Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 685
Filter
1.
BMC Med Imaging ; 24(1): 143, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867154

ABSTRACT

OBJECTIVE: This study developed and validated a nomogram utilizing clinical and multi-slice spiral computed tomography (MSCT) features for the preoperative prediction of Ki-67 expression in stage IA lung adenocarcinoma. Additionally, we assessed the predictive accuracy of Ki-67 expression levels, as determined by our model, in estimating the prognosis of stage IA lung adenocarcinoma. MATERIALS AND METHODS: We retrospectively analyzed data from 395 patients with pathologically confirmed stage IA lung adenocarcinoma. A total of 322 patients were divided into training and internal validation groups at a 6:4 ratio, whereas the remaining 73 patients composed the external validation group. According to the pathological results, the patients were classified into high and low Ki-67 labeling index (LI) groups. Clinical and CT features were subjected to statistical analysis. The training group was used to construct a predictive model through logistic regression and to formulate a nomogram. The nomogram's predictive ability and goodness-of-fit were assessed. Internal and external validations were performed, and clinical utility was evaluated. Finally, the recurrence-free survival (RFS) rates were compared. RESULTS: In the training group, sex, age, tumor density type, tumor-lung interface, lobulation, spiculation, pleural indentation, and maximum nodule diameter differed significantly between patients with high and low Ki-67 LI. Multivariate logistic regression analysis revealed that sex, tumor density, and maximum nodule diameter were significantly associated with high Ki-67 expression in stage IA lung adenocarcinoma. The calibration curves closely resembled the standard curves, indicating the excellent discrimination and accuracy of the model. Decision curve analysis revealed favorable clinical utility. Patients with a nomogram-predicted high Ki-67 LI exhibited worse RFS. CONCLUSION: The nomogram utilizing clinical and CT features for the preoperative prediction of Ki-67 expression in stage IA lung adenocarcinoma demonstrated excellent performance, clinical utility, and prognostic significance, suggesting that this nomogram is a noninvasive personalized approach for the preoperative prediction of Ki-67 expression.


Subject(s)
Adenocarcinoma of Lung , Ki-67 Antigen , Lung Neoplasms , Neoplasm Staging , Nomograms , Humans , Ki-67 Antigen/metabolism , Male , Female , Middle Aged , Retrospective Studies , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/surgery , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/surgery , Prognosis , Aged , Tomography, Spiral Computed/methods , Adult
2.
BMC Med Imaging ; 24(1): 149, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886695

ABSTRACT

BACKGROUND: Assessing the aggressiveness of pure ground glass nodules early on significantly aids in making informed clinical decisions. OBJECTIVE: Developing a predictive model to assess the aggressiveness of pure ground glass nodules in lung adenocarcinoma is the study's goal. METHODS: A comprehensive search for studies on the relationship between computed tomography(CT) characteristics and the aggressiveness of pure ground glass nodules was conducted using databases such as PubMed, Embase, Web of Science, Cochrane Library, Scopus, Wanfang, CNKI, VIP, and CBM, up to December 20, 2023. Two independent researchers were responsible for screening literature, extracting data, and assessing the quality of the studies. Meta-analysis was performed using Stata 16.0, with the training data derived from this analysis. To identify publication bias, Funnel plots and Egger tests and Begg test were employed. This meta-analysis facilitated the creation of a risk prediction model for invasive adenocarcinoma in pure ground glass nodules. Data on clinical presentation and CT imaging features of patients treated surgically for these nodules at the Third Affiliated Hospital of Kunming Medical University, from September 2020 to September 2023, were compiled and scrutinized using specific inclusion and exclusion criteria. The model's effectiveness for predicting invasive adenocarcinoma risk in pure ground glass nodules was validated using ROC curves, calibration curves, and decision analysis curves. RESULTS: In this analysis, 17 studies were incorporated. Key variables included in the model were the largest diameter of the lesion, average CT value, presence of pleural traction, and spiculation. The derived formula from the meta-analysis was: 1.16×the largest lesion diameter + 0.01 × the average CT value + 0.66 × pleural traction + 0.44 × spiculation. This model underwent validation using an external set of 512 pure ground glass nodules, demonstrating good diagnostic performance with an ROC curve area of 0.880 (95% CI: 0.852-0.909). The calibration curve indicated accurate predictions, and the decision analysis curve suggested high clinical applicability of the model. CONCLUSION: We established a predictive model for determining the invasiveness of pure ground-glass nodules, incorporating four key radiological indicators. This model is both straightforward and effective for identifying patients with a high likelihood of invasive adenocarcinoma.


Subject(s)
Lung Neoplasms , Neoplasm Invasiveness , Tomography, X-Ray Computed , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Tomography, X-Ray Computed/methods , Risk Assessment , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/pathology , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/pathology
3.
BMC Cancer ; 24(1): 670, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824514

ABSTRACT

BACKGROUND: An accurate and non-invasive approach is urgently needed to distinguish tuberculosis granulomas from lung adenocarcinomas. This study aimed to develop and validate a nomogram based on contrast enhanced-compute tomography (CE-CT) to preoperatively differentiate tuberculosis granuloma from lung adenocarcinoma appearing as solitary pulmonary solid nodules (SPSN). METHODS: This retrospective study analyzed 143 patients with lung adenocarcinoma (mean age: 62.4 ± 6.5 years; 54.5% female) and 137 patients with tuberculosis granulomas (mean age: 54.7 ± 8.2 years; 29.2% female) from two centers between March 2015 and June 2020. The training and internal validation cohorts included 161 and 69 patients (7:3 ratio) from center No.1, respectively. The external testing cohort included 50 patients from center No.2. Clinical factors and conventional radiological characteristics were analyzed to build independent predictors. Radiomics features were extracted from each CT-volume of interest (VOI). Feature selection was performed using univariate and multivariate logistic regression analysis, as well as the least absolute shrinkage and selection operator (LASSO) method. A clinical model was constructed with clinical factors and radiological findings. Individualized radiomics nomograms incorporating clinical data and radiomics signature were established to validate the clinical usefulness. The diagnostic performance was assessed using the receiver operating characteristic (ROC) curve analysis with the area under the receiver operating characteristic curve (AUC). RESULTS: One clinical factor (CA125), one radiological characteristic (enhanced-CT value) and nine radiomics features were found to be independent predictors, which were used to establish the radiomics nomogram. The nomogram demonstrated better diagnostic efficacy than any single model, with respective AUC, accuracy, sensitivity, and specificity of 0.903, 0.857, 0.901, and 0.807 in the training cohort; 0.933, 0.884, 0.893, and 0.892 in the internal validation cohort; 0.914, 0.800, 0.937, and 0.735 in the external test cohort. The calibration curve showed a good agreement between prediction probability and actual clinical findings. CONCLUSION: The nomogram incorporating clinical factors, radiological characteristics and radiomics signature provides additional value in distinguishing tuberculosis granuloma from lung adenocarcinoma in patients with a SPSN, potentially serving as a robust diagnostic strategy in clinical practice.


Subject(s)
Adenocarcinoma of Lung , Granuloma , Lung Neoplasms , Nomograms , Tomography, X-Ray Computed , Humans , Female , Middle Aged , Male , Tomography, X-Ray Computed/methods , Retrospective Studies , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/pathology , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Diagnosis, Differential , Granuloma/diagnostic imaging , Granuloma/pathology , Aged , Tuberculosis, Pulmonary/diagnostic imaging , Preoperative Period , Radiomics
4.
Sci Rep ; 14(1): 13414, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862598

ABSTRACT

This study aimed to retrospectively examine the computed tomography (CT) features of lung adenocarcinoma across different demographic groups. Preoperative chest CT findings from 1266 surgically resected lung adenocarcinoma cases were retrospectively analyzed. Lung adenocarcinomas were categorized based on CT characteristics into pure ground glass (pGGO), nodule-containing ground glass opacity (mGGO), and pure solid without containing ground glass opacity (pSD). These categories were correlated with sex, age, EGFR status, and five histopathological subtypes. The diameters of pGGO, mGGO, and pSD significantly increased across all patient groups (P < 0.05). Males exhibited a significantly higher proportion of pSD than females (P = 0.002). The mean diameters of pGGO and pSD were significantly larger in males than in females (P = 0.0017 and P = 0.043, respectively). The frequency of pGGO was higher in the younger age group (≤ 60 years) compared to the older group (> 60 years) for both males (P = 0.002) and females (P = 0.027). The frequency of pSD was higher in the older age group for both sexes. A linear correlation between age and diameter was observed in the entire cohort as well as in the male and female groups (P < 0.0001 for all groups). EGFR mutations were less frequent in pSD compared to pGGO (P = 0.0002) and mGGO (P < 0.0001). The frequency of lesions containing micropapillary components increased from pGGO to mGGO and pSD (P < 0.0001 for all). The frequency of lesions containing solid components also increased from pGGO to mGGO and pSD (P = 0.045, P < 0.0001, and P < 0.0001, respectively). The CT features of lung adenocarcinoma exhibit differences across genders and age groups. Male gender and older age are risk factors for lung adenocarcinoma growth.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Tomography, X-Ray Computed , Humans , Male , Female , Middle Aged , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/pathology , Aged , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Age Factors , Retrospective Studies , Sex Factors , Adult , Aged, 80 and over , ErbB Receptors/genetics
5.
J Cardiothorac Surg ; 19(1): 307, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822379

ABSTRACT

BACKGROUND: Accurate prediction of visceral pleural invasion (VPI) in lung adenocarcinoma before operation can provide guidance and help for surgical operation and postoperative treatment. We investigate the value of intratumoral and peritumoral radiomics nomograms for preoperatively predicting the status of VPI in patients diagnosed with clinical stage IA lung adenocarcinoma. METHODS: A total of 404 patients from our hospital were randomly assigned to a training set (n = 283) and an internal validation set (n = 121) using a 7:3 ratio, while 81 patients from two other hospitals constituted the external validation set. We extracted 1218 CT-based radiomics features from the gross tumor volume (GTV) as well as the gross peritumoral tumor volume (GPTV5, 10, 15), respectively, and constructed radiomic models. Additionally, we developed a nomogram based on relevant CT features and the radscore derived from the optimal radiomics model. RESULTS: The GPTV10 radiomics model exhibited superior predictive performance compared to GTV, GPTV5, and GPTV15, with area under the curve (AUC) values of 0.855, 0.842, and 0.842 in the three respective sets. In the clinical model, the solid component size, pleural indentation, solid attachment, and vascular convergence sign were identified as independent risk factors among the CT features. The predictive performance of the nomogram, which incorporated relevant CT features and the GPTV10-radscore, outperformed both the radiomics model and clinical model alone, with AUC values of 0.894, 0.828, and 0.876 in the three respective sets. CONCLUSIONS: The nomogram, integrating radiomics features and CT morphological features, exhibits good performance in predicting VPI status in lung adenocarcinoma.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Neoplasm Invasiveness , Neoplasm Staging , Nomograms , Tomography, X-Ray Computed , Humans , Male , Female , Lung Neoplasms/pathology , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/surgery , Middle Aged , Tomography, X-Ray Computed/methods , Adenocarcinoma of Lung/surgery , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/pathology , Neoplasm Staging/methods , Aged , Retrospective Studies , Pleura/diagnostic imaging , Pleura/pathology , Pleural Neoplasms/diagnostic imaging , Pleural Neoplasms/surgery , Pleural Neoplasms/pathology , Radiomics
6.
Clin Lung Cancer ; 25(5): 431-439, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38760224

ABSTRACT

OBJECTIVES: Distinguishing solid nodules from nodules with ground-glass lesions in lung cancer is a critical diagnostic challenge, especially for tumors ≤2 cm. Human assessment of these nodules is associated with high inter-observer variability, which is why an objective and reliable diagnostic tool is necessary. This study focuses on artificial intelligence (AI) to automatically analyze such tumors and to develop prospective AI systems that can independently differentiate highly malignant nodules. MATERIALS AND METHODS: Our retrospective study analyzed 246 patients who were diagnosed with negative clinical lymph node metastases (cN0) using positron emission tomography-computed tomography (PET/CT) imaging and underwent surgical resection for lung adenocarcinoma. AI detected tumor sizes ≤2 cm in these patients. By utilizing AI to classify these nodules as solid (AI_solid) or non-solid (non-AI_solid) based on confidence scores, we aim to correlate AI determinations with pathological findings, thereby advancing the precision of preoperative assessments. RESULTS: Solid nodules identified by AI with a confidence score ≥0.87 showed significantly higher solid component volumes and proportions in patients with AI_solid than in those with non-AI_solid, with no differences in overall diameter or total volume of the tumors. Among patients with AI_solid, 16% demonstrated lymph node metastasis, and a significant 94% harbored invasive adenocarcinoma. Additionally, 44% were upstaging postoperatively. These AI_solid nodules represented high-grade malignancies. CONCLUSION: In small-sized lung cancer diagnosed as cN0, AI automatically identifies tumors as solid nodules ≤2 cm and evaluates their malignancy preoperatively. The AI classification can inform lymph node assessment necessity in sublobar resections, reflecting metastatic potential.


Subject(s)
Adenocarcinoma of Lung , Artificial Intelligence , Lung Neoplasms , Positron Emission Tomography Computed Tomography , Humans , Male , Retrospective Studies , Female , Lung Neoplasms/pathology , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/surgery , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/surgery , Aged , Middle Aged , Positron Emission Tomography Computed Tomography/methods , Tomography, X-Ray Computed/methods , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/pathology , Multiple Pulmonary Nodules/surgery , Adult , Aged, 80 and over , Lymphatic Metastasis/diagnostic imaging
7.
Eur J Radiol ; 176: 111532, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38820952

ABSTRACT

OBJECTIVE: To develop a Radiological-Radiomics (R-R) combined model for differentiation between minimal invasive adenocarcinoma (MIA) and invasive adenocarcinoma (IA) of lung adenocarcinoma (LUAD) and evaluate its predictive performance. METHODS: The clinical, pathological, and imaging data of a total of 509 patients (522 lesions) with LUAD diagnosed by surgical pathology from 2 medical centres were retrospectively collected, with 392 patients (402 lesions) from center 1 trained and validated using a five-fold cross-validation method, and 117 patients (120 lesions) from center 2 serving as an independent external test set. The least absolute shrinkage and selection operator (LASSO) method was utilized to filter features. Logistic regression was used to construct three models for predicting IA, namely, Radiological model, Radiomics model, and R-R model. Also, receiver operating curve curves (ROCs) were plotted, generating corresponding area under the curve (AUC), sensitivity, specificity, and accuracy. RESULTS: The R-R model for IA prediction achieved an AUC of 0.918 (95 % CI: 0.889-0.947), a sensitivity of 80.3 %, a specificity of 88.2 %, and an accuracy of 82.1 % in the training set. In the validation set, this model exhibited an AUC of 0.906 (95 % CI: 0.842-0.970), a sensitivity of 79.9 %, a specificity of 88.1 %, and an accuracy of 81.8 %. In the external test set, the AUC was 0.894 (95 % CI: 0.824-0.964), a sensitivity of 84.8 %, a specificity of 78.6 %, and an accuracy of 83.3 %. CONCLUSION: The R-R model showed excellent diagnostic performance in differentiating MIA and IA, which can provide a certain reference for clinical diagnosis and surgical treatment plans.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Neoplasm Invasiveness , Sensitivity and Specificity , Humans , Retrospective Studies , Female , Male , Middle Aged , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Diagnosis, Differential , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/pathology , Aged , Tomography, X-Ray Computed/methods , Adult , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/pathology , Reproducibility of Results , Radiomics
8.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(2): 247-255, 2024 Feb 28.
Article in English, Chinese | MEDLINE | ID: mdl-38755720

ABSTRACT

OBJECTIVES: Lung cancer is characterized by its high incidence and case fatality rate. Factors related to population composition and cancer prevention programme policy have an effect on the incidence and diagnosis of lung cancer. This study aims to provide scientific support for early diagnosis and treatment of lung cancer by investigating the clinic information, pathological, and imaging characteristics of surgical patients with lung cancer. METHODS: The data of 2 058 patients, who underwent surgery for lung cancer in the Department of Thoracic Surgery of Xiangya Hospital of Central South University from 2016 to 2019, were retrospectively collected to analyze changes in clinic information, pathological, and imaging characteristics. RESULTS: From 2016 to 2019, the number of patients per year was 280, 376, 524, and 878, respectively. Adenocarcinoma (68.1%) was the most common pathological type of surgical patients with lung cancer. From 2016 to 2019, the proportion of adenocarcinoma was increased from 55.5% to 74.1%. The proportion lung cancer patients in stage IA was increased from 38.9% to 62.3%, and the proportion of patients who underwent sublobar resection was increased from 1.8% to 8.6%. The proportion of lymph node sampling was increased in 2019. Compared with the rate in 2016, the detection rate of nodules with diameter≤1 cm detected by CT before surgery in 2019 was significantly improved (2.0% vs 18.2%), and the detection rate of nodules with diameter>3 cm was decreased (34.7% vs 18.3%). From 2016 to 2019, the proportion of lesions with pure ground-glass density and partial solid density detected by CT was increased from 2.0% and 16.6% to 20.0% and 37.3%, respectively. The proportion of solid density was decreased from 81.4% to 42.7%. CONCLUSIONS: The number of lung cancer surgery patients is rapidly increasing year by year, the proportion of CT-detected purely ground-glass density and partially solid density lesions are increasing, the proportion of patients with adenocarcinoma is rising, the proportion of early-stage lung cancer is increasing, smaller lung cancers are detected in earlier clinical stage leading to a more minimally invasive approach to the surgical methods.


Subject(s)
Adenocarcinoma , Lung Neoplasms , Humans , Lung Neoplasms/surgery , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Retrospective Studies , Adenocarcinoma/surgery , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/pathology , Female , Male , Tomography, X-Ray Computed , Neoplasm Staging , Adenocarcinoma of Lung/surgery , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/pathology , Middle Aged , Aged
9.
Ther Adv Respir Dis ; 18: 17534666241249168, 2024.
Article in English | MEDLINE | ID: mdl-38757628

ABSTRACT

BACKGROUND: Invasive lung adenocarcinoma with MPP/SOL components has a poor prognosis and often shows a tendency to recurrence and metastasis. This poor prognosis may require adjustment of treatment strategies. Preoperative identification is essential for decision-making for subsequent treatment. OBJECTIVE: This study aimed to preoperatively predict the probability of MPP/SOL components in lung adenocarcinomas by a comprehensive model that includes radiomics features, clinical characteristics, and serum tumor biomarkers. DESIGN: A retrospective case control, diagnostic accuracy study. METHODS: This study retrospectively recruited 273 patients (males: females, 130: 143; mean age ± standard deviation, 63.29 ± 10.03 years; range 21-83 years) who underwent resection of invasive lung adenocarcinoma. Sixty-one patients (22.3%) were diagnosed with lung adenocarcinoma with MPP/SOL components. Radiomic features were extracted from CT before surgery. Clinical, radiomic, and combined models were developed using the logistic regression algorithm. The clinical and radiomic signatures were integrated into a nomogram. The diagnostic performance of the models was evaluated using the area under the curve (AUC). Studies were scored according to the Radiomics Quality Score and Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis guidelines. RESULTS: The radiomics model achieved the best AUC values of 0.858 and 0.822 in the training and test cohort, respectively. Tumor size (T_size), solid tumor size (ST_size), consolidation-to-tumor ratio (CTR), years of smoking, CYFRA 21-1, and squamous cell carcinoma antigen were used to construct the clinical model. The clinical model achieved AUC values of 0.741 and 0.705 in the training and test cohort, respectively. The nomogram showed higher AUCs of 0.894 and 0.843 in the training and test cohort, respectively. CONCLUSION: This study has developed and validated a combined nomogram, a visual tool that integrates CT radiomics features with clinical indicators and serum tumor biomarkers. This innovative model facilitates the differentiation of micropapillary or solid components within lung adenocarcinoma and achieves a higher AUC, indicating superior predictive accuracy.


A new tool to predict aggressive lung cancer types before surgeryWe developed a tool to help doctors determine whether lung cancer is one of the more dangerous types, called micropapillary (MPP) or solid (SOL) patterns, before surgery. These patterns can be more harmful and spread quickly, so knowing they are there can help doctors plan the best treatment. We looked at the cases of 273 lung cancer patients who had surgery and found that 61 of them had these aggressive cancer types. To predict these patterns, we used a computer process known as logistic regression, analyzing CT scan details, health information, and blood tests for cancer markers. Based on CT scans, our tool was very good at predicting whether these patterns were present in two patient groups. However, predictions using only basic health information like the size of the tumor and whether the patient smoked needed to be more accurate. We found a way to make our predictions even better. Combining all information into one chart, known as a nomogram, significantly improved our ability to predict these dangerous cancer patterns. This combined chart could be a big help for doctors. It gives them a clearer picture of the cancer's aggressiveness before surgery, which can guide them to choose the best treatment options. This approach aims to offer a better understanding of the tumor, leading to more tailored and effective treatments for patients facing lung cancer.


Subject(s)
Adenocarcinoma of Lung , Biomarkers, Tumor , Lung Neoplasms , Nomograms , Predictive Value of Tests , Humans , Female , Middle Aged , Male , Retrospective Studies , Aged , Lung Neoplasms/pathology , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/blood , Adenocarcinoma of Lung/blood , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/diagnosis , Adult , Biomarkers, Tumor/blood , Aged, 80 and over , Young Adult , Tomography, X-Ray Computed , Keratin-19/blood , Adenocarcinoma, Papillary/blood , Adenocarcinoma, Papillary/pathology , Adenocarcinoma, Papillary/diagnostic imaging , Adenocarcinoma, Papillary/diagnosis , Neoplasm Invasiveness , Radiomics , Antigens, Neoplasm
10.
BMC Pulm Med ; 24(1): 246, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762472

ABSTRACT

BACKGROUND: The application of radiomics in thoracic lymph node metastasis (LNM) of lung adenocarcinoma is increasing, but diagnostic performance of radiomics from primary tumor to predict LNM has not been systematically reviewed. Therefore, this study sought to provide a general overview regarding the methodological quality and diagnostic performance of using radiomic approaches to predict the likelihood of LNM in lung adenocarcinoma. METHODS: Studies were gathered from literature databases such as PubMed, Embase, the Web of Science Core Collection, and the Cochrane library. The Radiomic Quality Score (RQS) and the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) were both used to assess the quality of each study. The pooled sensitivity, specificity, and area under the curve (AUC) of the best radiomics models in the training and validation cohorts were calculated. Subgroup and meta-regression analyses were also conducted. RESULTS: Seventeen studies with 159 to 1202 patients each were enrolled between the years of 2018 to 2022, of which ten studies had sufficient data for the quantitative evaluation. The percentage of RQS was between 11.1% and 44.4% and most of the studies were considered to have a low risk of bias and few applicability concerns in QUADAS-2. Pyradiomics and logistic regression analysis were the most commonly used software and methods for radiomics feature extraction and selection, respectively. In addition, the best prediction models in seventeen studies were mainly based on radiomics features combined with non-radiomics features (semantic features and/or clinical features). The pooled sensitivity, specificity, and AUC of the training cohorts were 0.84 (95% confidence interval (CI) [0.73-0.91]), 0.88 (95% CI [0.81-0.93]), and 0.93(95% CI [0.90-0.95]), respectively. For the validation cohorts, the pooled sensitivity, specificity, and AUC were 0.89 (95% CI [0.82-0.94]), 0.86 (95% CI [0.74-0.93]) and 0.94 (95% CI [0.91-0.96]), respectively. CONCLUSIONS: Radiomic features based on the primary tumor have the potential to predict preoperative LNM of lung adenocarcinoma. However, radiomics workflow needs to be standardized to better promote the applicability of radiomics. TRIAL REGISTRATION: CRD42022375712.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Lymphatic Metastasis , Humans , Lung Neoplasms/pathology , Lung Neoplasms/diagnostic imaging , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/pathology , Lymphatic Metastasis/diagnostic imaging , Predictive Value of Tests , Lymph Nodes/pathology , Lymph Nodes/diagnostic imaging , Tomography, X-Ray Computed , Sensitivity and Specificity , Radiomics
11.
BMC Med Imaging ; 24(1): 121, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789936

ABSTRACT

OBJECTIVES: At present, there are many limitations in the evaluation of lymph node metastasis of lung adenocarcinoma. Currently, there is a demand for a safe and accurate method to predict lymph node metastasis of lung cancer. In this study, radiomics was used to accurately predict the lymph node status of lung adenocarcinoma patients based on contrast-enhanced CT. METHODS: A total of 503 cases that fulfilled the analysis requirements were gathered from two distinct hospitals. Among these, 287 patients exhibited lymph node metastasis (LNM +) while 216 patients were confirmed to be without lymph node metastasis (LNM-). Using both traditional and deep learning methods, 22,318 features were extracted from the segmented images of each patient's enhanced CT. Then, the spearman test and the least absolute shrinkage and selection operator were used to effectively reduce the dimension of the feature data, enabling us to focus on the most pertinent features and enhance the overall analysis. Finally, the classification model of lung adenocarcinoma lymph node metastasis was constructed by machine learning algorithm. The Accuracy, AUC, Specificity, Precision, Recall and F1 were used to evaluate the efficiency of the model. RESULTS: By incorporating a comprehensively selected set of features, the extreme gradient boosting method (XGBoost) effectively distinguished the status of lymph nodes in patients with lung adenocarcinoma. The Accuracy, AUC, Specificity, Precision, Recall and F1 of the prediction model performance on the external test set were 0.765, 0.845, 0.705, 0.784, 0.811 and 0.797, respectively. Moreover, the decision curve analysis, calibration curve and confusion matrix of the model on the external test set all indicated the stability and accuracy of the model. CONCLUSIONS: Leveraging enhanced CT images, our study introduces a noninvasive classification prediction model based on the extreme gradient boosting method. This approach exhibits remarkable precision in identifying the lymph node status of lung adenocarcinoma patients, offering a safe and accurate alternative to invasive procedures. By providing clinicians with a reliable tool for diagnosing and assessing disease progression, our method holds the potential to significantly improve patient outcomes and enhance the overall quality of clinical practice.


Subject(s)
Adenocarcinoma of Lung , Deep Learning , Lung Neoplasms , Lymphatic Metastasis , Tomography, X-Ray Computed , Humans , Lymphatic Metastasis/diagnostic imaging , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/pathology , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Male , Female , Tomography, X-Ray Computed/methods , Middle Aged , Aged , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology , Adult , Radiomics
12.
BMC Cancer ; 24(1): 642, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796458

ABSTRACT

OBJECTIVE: PD-L1 was an important biomarker in lung adenocarcinoma. The study was to confirm the most important factor affecting the expression of PD-L1 remains undetermined. METHODS: The clinical records of 1045 lung adenocarcinoma patients were retrospectively reviewed. The High-Resolution Computed Tomography (HRCT) scanning images of all the participants were analyzed, and based on the CT characteristics, the adenocarcinomas were categorized according to CT textures. Furthermore, PD-L1 expression and Ki67 index were detected by immunohistochemistry. All patients underwent EGFR mutation detection. RESULTS: Multivariate logistic regression analysis revealed that smoking (OR: 1.73, 95% CI: 1.04-2.89, p = 0.004), EGFR wild (OR: 1.52, 95% CI: 1.11-2.07, p = 0.009), micropapillary subtypes (OR: 2.05, 95% CI: 1.46-2.89, p < 0.0001), and high expression of Ki67 (OR: 2.02, 95% CI: 1.44-2.82, p < 0.0001) were independent factors which influence PD-L1 expression. In univariate analysis, tumor size > 3 cm and CT textures of pSD showed a correlation with high expression of PD-L1. Further analysis revealed that smoking, micropapillary subtype, and EGFR wild type were also associated with high Ki67 expression. Moreover, high Ki67 expression was observed more frequently in tumors of size > 3 cm than in tumors with ≤ 3 cm size as well as in CT texture of pSD than lesions with GGO components. In addition, multivariate logistic regression analysis revealed that only lesions with micropapillary components correlated with pSD (OR: 3.96, 95% CI: 2.52-5.37, p < 0.0001). CONCLUSION: This study revealed that in lung adenocarcinoma high Ki67 expression significantly influenced PD-L1 expression, an important biomarker for immune checkpoint treatment.


Subject(s)
Adenocarcinoma of Lung , B7-H1 Antigen , Biomarkers, Tumor , ErbB Receptors , Ki-67 Antigen , Lung Neoplasms , Tomography, X-Ray Computed , Humans , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Female , Male , Middle Aged , Aged , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Retrospective Studies , ErbB Receptors/metabolism , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/diagnostic imaging , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Ki-67 Antigen/metabolism , Adult , Mutation , Aged, 80 and over , Immunohistochemistry , Smoking/adverse effects
13.
Clin Nucl Med ; 49(6): 569-571, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38598734

ABSTRACT

ABSTRACT: A 56-year-old man with metastatic lung adenocarcinoma received combined 177 Lu-FAP-2286 radiation therapy and targeted therapy. After 1 treatment cycle, improvement of symptoms and radiological remission was observed. Moreover, the patient did not report any adverse effects.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Male , Middle Aged , Lung Neoplasms/radiotherapy , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/radiotherapy , Neoplasm Metastasis , Lutetium , Adenocarcinoma/radiotherapy , Adenocarcinoma/diagnostic imaging , Molecular Targeted Therapy , Combined Modality Therapy
14.
BMC Cancer ; 24(1): 434, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589832

ABSTRACT

BACKGROUND: Lung adenocarcinoma, a leading cause of cancer-related mortality, demands precise prognostic indicators for effective management. The presence of spread through air space (STAS) indicates adverse tumor behavior. However, comparative differences between 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography(PET)/computed tomography(CT) and CT in predicting STAS in lung adenocarcinoma remain inadequately explored. This retrospective study analyzes preoperative CT and 18F-FDG PET/CT features to predict STAS, aiming to identify key predictive factors and enhance clinical decision-making. METHODS: Between February 2022 and April 2023, 100 patients (108 lesions) who underwent surgery for clinical lung adenocarcinoma were enrolled. All these patients underwent 18F-FDG PET/CT, thin-section chest CT scan, and pathological biopsy. Univariate and multivariate logistic regression was used to analyze CT and 18F-FDG PET/CT image characteristics. Receiver operating characteristic curve analysis was performed to identify a cut-off value. RESULTS: Sixty lesions were positive for STAS, and 48 lesions were negative for STAS. The STAS-positive was frequently observed in acinar predominant. However, STAS-negative was frequently observed in minimally invasive adenocarcinoma. Univariable analysis results revealed that CT features (including nodule type, maximum tumor diameter, maximum solid component diameter, consolidation tumor ratio, pleural indentation, lobulation, spiculation) and all 18F-FDG PET/CT characteristics were statistically significant difference in STAS-positive and STAS-negative lesions. And multivariate logistic regression results showed that the maximum tumor diameter and SUVmax were the independent influencing factors of CT and 18F-FDG PET/CT in STAS, respectively. The area under the curve of maximum tumor diameter and SUVmax was 0.68 vs. 0.82. The cut-off value for maximum tumor diameter and SUVmax was 2.35 vs. 5.05 with a sensitivity of 50.0% vs. 68.3% and specificity of 81.2% vs. 87.5%, which showed that SUVmax was superior to the maximum tumor diameter. CONCLUSION: The radiological features of SUVmax is the best model for predicting STAS in lung adenocarcinoma. These radiological features could predict STAS with excellent specificity but inferior sensitivity.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography/methods , Retrospective Studies , Radiopharmaceuticals , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/surgery , Lung Neoplasms/pathology , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/surgery , Positron-Emission Tomography , Tomography, X-Ray Computed
15.
Medicina (Kaunas) ; 60(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38674262

ABSTRACT

Background and Objectives: Lung cancer is the second most common form of cancer in the world for both men and women as well as the most common cause of cancer-related deaths worldwide. The aim of this study is to summarize the radiological characteristics between primary lung adenocarcinoma subtypes and to correlate them with FDG uptake on PET-CT. Materials and Methods: This retrospective study included 102 patients with pathohistologically confirmed lung adenocarcinoma. A PET-CT examination was performed on some of the patients and the values of SUVmax were also correlated with the histological and morphological characteristics of the masses in the lungs. Results: The results of this analysis showed that the mean size of AIS-MIA (adenocarcinoma in situ and minimally invasive adenocarcinoma) cancer was significantly lower than for all other cancer types, while the mean size of the acinar cancer was smaller than in the solid type of cancer. Metastases were significantly more frequent in solid adenocarcinoma than in acinar, lepidic, and AIS-MIA cancer subtypes. The maximum standardized FDG uptake was significantly lower in AIS-MIA than in all other cancer types and in the acinar predominant subtype compared to solid cancer. Papillary predominant adenocarcinoma had higher odds of developing contralateral lymph node involvement compared to other types. Solid adenocarcinoma was associated with higher odds of having metastases and with higher SUVmax. AIS-MIA was associated with lower odds of one unit increase in tumor size and ipsilateral lymph node involvement. Conclusions: The correlation between histopathological and radiological findings is crucial for accurate diagnosis and staging. By integrating both sets of data, clinicians can enhance diagnostic accuracy and determine the optimal treatment plan.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Positron Emission Tomography Computed Tomography , Humans , Male , Female , Retrospective Studies , Positron Emission Tomography Computed Tomography/methods , Middle Aged , Aged , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/pathology , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Lung Neoplasms/classification , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/pathology , Adenocarcinoma/classification , Fluorodeoxyglucose F18 , Adult , Aged, 80 and over
16.
Radiology ; 311(1): e232057, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38591974

ABSTRACT

Background Preoperative discrimination of preinvasive, minimally invasive, and invasive adenocarcinoma at CT informs clinical management decisions but may be challenging for classifying pure ground-glass nodules (pGGNs). Deep learning (DL) may improve ternary classification. Purpose To determine whether a strategy that includes an adjudication approach can enhance the performance of DL ternary classification models in predicting the invasiveness of adenocarcinoma at chest CT and maintain performance in classifying pGGNs. Materials and Methods In this retrospective study, six ternary models for classifying preinvasive, minimally invasive, and invasive adenocarcinoma were developed using a multicenter data set of lung nodules. The DL-based models were progressively modified through framework optimization, joint learning, and an adjudication strategy (simulating a multireader approach to resolving discordant nodule classifications), integrating two binary classification models with a ternary classification model to resolve discordant classifications sequentially. The six ternary models were then tested on an external data set of pGGNs imaged between December 2019 and January 2021. Diagnostic performance including accuracy, specificity, and sensitivity was assessed. The χ2 test was used to compare model performance in different subgroups stratified by clinical confounders. Results A total of 4929 nodules from 4483 patients (mean age, 50.1 years ± 9.5 [SD]; 2806 female) were divided into training (n = 3384), validation (n = 579), and internal (n = 966) test sets. A total of 361 pGGNs from 281 patients (mean age, 55.2 years ± 11.1 [SD]; 186 female) formed the external test set. The proposed strategy improved DL model performance in external testing (P < .001). For classifying minimally invasive adenocarcinoma, the accuracy was 85% and 79%, sensitivity was 75% and 63%, and specificity was 89% and 85% for the model with adjudication (model 6) and the model without (model 3), respectively. Model 6 showed a relatively narrow range (maximum minus minimum) across diagnostic indexes (accuracy, 1.7%; sensitivity, 7.3%; specificity, 0.9%) compared with the other models (accuracy, 0.6%-10.8%; sensitivity, 14%-39.1%; specificity, 5.5%-17.9%). Conclusion Combining framework optimization, joint learning, and an adjudication approach improved DL classification of adenocarcinoma invasiveness at chest CT. Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Sohn and Fields in this issue.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Deep Learning , Lung Neoplasms , Humans , Female , Middle Aged , Retrospective Studies , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma/diagnostic imaging , Tomography, X-Ray Computed , Lung Neoplasms/diagnostic imaging
17.
BMC Cancer ; 24(1): 454, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605303

ABSTRACT

OBJECTIVE: To explore the value of six machine learning models based on PET/CT radiomics combined with EGFR in predicting brain metastases of lung adenocarcinoma. METHODS: Retrospectively collected 204 patients with lung adenocarcinoma who underwent PET/CT examination and EGFR gene detection before treatment from Cancer Hospital Affiliated to Shandong First Medical University in 2020. Using univariate analysis and multivariate logistic regression analysis to find the independent risk factors for brain metastasis. Based on PET/CT imaging combined with EGFR and PET metabolic indexes, established six machine learning models to predict brain metastases of lung adenocarcinoma. Finally, using ten-fold cross-validation to evaluate the predictive effectiveness. RESULTS: In univariate analysis, patients with N2-3, EGFR mutation-positive, LYM%≤20, and elevated tumor markers(P<0.05) were more likely to develop brain metastases. In multivariate Logistic regression analysis, PET metabolic indices revealed that SUVmax, SUVpeak, Volume, and TLG were risk factors for lung adenocarcinoma brain metastasis(P<0.05). The SVM model was the most efficient predictor of brain metastasis with an AUC of 0.82 (PET/CT group),0.70 (CT group),0.76 (PET group). CONCLUSIONS: Radiomics combined with EGFR machine learning model as a new method have higher accuracy than EGFR mutation alone. SVM model is the most effective method for predicting brain metastases of lung adenocarcinoma, and the prediction efficiency of PET/CT group is better than PET group and CT group.


Subject(s)
Adenocarcinoma of Lung , Brain Neoplasms , ErbB Receptors , Lung Neoplasms , Machine Learning , Humans , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/pathology , Brain Neoplasms/diagnostic imaging , ErbB Receptors/genetics , Lung/pathology , Lung Neoplasms/genetics , Positron Emission Tomography Computed Tomography , Retrospective Studies
18.
J Cardiothorac Surg ; 19(1): 260, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654352

ABSTRACT

BACKGROUND: The aim of this study was to assess the ability of radiologic factors such as mean computed tomography (mCT) value, consolidation/tumor ratio (C/T ratio), solid tumor size, and the maximum standardized uptake (SUVmax) value by F-18 fluorodeoxyglucose positron emission tomography to predict the presence of spread through air spaces (STAS) of lung adenocarcinoma. METHODS: A retrospective study was conducted on 118 patients those diagnosed with clinically without lymph node metastasis and having a pathological diagnosis of adenocarcinoma after undergoing surgery. Receiver operating characteristics (ROC) analysis was used to assess the ability to use mCT value, C/T ratio, tumor size, and SUVmax value to predict STAS. Univariate and multiple logistic regression analyses were performed to determine the independent variables for the prediction of STAS. RESULTS: Forty-one lesions (34.7%) were positive for STAS and 77 lesions were negative for STAS. The STAS positive group was strongly associated with a high mCT value, high C/T ratio, large solid tumor size, large tumor size and high SUVmax value. The mCT values were - 324.9 ± 19.3 HU for STAS negative group and - 173.0 ± 26.3 HU for STAS positive group (p < 0.0001). The ROC area under the curve of the mCT value was the highest (0.738), followed by SUVmax value (0.720), C/T ratio (0.665), solid tumor size (0.649). Multiple logistic regression analyses using the preoperatively determined variables revealed that mCT value (p = 0.015) was independent predictive factors of predicting STAS. The maximum sensitivity and specificity were obtained at a cutoff value of - 251.8 HU. CONCLUSIONS: The evaluation of mCT value has a possibility to predict STAS and may potentially contribute to the selection of suitable treatment strategies.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Tomography, X-Ray Computed , Humans , Male , Female , Retrospective Studies , Middle Aged , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Lung Neoplasms/surgery , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/surgery , Aged , Tomography, X-Ray Computed/methods , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/pathology , ROC Curve , Fluorodeoxyglucose F18 , Predictive Value of Tests , Neoplasm Staging , Adult , Positron-Emission Tomography/methods , Aged, 80 and over
19.
Comput Biol Med ; 175: 108519, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688128

ABSTRACT

Lung cancer has seriously threatened human health due to its high lethality and morbidity. Lung adenocarcinoma, in particular, is one of the most common subtypes of lung cancer. Pathological diagnosis is regarded as the gold standard for cancer diagnosis. However, the traditional manual screening of lung cancer pathology images is time consuming and error prone. Computer-aided diagnostic systems have emerged to solve this problem. Current research methods are unable to fully exploit the beneficial features inherent within patches, and they are characterized by high model complexity and significant computational effort. In this study, a deep learning framework called Multi-Scale Network (MSNet) is proposed for the automatic detection of lung adenocarcinoma pathology images. MSNet is designed to efficiently harness the valuable features within data patches, while simultaneously reducing model complexity, computational demands, and storage space requirements. The MSNet framework employs a dual data stream input method. In this input method, MSNet combines Swin Transformer and MLP-Mixer models to address global information between patches and the local information within each patch. Subsequently, MSNet uses the Multilayer Perceptron (MLP) module to fuse local and global features and perform classification to output the final detection results. In addition, a dataset of lung adenocarcinoma pathology images containing three categories is created for training and testing the MSNet framework. Experimental results show that the diagnostic accuracy of MSNet for lung adenocarcinoma pathology images is 96.55 %. In summary, MSNet has high classification performance and shows effectiveness and potential in the classification of lung adenocarcinoma pathology images.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Neural Networks, Computer , Humans , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/classification , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Lung Neoplasms/classification , Deep Learning , Image Interpretation, Computer-Assisted/methods , Diagnosis, Computer-Assisted/methods
20.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(2): 205-212, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38686399

ABSTRACT

Computed tomography (CT) imaging is a vital tool for the diagnosis and assessment of lung adenocarcinoma, and using CT images to predict the recurrence-free survival (RFS) of lung adenocarcinoma patients post-surgery is of paramount importance in tailoring postoperative treatment plans. Addressing the challenging task of accurate RFS prediction using CT images, this paper introduces an innovative approach based on self-supervised pre-training and multi-task learning. We employed a self-supervised learning strategy known as "image transformation to image restoration" to pretrain a 3D-UNet network on publicly available lung CT datasets to extract generic visual features from lung images. Subsequently, we enhanced the network's feature extraction capability through multi-task learning involving segmentation and classification tasks, guiding the network to extract image features relevant to RFS. Additionally, we designed a multi-scale feature aggregation module to comprehensively amalgamate multi-scale image features, and ultimately predicted the RFS risk score for lung adenocarcinoma with the aid of a feed-forward neural network. The predictive performance of the proposed method was assessed by ten-fold cross-validation. The results showed that the consistency index (C-index) of the proposed method for predicting RFS and the area under curve (AUC) for predicting whether recurrence occurs within three years reached 0.691 ± 0.076 and 0.707 ± 0.082, respectively, and the predictive performance was superior to that of existing methods. This study confirms that the proposed method has the potential of RFS prediction in lung adenocarcinoma patients, which is expected to provide a reliable basis for the development of individualized treatment plans.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Neural Networks, Computer , Tomography, X-Ray Computed , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/pathology , Disease-Free Survival , Neoplasm Recurrence, Local
SELECTION OF CITATIONS
SEARCH DETAIL
...