype maps to show that the introduction of novel phenotypes can be "bursty" or overdispersed. In other words, a novel phenotype either appears multiple times in quick succession or not at all for many generations. These bursts are fundamentally caused by statistical fluctuations and other structure in the map from genotypes to phenotypes. Their strength depends on population parameters, being highest for "monomorphic" populations with low mutation rates. They can also be enhanced by additional inhomogeneities in the mapping from genotypes to phenotypes. We mainly investigate the effect of bursts using the well-studied genotype-phenotype map for RNA secondary structure, but find similar behavior in a lattice protein model and in Richard Dawkins's biomorphs model of morphological development. Bursts can profoundly affect adaptive dynamics. Most notably, they imply that fitness differences play a smaller role in determining which phenotype fixes than would be the case for a Poisson process without bursts.


Subject(s)
Models, Genetic , Phenotype , Genotype , Computer Simulation , Adaptation, Physiological/genetics , Evolution, Molecular , Mutation , Biological Evolution , Poisson Distribution , RNA/genetics , Adaptation, Biological/genetics
4.
Mol Ecol ; 33(12): e17369, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38713101

ABSTRACT

As modern humans ventured out of Africa and dispersed around the world, they faced novel environmental challenges that led to geographic adaptations including skin colour. Over the long history of human evolution, skin colour has changed dramatically, showing tremendous diversity across different geographical regions, for example, the majority of individuals from the expansive lands of Africa have darker skin, whereas the majority of people from Eurasia exhibit lighter skin. What adaptations did lighter skin confer upon modern humans as they migrated from Africa to Eurasia? What genetic mechanisms underlie the diversity of skin colour observed in different populations? In recent years, scientists have gradually gained a deeper understanding of the interactions between pigmentation gene and skin colour through population-based genomic studies of different groups around the world, particularly in East Asia and Africa. In this review, we summarize our current understanding of 26 skin colour-related pigmentation genes and 48 SNPs that influence skin colour. Important pigmentation genes across three major populations are described in detail: MFSD12, SLC24A5, PDPK1 and DDB1/CYB561A3/TMEM138 influence skin colour in African populations; OCA2, KITLG, SLC24A2, GNPAT and PAH are key to the evolution of skin pigmentation in East Asian populations; and SLC24A5, SLC45A2, TYR, TYRP1, ASIP, MC1R and IRF4 significantly contribute to the lightening of skin colour in European populations. We summarized recent findings in genomic studies of skin colour in populations that implicate diverse geographic environments, local adaptation among populations, gene flow and multi-gene interactions as factors influencing skin colour diversity.


Subject(s)
Polymorphism, Single Nucleotide , Skin Pigmentation , Skin Pigmentation/genetics , Humans , Phenotype , Biological Evolution , Adaptation, Physiological/genetics , Genetics, Population , Africa , Adaptation, Biological/genetics
5.
J Evol Biol ; 37(6): 605-615, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38683160

ABSTRACT

We know that heritable variation is abundant, and that selection causes all but the smallest populations to rapidly shift beyond their original trait distribution. So then, what limits the range of a species? There are physical constraints and also population genetic limits to the effectiveness of selection, ultimately set by population size. Global adaptation, where the same genotype is favoured over the whole range, is most efficient when based on a multitude of weakly selected alleles and is effective even when local demes are small, provided that there is some gene flow. In contrast, local adaptation is sensitive to gene flow and may require alleles with substantial effect. How can populations combine the advantages of large effective size with the ability to specialise into local niches? To what extent does reproductive isolation help resolve this tension? I address these questions using eco-evolutionary models of polygenic adaptation, contrasting discrete demes with continuousspace.


Subject(s)
Selection, Genetic , Animals , Biological Evolution , Gene Flow , Adaptation, Biological , Adaptation, Physiological/genetics , Reproductive Isolation , Models, Genetic
6.
mBio ; 15(6): e0058124, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38683013

ABSTRACT

Recombination of short DNA fragments via horizontal gene transfer (HGT) can introduce beneficial alleles, create genomic disharmony through negative epistasis, and create adaptive gene combinations through positive epistasis. For non-core (accessory) genes, the negative epistatic cost is likely to be minimal because the incoming genes have not co-evolved with the recipient genome and are frequently observed as tightly linked cassettes with major effects. By contrast, interspecific recombination in the core genome is expected to be rare because disruptive allelic replacement is likely to introduce negative epistasis. Why then is homologous recombination common in the core of bacterial genomes? To understand this enigma, we take advantage of an exceptional model system, the common enteric pathogens Campylobacter jejuni and C. coli that are known for very high magnitude interspecies gene flow in the core genome. As expected, HGT does indeed disrupt co-adapted allele pairings, indirect evidence of negative epistasis. However, multiple HGT events enable recovery of the genome's co-adaption between introgressing alleles, even in core metabolism genes (e.g., formate dehydrogenase). These findings demonstrate that, even for complex traits, genetic coalitions can be decoupled, transferred, and independently reinstated in a new genetic background-facilitating transition between fitness peaks. In this example, the two-step recombinational process is associated with C. coli that are adapted to the agricultural niche.IMPORTANCEGenetic exchange among bacteria shapes the microbial world. From the acquisition of antimicrobial resistance genes to fundamental questions about the nature of bacterial species, this powerful evolutionary force has preoccupied scientists for decades. However, the mixing of genes between species rests on a paradox: 0n one hand, promoting adaptation by conferring novel functionality; on the other, potentially introducing disharmonious gene combinations (negative epistasis) that will be selected against. Taking an interdisciplinary approach to analyze natural populations of the enteric bacteria Campylobacter, an ideal example of long-range admixture, we demonstrate that genes can independently transfer across species boundaries and rejoin in functional networks in a recipient genome. The positive impact of two-gene interactions appears to be adaptive by expanding metabolic capacity and facilitating niche shifts through interspecific hybridization. This challenges conventional ideas and highlights the possibility of multiple-step evolution of multi-gene traits by interspecific introgression.


Subject(s)
Campylobacter coli , Campylobacter jejuni , Epistasis, Genetic , Gene Transfer, Horizontal , Genome, Bacterial , Recombination, Genetic , Campylobacter jejuni/genetics , Campylobacter coli/genetics , Evolution, Molecular , Adaptation, Physiological/genetics , Adaptation, Biological/genetics
8.
Phys Rev E ; 109(2-1): 024413, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38491626

ABSTRACT

This paper introduces an approach to quantifying ecological resilience in biological systems, particularly focusing on noisy systems responding to episodic disturbances with sudden adaptations. Incorporating concepts from nonequilibrium statistical mechanics, we propose a measure termed "ecological resilience through adaptation," specifically tailored to noisy, forced systems that undergo physiological adaptation in the face of stressful environmental changes. Randomness plays a key role, accounting for model uncertainty and the inherent variability in the dynamical response among components of biological systems. Our measure of resilience is rooted in the probabilistic description of states within these systems and is defined in terms of the dynamics of the ensemble average of a model-specific observable quantifying success or well-being. Our approach utilizes stochastic linear response theory to compute how the expected success of a system, originally in statistical equilibrium, dynamically changes in response to a environmental perturbation and a subsequent adaptation. The resulting mathematical derivations allow for the estimation of resilience in terms of ensemble averages of simulated or experimental data. Finally, through a simple but clear conceptual example, we illustrate how our resilience measure can be interpreted and compared to other existing frameworks in the literature. The methodology is general but inspired by applications in plant systems, with the potential for broader application to complex biological processes.


Subject(s)
Resilience, Psychological , Adaptation, Biological , Models, Biological
9.
Evolution ; 78(6): 1039-1053, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38477032

ABSTRACT

A long-standing problem in evolutionary theory is to clarify in what sense (if any) natural selection cumulatively improves the design of organisms. Various concepts, such as fitness and inclusive fitness, have been proposed to resolve this problem. In addition, there have been attempts to replace the original problem with more tractable questions, such as whether a given gene or trait is favored by selection. Here, we ask what theoretical properties the concept fitness should possess to encapsulate the improvement criterion required to talk meaningfully about adaptive evolution. We argue that natural selection tends to shape phenotypes based on the causal properties of individuals and that this tendency is, therefore, best captured by a fitness concept that focuses on these properties. We highlight a fitness concept that meets this role under broad conditions but requires adjustments in our conceptual understanding of adaptive evolution. These adjustments combine elements of Dawkinsian gene selectionism and Egbert Leigh's "parliament of genes."


Subject(s)
Biological Evolution , Genetic Fitness , Selection, Genetic , Adaptation, Biological , Animals , Models, Genetic , Phenotype , Adaptation, Physiological/genetics
10.
Methods Mol Biol ; 2760: 35-56, 2024.
Article in English | MEDLINE | ID: mdl-38468081

ABSTRACT

Establishing a mapping between (from and to) the functionality of interest and the underlying network structure (design principles) remains a crucial step toward understanding and design of bio-systems. Perfect adaptation is one such crucial functionality that enables every living organism to regulate its essential activities in the presence of external disturbances. Previous approaches to deducing the design principles for adaptation have either relied on computationally burdensome brute-force methods or rule-based design strategies detecting only a subset of all possible adaptive network structures. This chapter outlines a scalable and generalizable method inspired by systems theory that unravels an exhaustive set of adaptation-capable structures. We first use the well-known performance parameters to characterize perfect adaptation. These performance parameters are then mapped back to a few parameters (poles, zeros, gain) characteristic of the underlying dynamical system constituted by the rate equations. Therefore, the performance parameters evaluated for the scenario of perfect adaptation can be expressed as a set of precise mathematical conditions involving the system parameters. Finally, we use algebraic graph theory to translate these abstract mathematical conditions to certain structural requirements for adaptation. The proposed algorithm does not assume any particular dynamics and is applicable to networks of any size. Moreover, the results offer a significant advancement in the realm of understanding and designing complex biochemical networks.


Subject(s)
Adaptation, Biological , Algorithms , Models, Biological
11.
BMC Ecol Evol ; 24(1): 22, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355429

ABSTRACT

BACKGROUND: Biological adaptation manifests itself at the interface of different biologically relevant 'levels', such as ecology, performance, and morphology. Integrated studies at this interface are scarce due to practical difficulties in study design. We present a multilevel analysis, in which we combine evidence from habitat utilization, leaping performance and limb bone morphology of four species of tamarins to elucidate correlations between these 'levels'. RESULTS: We conducted studies of leaping behavior in the field and in a naturalistic park and found significant differences in support use and leaping performance. Leontocebus nigrifrons leaps primarily on vertical, inflexible supports, with vertical body postures, and covers greater leaping distances on average. In contrast, Saguinus midas and S. imperator use vertical and horizontal supports for leaping with a relatively similar frequency. S. mystax is similar to S. midas and S. imperator in the use of supports, but covers greater leaping distances on average, which are nevertheless shorter than those of L. nigrifrons. We assumed these differences to be reflected in the locomotor morphology, too, and compared various morphological features of the long bones of the limbs. According to our performance and habitat utilization data, we expected the long bone morphology of L. nigrifrons to reflect the largest potential for joint torque generation and stress resistance, because we assume longer leaps on vertical supports to exert larger forces on the bones. For S. mystax, based on our performance data, we expected the potential for torque generation to be intermediate between L. nigrifrons and the other two Saguinus species. Surprisingly, we found S. midas and S. imperator having relatively more robust morphological structures as well as relatively larger muscle in-levers, and thus appearing better adapted to the stresses involved in leaping than the other two. CONCLUSION: This study demonstrates the complex ways in which behavioral and morphological 'levels' map onto each other, cautioning against oversimplification of ecological profiles when using large interspecific eco-morphological studies to make adaptive evolutionary inferences.


Subject(s)
Ecosystem , Saguinus , Animals , Adaptation, Biological
12.
Mol Biol Evol ; 41(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38243866

ABSTRACT

Vascular plants have segmented body axes with iterative nodes and internodes. Appropriate node initiation and internode elongation are fundamental to plant fitness and crop yield; however, how these events are spatiotemporally coordinated remains elusive. We show that in barley (Hordeum vulgare L.), selections during domestication have extended the apical meristematic phase to promote node initiation, but constrained subsequent internode elongation. In both vegetative and reproductive phases, internode elongation displays a dynamic proximal-distal gradient, and among subpopulations of domesticated barleys worldwide, node initiation and proximal internode elongation are associated with latitudinal and longitudinal gradients, respectively. Genetic and functional analyses suggest that, in addition to their converging roles in node initiation, flowering-time genes have been repurposed to specify the timing and duration of internode elongation. Our study provides an integrated view of barley node initiation and internode elongation and suggests that plant architecture should be recognized as a collection of dynamic phytomeric units in the context of crop adaptive evolution.


Subject(s)
Adaptation, Biological , Hordeum , Hordeum/genetics , Hordeum/growth & development , Domestication
13.
Science ; 383(6678): 108-113, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38175904

ABSTRACT

Composite traits involve multiple components that, only when combined, gain a new synergistic function. Thus, how they evolve remains a puzzle. We combined field experiments, microscopy, chemical analyses, and laser Doppler vibrometry with comparative phylogenetic analyses to show that two carnivorous Nepenthes pitcher plant species independently evolved similar adaptations in three distinct traits to acquire a new, composite trapping mechanism. Comparative analyses suggest that this new trait arose convergently through "spontaneous coincidence" of the required trait combination, rather than directional selection in the component traits. Our results indicate a plausible mechanism for composite trait evolution and highlight the importance of stochastic phenotypic variation as a facilitator of evolutionary novelty.


Subject(s)
Adaptation, Biological , Biological Evolution , Carnivorous Plant , Caryophyllales , Multifactorial Inheritance , Phylogeny , Carnivorous Plant/classification , Carnivorous Plant/genetics , Caryophyllales/classification , Caryophyllales/genetics , Adaptation, Biological/genetics
14.
Science ; 382(6666): 59-63, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37797028

ABSTRACT

Herbaria are undergoing a renaissance as valuable sources of genomic data for exploring plant evolution, ecology, and diversity. Ancient DNA retrieved from herbarium specimens can provide unprecedented glimpses into past plant communities, their interactions with biotic and abiotic factors, and the genetic changes that have occurred over time. Here, we highlight recent advances in the field of herbarium genomics and discuss the challenges and opportunities of combining data from modern and time-stamped historical specimens. We also describe how integrating herbarium genomics data with other data types can yield substantial insights into the evolutionary and ecological processes that shape plant communities. Herbarium genomic analysis is a tool for understanding plant life and informing conservation efforts in the face of dire environmental challenges.


Subject(s)
Collections as Topic , DNA, Ancient , Plants , Genomics , Plants/genetics , Conservation of Natural Resources , Biological Evolution , Adaptation, Biological/genetics , Phenotype
15.
Genetics ; 225(4)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37804525

ABSTRACT

Serial passaging is a fundamental technique in experimental evolution. The choice of bottleneck severity and frequency poses a dilemma: longer growth periods allow beneficial mutants to arise and grow over more generations, but simultaneously necessitate more severe bottlenecks with a higher risk of those same mutations being lost. Short growth periods require less severe bottlenecks, but come at the cost of less time between transfers for beneficial mutations to establish. The standard laboratory protocol of 24-h growth cycles with severe bottlenecking has logistical advantages for the experimenter but limited theoretical justification. Here we demonstrate that contrary to standard practice, the rate of adaptive evolution is maximized when bottlenecks are frequent and small, indeed infinitesimally so in the limit of continuous culture. This result derives from revising key assumptions underpinning previous theoretical work, notably changing the metric of optimization from adaptation per serial transfer to per experiment runtime. We also show that adding resource constraints and clonal interference to the model leaves the qualitative results unchanged. Implementing these findings will require liquid-handling robots to perform frequent bottlenecks, or chemostats for continuous culture. Further innovation in and adoption of these technologies has the potential to accelerate the rate of discovery in experimental evolution.


Subject(s)
Adaptation, Biological , Evolution, Molecular , Mutation , Adaptation, Biological/genetics , Serial Passage , Models, Genetic
16.
Elife ; 122023 09 06.
Article in English | MEDLINE | ID: mdl-37671937

ABSTRACT

Experiments on worms suggest that a statistical measure called the G matrix can accurately predict how phenotypes will adapt to a novel environment over multiple generations.


Subject(s)
Adaptation, Biological , Biological Evolution , Phenotype , Animals
17.
Philos Trans R Soc Lond B Biol Sci ; 378(1889): 20220390, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37718608

ABSTRACT

There is global consensus that we must immediately prioritize climate change adaptation-change in response to or anticipation of risks from climate change. Some researchers and policymakers urge 'transformative change', a complete break from past practices, yet report having little data on whether new practices reduce the risks communities face, even over the short term. However, researchers have some leads: human communities have long generated solutions to changing climate, and scientists who study culture have examples of effective and persistent solutions. This theme issue discusses cultural adaptation to climate change, and in this paper, we review how processes of biological adaptation, including innovation, modification, selective retention and transmission, shape the landscapes decision-makers care about-from which solutions emerge in communities, to the spread of effective adaptations, to regional or global collective action. We introduce a comprehensive portal of data and models on cultural adaptation to climate change, and we outline ways forward. This article is part of the theme issue 'Climate change adaptation needs a science of culture'.


Subject(s)
Adaptation, Biological , Climate Change , Humans
18.
Science ; 381(6665): eade2833, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37769075

ABSTRACT

Although some lineages of animals and plants have made impressive adaptive radiations when provided with ecological opportunity, the propensities to radiate vary profoundly among lineages for unknown reasons. In Africa's Lake Victoria region, one cichlid lineage radiated in every lake, with the largest radiation taking place in a lake less than 16,000 years old. We show that all of its ecological guilds evolved in situ. Cycles of lineage fusion through admixture and lineage fission through speciation characterize the history of the radiation. It was jump-started when several swamp-dwelling refugial populations, each of which were of older hybrid descent, met in the newly forming lake, where they fused into a single population, resuspending old admixture variation. Each population contributed a different set of ancient alleles from which a new adaptive radiation assembled in record time, involving additional fusion-fission cycles. We argue that repeated fusion-fission cycles in the history of a lineage make adaptive radiation fast and predictable.


Subject(s)
Adaptation, Biological , Cichlids , Genetic Speciation , Lakes , Animals , Cichlids/classification , Cichlids/genetics , Phylogeny , Africa, Eastern
19.
Science ; 381(6665): eadf6218, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37769091

ABSTRACT

A fundamental goal in evolutionary biology is to understand the genetic architecture of adaptive traits. Using whole-genome data of 3955 of Darwin's finches on the Galápagos Island of Daphne Major, we identified six loci of large effect that explain 45% of the variation in the highly heritable beak size of Geospiza fortis, a key ecological trait. The major locus is a supergene comprising four genes. Abrupt changes in allele frequencies at the loci accompanied a strong change in beak size caused by natural selection during a drought. A gradual change in Geospiza scandens occurred across 30 years as a result of introgressive hybridization with G. fortis. This study shows how a few loci with large effect on a fitness-related trait contribute to the genetic potential for rapid adaptive radiation.


Subject(s)
Adaptation, Biological , Beak , Finches , Genetic Introgression , Genetic Speciation , Selection, Genetic , Animals , Beak/anatomy & histology , Ecuador , Finches/anatomy & histology , Finches/genetics , Gene Frequency , Metagenomics , Genetic Loci
SELECTION OF CITATIONS
SEARCH DETAIL
...