Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 175
Filter
1.
Neurotox Res ; 42(5): 41, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230655

ABSTRACT

Recently a novel genetically modified mouse strain with serum carboxylesterase knocked-out and the human acetylcholinesterase gene knocked-in (KIKO) was created to simulate human responses to nerve agent (NA) exposure and its standard medical treatment. A1 adenosine receptor (A1AR) agonist N-bicyclo-(2.2.1)-hept-2-yl-5'-chloro-5'-deoxyadenosine (ENBA) alone is a potent anticonvulsant and neuroprotectant (A/N) in both rat and KIKO mouse soman (GD) seizure models. In this study we utilized the KIKO mouse to evaluate further the basic pharmacologic A/N effects of ENBA as an adjunct to standard NA medical treatments (i.e., atropine sulfate, pralidoxime chloride [2-PAM], and midazolam). Male mice, implanted with cortical electroencephalographic (EEG) electrodes, were pretreated with asoxime (HI-6) and exposed to an epileptogenic dose of GD (33 µg/kg, s.c.) or saline (sham exposure) and then treated 15 min after seizure onset with ENBA at 15 mg/kg, i.p. (a minimum efficacy dose in suppressing NA-induced seizure) alone or as an adjunct to standard medical treatments. We collected EEG activity, seizure suppression outcomes, daily body temperature and weight, heart rate, toxic signs, neuropathology, and lethality data for up to 14 days. Without ENBA, death from NA exposure was 45%, while with ENBA, either alone or in combination with midazolam, the survival improved to 80% and 90%, respectively. Additionally, seizure was suppressed quickly and permanently, toxic signs, hypothermia, and bradycardia recovered by 48 h, and no neuropathology was evident. Our findings confirmed that ENBA is a potent A/N adjunct for delayed medical treatments of NA exposure.


Subject(s)
Acetylcholinesterase , Adenosine A1 Receptor Agonists , Disease Models, Animal , Seizures , Soman , Animals , Soman/toxicity , Seizures/chemically induced , Seizures/drug therapy , Male , Adenosine A1 Receptor Agonists/pharmacology , Humans , Mice , Acetylcholinesterase/metabolism , Electroencephalography , Adenosine/analogs & derivatives , Adenosine/pharmacology , Mice, Knockout , Anticonvulsants/pharmacology , Anticonvulsants/toxicity
2.
Eur J Pharmacol ; 981: 176847, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39089463

ABSTRACT

Insomnia is one of the most common sleep disorders, affecting 10-15% of the global population. Because classical remedies used to treat insomnia have various side effects, new therapeutics for insomnia are attracting attention. In the present study, we found that N2-Ethyl-N4-(furan-2-ylmethyl) quinazoline-2,4-diamine (AR-001) has adenosine A1 receptor agonistic activity and exhibits hypnotic efficacy by decreasing sleep onset latency and increasing total sleep time in a pentobarbital-induced sleep model. This hypnotic effect of AR-001 was significantly inhibited by the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). As a result of immunohistochemistry, AR-001 was shown to increase neural activity in the sleep-promoting region, ventrolateral preoptic nucleus (VLPO), and decrease neural activity in the wake-promoting region, basal forebrain (BF), and lateral hypothalamus (LH), and that these effects of AR-001 were significantly inhibited by DPCPX treatment. In addition, AR-001 increased adenosine A1 receptor mRNA levels in the hypothalamus. In conclusion, this study suggests that AR-001 has a hypnotic effect, at least partially, through adenosine A1 receptor and may have therapeutic potential for insomnia.


Subject(s)
Adenosine A1 Receptor Agonists , Hypnotics and Sedatives , Receptor, Adenosine A1 , Sleep , Animals , Receptor, Adenosine A1/metabolism , Receptor, Adenosine A1/genetics , Male , Hypnotics and Sedatives/pharmacology , Sleep/drug effects , Adenosine A1 Receptor Agonists/pharmacology , Quinazolines/pharmacology , Rats, Sprague-Dawley , Rats , Mice , Sleep Initiation and Maintenance Disorders/drug therapy , Furans/pharmacology , Hypothalamus/drug effects , Hypothalamus/metabolism , Xanthines/pharmacology , RNA, Messenger/metabolism , RNA, Messenger/genetics , Adenosine A1 Receptor Antagonists/pharmacology , Pentobarbital/pharmacology
3.
Toxicol Appl Pharmacol ; 488: 116970, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38777098

ABSTRACT

Soman produces excitotoxic effects by inhibiting acetylcholinesterase in the cholinergic synapses and neuromuscular junctions, resulting in soman-induced sustained status epilepticus (SSE). Our previous work showed delayed intramuscular (i.m.) treatment with A1 adenosine receptor agonist N-bicyclo-[2.2.1]-hept-2-yl-5'-chloro-5'-deoxyadenosine (ENBA) alone suppressed soman-induced SSE and prevented neuropathology. Using this same rat soman seizure model, we tested if delayed therapy with ENBA (60 mg/kg, i.m.) would terminate seizure, protect neuropathology, and aid in survival when given in conjunction with current standard medical countermeasures (MCMs): atropine sulfate, 2-PAM, and midazolam (MDZ). Either 15- or 30-min following soman-induced SSE onset, male rats received atropine and 2-PAM plus either MDZ or MDZ + ENBA. Electroencephalographic (EEG) activity, physiologic parameters, and motor function were recorded. Either 2- or 14-days following exposure surviving rats were euthanized and perfused for histology. All animals treated with MDZ + ENBA at both time points had 100% EEG seizure termination and reduced total neuropathology compared to animals treated with MDZ (2-day, p = 0.015 for 15-min, p = 0.002 for 30-min; 14-day, p < 0.001 for 15-min, p = 0.006 for 30-min), showing ENBA enhanced MDZ's anticonvulsant and neuroprotectant efficacy. However, combined MDZ + ENBA treatment, when compared to MDZ treatment groups, had a reduction in the 14-day survival rate regardless of treatment time, indicating possible enhancement of MDZ's neuronal inhibitory effects by ENBA. Based on our findings, ENBA shows promise as an anticonvulsant and neuroprotectant in a combined treatment regimen following soman exposure; when given as an adjunct to standard MCMs, the dose of ENBA needs to be adjusted.


Subject(s)
Adenosine A1 Receptor Agonists , Rats, Sprague-Dawley , Seizures , Soman , Animals , Soman/toxicity , Male , Adenosine A1 Receptor Agonists/pharmacology , Rats , Injections, Intramuscular , Seizures/chemically induced , Seizures/drug therapy , Seizures/prevention & control , Neuroprotective Agents/pharmacology , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/therapeutic use , Anticonvulsants/administration & dosage , Electroencephalography/drug effects , Adenosine/analogs & derivatives , Adenosine/administration & dosage , Adenosine/pharmacology , Atropine/pharmacology , Atropine/administration & dosage , Status Epilepticus/chemically induced , Status Epilepticus/drug therapy , Midazolam/pharmacology , Midazolam/therapeutic use
4.
Neuropharmacology ; 253: 109983, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38704023

ABSTRACT

Exposure to organophosphorus compounds, such as soman (GD), cause widespread toxic effects, sustained status epilepticus, neuropathology, and death. The A1 adenosine receptor agonist N-bicyclo-(2.2.1)-hept-2-yl-5'-chloro-5'-deoxyadenosine (ENBA), when given 1 min after GD exposure, provides neuroprotection and prevents behavioral impairments. Here, we tested the ability of ENBA at delayed treatment times to improve behavioral outcomes via a two-way active avoidance task in two male animal models, each consisting of saline and GD exposure groups. In a rat model, animals received medical treatments (atropine sulfate [A], 2-PAM [P], and midazolam [MDZ]) or AP + MDZ + ENBA at 15 or 30 min after seizure onset and were subjected to behavioral testing for up to 14 days. In a human acetylcholinesterase knock-in serum carboxylesterase knock-out mouse model, animals received AP, AP + MDZ, AP + ENBA, or AP + MDZ + ENBA at 15 min post seizure onset and were subjected to the behavioral task on days 7 and 14. In rats, the GD/AP + MDZ + ENBA group recovered to saline-exposed avoidance levels while the GD/AP + MDZ group did not. In mice, in comparison with GD/AP + MDZ group, the GD/AP + MDZ + ENBA showed decreases in escape latency, response latency, and pre-session crossings, as well as increases in avoidances. In both models, only ENBA-treated groups showed control level inter-trial interval crossings by day 14. Our findings suggest that ENBA, alone and as an adjunct to medical treatments, can improve behavioral and cognitive outcomes when given at delayed time points after GD intoxication.


Subject(s)
Acetylcholinesterase , Adenosine A1 Receptor Agonists , Soman , Animals , Soman/toxicity , Male , Adenosine A1 Receptor Agonists/pharmacology , Rats , Acetylcholinesterase/metabolism , Humans , Mice , Mice, Knockout , Disease Models, Animal , Rats, Sprague-Dawley , Memory/drug effects , Avoidance Learning/drug effects , Adenosine/analogs & derivatives , Adenosine/pharmacology
5.
Stroke ; 55(7): 1923-1926, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38818720

ABSTRACT

BACKGROUND: AST-004, a small molecule agonist of the adenosine A1 and A3 receptors, is a potential cerebroprotectant for patients with acute stroke and is currently in clinical trials. Drug-drug interactions are critically important to assess in the context of acute stroke care. Lytic therapy with tPA (tissue-type plasminogen activator)-induced plasmin formation (alteplase) is the only available pharmacotherapy for acute stroke. Consequently, it is imperative to evaluate potential interactions between AST-004 and tPAs such as alteplase and tenecteplase. METHODS: The interactions between AST-004 and tPAs were evaluated in 3 ways in preparation for AST-004 phase II trials. First, the metabolic stability of AST-004 was determined in the presence of alteplase and plasmin. Second, the potential for AST-004 to influence the thrombolytic efficacy of alteplase and tenecteplase was evaluated with an in vitro assay system utilizing a fluorogenic substrate of plasmin. Finally, the potential for AST-004 to influence the thrombolytic efficacy of alteplase was also determined with an in vitro thrombolysis assay of human blood thrombi. RESULTS: Neither alteplase nor plasmin affected the stability of AST-004 in vitro. In 2 different in vitro systems, AST-004 had no effect on the ability of alteplase or tenecteplase to generate plasmin, and AST-004 had no effect on the thrombolytic efficacy of alteplase to lyse blood clots in human blood. CONCLUSIONS: These studies indicate that there will be no interactions between AST-004 and tPAs such as alteplase or tenecteplase in patients with stroke undergoing thrombolytic therapy.


Subject(s)
Drug Interactions , Fibrinolytic Agents , Tenecteplase , Tissue Plasminogen Activator , Tissue Plasminogen Activator/therapeutic use , Humans , Tenecteplase/therapeutic use , Fibrinolytic Agents/therapeutic use , Fibrinolytic Agents/pharmacology , Adenosine A1 Receptor Agonists/pharmacology , Adenosine A1 Receptor Agonists/therapeutic use , Receptor, Adenosine A3/metabolism , Fibrinolysin , Stroke/drug therapy , Receptor, Adenosine A1/metabolism
6.
Neuropharmacology ; 253: 109966, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38677446

ABSTRACT

Organophosphorus nerve agents, such as soman (GD), produce excitotoxic effects resulting in sustained status epilepticus (SSE) and brain damage. Previous work shows that neuronal inhibitory effects of A1 adenosine receptor (A1AR) agonists, such as N6- Bicyclo (2.2.1)-hept-2-yl-5'-chloro-5'-deoxyadenosine (Cl-ENBA), suppresses GD-induced SSE and improves neuropathology. Some other physiologic effects of these agonists are hypothermia, hypotension, and sedation. Hypothermia may also shield the brain from injury by slowing down chemical insults, lessening inflammation, and contributing to improved neurological outcomes. Therefore, we attempted to isolate the hypothermic effect from ENBA by assessing the neuroprotective efficacy of direct surface body cooling in a rat GD-induced SSE model, and comparing the effects on seizure termination, neuropathology, and survival. Male rats implanted with a body temperature (Tb) transponder and electroencephalographic (EEG) electrodes were primed with asoxime (HI-6), exposed to GD 30 min later, and then treated with Cl-ENBA or had Tb lowered directly via body cooling at 30 min after the onset of seizure activity. Afterwards, they were either allowed to develop hypothermia as expected, or received thermal support to maintain normothermic Tb for a period of 6-h. Neuropathology was assessed at 24 h. Regardless of Cl-ENBA or surface cooling, all hypothermic GD-exposed groups had significantly improved 24-h survival compared to rats with normothermic Tb (81% vs. 39%, p < 0.001). Cl-ENBA offered neuroprotection independently of hypothermic Tb. While hypothermia enhanced the overall efficacy of Cl-ENBA by improving survival outcomes, body cooling didn't reduce seizure activity or neuropathology following GD-induced SSE.


Subject(s)
Adenosine A1 Receptor Agonists , Hypothermia, Induced , Rats, Sprague-Dawley , Seizures , Soman , Animals , Male , Adenosine A1 Receptor Agonists/pharmacology , Soman/toxicity , Hypothermia, Induced/methods , Seizures/chemically induced , Seizures/drug therapy , Seizures/prevention & control , Rats , Adenosine/analogs & derivatives , Adenosine/pharmacology , Body Temperature/drug effects , Brain/drug effects , Brain/pathology , Electroencephalography , Disease Models, Animal
7.
Int J Mol Sci ; 24(13)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37446216

ABSTRACT

Hypothermia is a promising clinical therapy for acute injuries, including neural damage, but it also faces practical limitations due to the complexities of the equipment and procedures required. This study investigates the use of the A1 adenosine receptor (A1AR) agonist N6-cyclohexyladenosine (CHA) as a more accessible method to induce steady, torpor-like hypothermic states. Additionally, this study investigates the protective potential of CHA against LPS-induced sepsis and neuroinflammation. Our results reveal that CHA can successfully induce a hypothermic state by activating a neuronal circuit similar to the one that induces physiological torpor. This state is characterized by maintaining a steady core body temperature below 28 °C. We further found that this torpor-like state effectively mitigates neuroinflammation and preserves the integrity of the blood-brain barrier during sepsis, thereby limiting the infiltration of inflammatory factors into the central nervous system. Instead of being a direct effect of CHA, this protective effect is attributed to inhibiting pro-inflammatory responses in macrophages and reducing oxidative stress damage in endothelial cells under systemic hypothermia. These results suggest that A1AR agonists such as CHA could potentially be potent neuroprotective agents against neuroinflammation. They also shed light on possible future directions for the application of hypothermia-based therapies in the treatment of sepsis and other neuroinflammatory conditions.


Subject(s)
Cardiovascular Agents , Hypothermia , Torpor , Humans , Hypothermia/chemically induced , Endothelial Cells , Neuroinflammatory Diseases , Adenosine A1 Receptor Agonists/pharmacology , Purinergic P1 Receptor Agonists
8.
Int J Mol Sci ; 23(16)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36012151

ABSTRACT

We report the design, synthesis, and validation of the novel compound photocaged N6-cyclopentyladenosine (cCPA) to achieve precisely localized and timed release of the parent adenosine A1 receptor agonist CPA using 405 nm light. Gi protein-coupled A1 receptors (A1Rs) modulate neurotransmission via pre- and post-synaptic routes. The dynamics of the CPA-mediated effect on neurotransmission, characterized by fast activation and slow recovery, make it possible to implement a closed-loop control paradigm. The strength of neurotransmission is monitored as the amplitude of stimulus-evoked local field potentials. It is used for feedback control of light to release CPA. This system makes it possible to regulate neurotransmission to a pre-defined level in acute hippocampal brain slices incubated with 3 µM cCPA. This novel approach of closed-loop photopharmacology holds therapeutic potential for fine-tuned control of neurotransmission in diseases associated with neuronal hyperexcitability.


Subject(s)
Adenosine A1 Receptor Agonists , Receptor, Adenosine A1 , Adenosine A1 Receptor Agonists/pharmacology , Feedback , Hippocampus/metabolism , Receptor, Adenosine A1/metabolism , Synaptic Transmission , Xanthines/pharmacology
9.
J Med Chem ; 65(13): 9076-9095, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35729775

ABSTRACT

The adenosine A1 receptor is a therapeutic target based on its ability to provide cardioprotection during episodes of myocardial ischemia and reperfusion injury. However, the clinical translation of A1R agonists has been hindered by dose-limiting adverse effects (bradycardia and hypotension). Previously, we demonstrated that the bitopic agonist VCP746 (1), consisting of an adenosine pharmacophore linked to an allosteric moiety, can stimulate cardioprotective A1R signaling effects in the absence of unwanted bradycardia. This study maps the structure-activity relationships of 1 through modifications to the linker moiety. Derivatives differing in the flexibility, length, and nature of the linker were assessed, which revealed that the linker is tolerant of several modifications including added rigidity. Ligands featuring 1,4-disubstituted 1,2,3-triazoles were the most biased of the novel analogues but also displayed sub-nanomolar potency in a cAMP accumulation assay at the A2BR. To our knowledge, 10 is the most potent A2BR agonist published to date.


Subject(s)
Bradycardia , Purinergic P1 Receptor Agonists , Adenosine/pharmacology , Adenosine A1 Receptor Agonists/pharmacology , Humans , Ligands , Receptor, Adenosine A1 , Receptor, Adenosine A3 , Receptors, Purinergic P1
10.
J Neurosci ; 42(9): 1738-1751, 2022 03 02.
Article in English | MEDLINE | ID: mdl-35042768

ABSTRACT

Striatal adenosine A1 receptor (A1R) activation can inhibit dopamine release. A1Rs on other striatal neurons are activated by an adenosine tone that is limited by equilibrative nucleoside transporter 1 (ENT1) that is enriched on astrocytes and is ethanol sensitive. We explored whether dopamine release in nucleus accumbens core is under tonic inhibition by A1Rs, and is regulated by astrocytic ENT1 and ethanol. In ex vivo striatal slices from male and female mice, A1R agonists inhibited dopamine release evoked electrically or optogenetically and detected using fast-scan cyclic voltammetry, most strongly for lower stimulation frequencies and pulse numbers, thereby enhancing the activity-dependent contrast of dopamine release. Conversely, A1R antagonists reduced activity-dependent contrast but enhanced evoked dopamine release levels, even for single optogenetic pulses indicating an underlying tonic inhibition. The ENT1 inhibitor nitrobenzylthioinosine reduced dopamine release and promoted A1R-mediated inhibition, and, conversely, virally mediated astrocytic overexpression of ENT1 enhanced dopamine release and relieved A1R-mediated inhibition. By imaging the genetically encoded fluorescent adenosine sensor [GPCR-activation based (GRAB)-Ado], we identified a striatal extracellular adenosine tone that was elevated by the ENT1 inhibitor and sensitive to gliotoxin fluorocitrate. Finally, we identified that ethanol (50 mm) promoted A1R-mediated inhibition of dopamine release, through diminishing adenosine uptake via ENT1. Together, these data reveal that dopamine output dynamics are gated by a striatal adenosine tone, limiting amplitude but promoting contrast, regulated by ENT1, and promoted by ethanol. These data add to the diverse mechanisms through which ethanol modulates striatal dopamine, and to emerging datasets supporting astrocytic transporters as important regulators of striatal function.SIGNIFICANCE STATEMENT Dopamine axons in the mammalian striatum are emerging as strategic sites where neuromodulators can powerfully influence dopamine output in health and disease. We found that ambient levels of the neuromodulator adenosine tonically inhibit dopamine release in nucleus accumbens core via adenosine A1 receptors (A1Rs), to a variable level that promotes the contrast in dopamine signals released by different frequencies of activity. We reveal that the equilibrative nucleoside transporter 1 (ENT1) on astrocytes limits this tonic inhibition, and that ethanol promotes it by diminishing adenosine uptake via ENT1. These findings support the hypotheses that A1Rs on dopamine axons inhibit dopamine release and, furthermore, that astrocytes perform important roles in setting the level of striatal dopamine output, in health and disease.


Subject(s)
Astrocytes , Dopamine , Equilibrative Nucleoside Transporter 1 , Ethanol , Nucleus Accumbens , Receptor, Adenosine A1 , Adenosine/pharmacology , Adenosine A1 Receptor Agonists/pharmacology , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Dopamine/metabolism , Equilibrative Nucleoside Transporter 1/metabolism , Ethanol/pharmacology , Female , Male , Mice , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Receptor, Adenosine A1/metabolism
11.
PLoS One ; 17(1): e0261960, 2022.
Article in English | MEDLINE | ID: mdl-35030226

ABSTRACT

Inhibitory regulation of the heart is determined by both cholinergic M2 receptors (M2R) and adenosine A1 receptors (A1R) that activate the same signaling pathway, the ACh-gated inward rectifier K+ (KACh) channels via Gi/o proteins. Previously, we have shown that the agonist-specific voltage sensitivity of M2R underlies several voltage-dependent features of IKACh, including the 'relaxation' property, which is characterized by a gradual increase or decrease of the current when cardiomyocytes are stepped to hyperpolarized or depolarized voltages, respectively. However, it is unknown whether membrane potential also affects A1R and how this could impact IKACh. Upon recording whole-cell currents of guinea-pig cardiomyocytes, we found that stimulation of the A1R-Gi/o-IKACh pathway with adenosine only caused a very slight voltage dependence in concentration-response relationships (~1.2-fold EC50 increase with depolarization) that was not manifested in the relative affinity, as estimated by the current deactivation kinetics (τ = 4074 ± 214 ms at -100 mV and τ = 4331 ± 341 ms at +30 mV; P = 0.31). Moreover, IKACh did not exhibit relaxation. Contrarily, activation of the M2R-Gi/o-IKACh pathway with acetylcholine induced the typical relaxation of the current, which correlated with the clear voltage-dependent effect observed in the concentration-response curves (~2.8-fold EC50 increase with depolarization) and in the IKACh deactivation kinetics (τ = 1762 ± 119 ms at -100 mV and τ = 1503 ± 160 ms at +30 mV; P = 0.01). Our findings further substantiate the hypothesis of the agonist-specific voltage dependence of GPCRs and that the IKACh relaxation is consequence of this property.


Subject(s)
Acetylcholine/pharmacology , Adenosine A1 Receptor Agonists/pharmacology , Adenosine/pharmacology , Ion Channel Gating/drug effects , Myocytes, Cardiac/metabolism , Potassium Channels/metabolism , Receptor, Adenosine A1/metabolism , Animals , Female , Guinea Pigs , Male , Receptor, Muscarinic M2/agonists , Receptor, Muscarinic M2/metabolism
12.
J Neurochem ; 160(3): 305-324, 2022 02.
Article in English | MEDLINE | ID: mdl-34905223

ABSTRACT

Extracellular adenosine plays prominent roles in the brain in both physiological and pathological conditions. Adenosine can be generated following the degradation of extracellular nucleotides by various types of ectonucleotidases. Several ectonucleotidases are present in the brain parenchyma: ecto-nucleotide triphosphate diphosphohydrolases 1 and 3 (NTPDase 1 and 3), ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP 1), ecto-5'-nucleotidase (eN), and tissue non-specific alkaline phosphatase (TNAP, whose function in the brain has received little attention). Here we examined, in a living brain preparation, the role of these ectonucleotidases in generating extracellular adenosine. We recorded local field potentials evoked by electrical stimulation of the lateral olfactory tract in the mouse piriform cortex in vitro. Variations in adenosine level were evaluated by measuring changes in presynaptic inhibition generated by adenosine A1 receptors (A1Rs) activation. A1R-mediated presynaptic inhibition was present endogenously and was enhanced by bath-applied AMP and ATP. We hypothesized that inhibiting ectonucleotidases would reduce extracellular adenosine concentration, which would result in a weakening of presynaptic inhibition. However, inhibiting TNAP had no effect in controlling endogenous adenosine action and no effect on presynaptic inhibition induced by bath-applied AMP. Furthermore, contrary to our expectation, inhibiting TNAP reinforced, rather than reduced, presynaptic inhibition induced by bath-applied ATP. Similarly, inhibition of NTPDase 1 and 3, NPP1, and eN induced stronger, rather than weaker, presynaptic inhibition, both in endogenous condition and with bath-applied ATP and AMP. Consequently, attempts to suppress the functions of extracellular adenosine by blocking its extracellular synthesis in living brain tissue could have functional impacts opposite to those anticipated.


Subject(s)
Cerebral Cortex/drug effects , Enzyme Inhibitors/pharmacology , Nucleotidases/antagonists & inhibitors , Synaptic Transmission/drug effects , 5'-Nucleotidase/antagonists & inhibitors , Adenosine/metabolism , Adenosine A1 Receptor Agonists/pharmacology , Adenosine Monophosphate/pharmacology , Adenosine Triphosphate/pharmacology , Alkaline Phosphatase/antagonists & inhibitors , Animals , Electric Stimulation , Evoked Potentials/drug effects , Female , Mice , Mice, Inbred C57BL , Olfactory Bulb/drug effects , Receptor, Adenosine A1/drug effects , Receptor, Adenosine A1/metabolism
13.
Neuropharmacology ; 205: 108924, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34919904

ABSTRACT

Peripheral A1 adenosine receptor signaling has been shown to have analgesic effects in a variety of pain conditions. However, it is not yet fully elucidated for the precise molecular mechanisms. Acid sensing ion channels (ASICs) are expressed predominantly in nociceptive sensory neurons responding to protons. Given that both A1 adenosine receptors and ASICs are present in dorsal root ganglia (DRG) neurons, we therefore investigated whether there was a cross-talk between the two types of receptors. Herein, electrophysiological recordings showed that the A1 adenosine receptor agonist N6-cyclopentyladenosine (CPA) suppressed acid-induced currents and action potentials, which were mediated by ASICs, in rat DRG neurons. CPA inhibited the maximum response to protons, as shown a downward shift of concentration-response curve for protons. The CPA-induced suppression of ASIC currents was blocked by the A1 adenosine receptor antagonist KW-3902 and also prevented by intracellular application of the Gi/o-protein inhibitor pertussis toxin, the adenylate cyclase activator forskolin, and the cAMP analog 8-Br-cAMP. Finally, intraplantar pretreatment of CPA dose-dependently relieved acid-induced nociceptive responses in rats through peripheral A1 adenosine receptors. These results suggested that CPA suppressed ASICs via A1 adenosine receptors and intracellular Gi/o-proteins and cAMP signaling cascades in rat DRG neurons, which was a novel potential mechanism underlying analgesia of peripheral A1 adenosine receptors.


Subject(s)
Acid Sensing Ion Channels/drug effects , Adenosine A1 Receptor Agonists/pharmacology , Adenosine A1 Receptor Antagonists/pharmacology , Analgesia , Electrophysiological Phenomena/drug effects , Ganglia, Spinal/drug effects , Nociception/drug effects , Nociceptors/drug effects , Receptor, Adenosine A1/drug effects , Animals , Behavior, Animal/drug effects , Rats
14.
Biomed Pharmacother ; 146: 112483, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34891112

ABSTRACT

Insomnia, the most common sleep disorder, is characterized by a longer sleep latency, greater sleep fragmentation, and consequent excessive daytime fatigue. Due to the various side effects of prescribed hypnotics, demand for new drugs is still high. Recent studies have suggested the adenosine receptor (AR) as a potential therapeutic target for insomnia, however, clinically useful hypnotics targeting AR are not yet available. In the present study, we evaluated the hypnotic effect of rosmarinic acid, a phenolic compound widely found in medicinal plants, through pentobarbital-induced sleep test, electroencephalography/electromyography (EEG/EMG), and immunohistochemistry in mice. The underlying mechanisms were assessed by pharmacological approach using 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and SCH5826, antagonists for A1R and A2AR, respectively. Receptor-binding assay and functional agonism were also performed. Our study provides a new evidence that rosmarinic acid has a direct binding activity (Ki = 14.21 ± 0.3 µM) and agonistic activity for A1R. We also found that rosmarinic acid significantly decreased sleep fragmentation and onset latency to NREM sleep, and these effects were abolished by DPCPX. The results from c-Fos immunostaining showed that rosmarinic acid decreased the neuronal activity in wake-promoting brain regions, such as the basal forebrain and the lateral hypothalamus, while increasing the neuronal activity in the ventrolateral preoptic nucleus, a sleep-promoting region; all these effects were significantly inhibited by DPCPX. Taken together, this study suggests that rosmarinic acid possesses novel activity as an A1R agonist and thereby exerts a hypnotic effect, and thus it may serve as a potential therapeutic agent for insomnia through targeting A1R.


Subject(s)
Adenosine A1 Receptor Agonists/pharmacology , Cinnamates/pharmacology , Depsides/pharmacology , Hypnotics and Sedatives/pharmacology , Receptor, Adenosine A1/metabolism , Sleep/drug effects , Animals , Brain/drug effects , Brain/physiology , Electroencephalography , Male , Mice, Inbred C57BL , Mice, Inbred ICR , Neurons/drug effects , Neurons/physiology , Pentobarbital , Receptor, Adenosine A2A/metabolism , Rosmarinic Acid
15.
Cells ; 10(12)2021 12 17.
Article in English | MEDLINE | ID: mdl-34944069

ABSTRACT

Adenosine A1 receptor (A1R) activation, stimulating lipogenesis and decreasing insulin resistance, could be useful for metabolic syndrome management in obese subjects. Since full A1R agonists induce harmful side-effects, while partial agonists show a better pharmacological profile, we investigated the influence of two derivatives of the full A1R agonist 2-chloro-N6-cyclopentyladenosine (CCPA), C1 and C2 behaving as A1R partial agonists in animal models, on the adipogenic differentiation of stromal/stem cells (ASCs) from human subcutaneous adipose tissue, which mainly contribute to increase fat mass in obesity. The ASCs from normal-weight subjects showed increased proliferation and A1R expression but reduced adipogenic differentiation compared to obese individual-derived ASCs. Cell exposure to CCPA, C1, C2 or DPCPX, an A1R antagonist, did not affect ASC proliferation, while mainly C2 and DPCPX significantly decreased adipogenic differentiation of both ASC types, reducing the activity of glycerol-3-phosphate dehydrogenase and the expression of PPARγ and FABP-4, all adipogenic markers, and phosphorylation of Akt in the phosphatidylinositol-3-kinase pathway, which plays a key-role in adipogenesis. While requiring confirmation in in vivo models, our results suggest that A1R partial agonists or antagonists, by limiting ASC differentiation into adipocytes and, thereby, fat mass expansion, could favor development/worsening of metabolic syndrome in obese subjects without a dietary control.


Subject(s)
Adipogenesis , Body Weight , Mesenchymal Stem Cells/pathology , Obesity/pathology , Receptor, Adenosine A1/metabolism , Subcutaneous Fat/pathology , Adenosine A1 Receptor Agonists/pharmacology , Adipogenesis/drug effects , Adult , Apoptosis/drug effects , Biomarkers/metabolism , Cell Proliferation/drug effects , Female , Humans , Ligands , Mesenchymal Stem Cells/cytology , Necrosis , Phosphatidylinositol 3-Kinase/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects
17.
Cells ; 10(11)2021 11 15.
Article in English | MEDLINE | ID: mdl-34831394

ABSTRACT

Hepatic ischemia/reperfusion injury (IRI) is aggravated by steatosis and is a main risk factor in fatty liver transplantation. Adenosine receptors (ARs) are emerging as therapeutic targets in liver diseases. By using cellular and in vivo systems of hepatic steatosis and IRI, here we evaluated the effects of pharmacological A2AR and A1R activation. The A2AR agonist CGS21680 protected the primary steatotic murine hepatocyte from IR damage and the activation of ASK1 and JNK. Such an effect was attributed to a phosphatidylinositol-3-kinase (PI3K)/Akt-dependent inhibition of ASK1. By contrast, the A1R agonist CCPA enhanced IR damage, intracellular steatosis and oxidative species (OS) production, thereby further increasing the lipid/OS-dependent ASK1-JNK stimulation. The CGS2680 and CCPA effects were nullified by a genetic ASK1 downregulation in steatotic hepatoma C1C7 cells. In steatotic mice livers, CGS21680 protected against hepatic IRI and ASK1/JNK activation whereas CCPA aggravated hepatic steatosis and IRI, and enhanced ASK1 and JNK stimulation. These results evidence a novel mechanism of CGS21680-mediated hepatoprotection, i.e., the PI3K/AKT-dependent inhibition of ASK1, and they show that CGS21680 and CCPA reduces and enhances the IRI of fatty liver, respectively, by preventing or increasing the activation of the cytotoxic ASK1/JNK axis. They also indicate the selective employment of A2AR agonists as an effective therapeutic strategy to prevent IRI in human fatty liver surgery.


Subject(s)
Disease Progression , Fatty Liver/complications , MAP Kinase Kinase Kinase 5/metabolism , Protective Agents/metabolism , Receptor, Adenosine A1/metabolism , Receptor, Adenosine A2A/metabolism , Reperfusion Injury/complications , Adenosine A1 Receptor Agonists/pharmacology , Adenosine A2 Receptor Agonists/pharmacology , Animals , Cell Death/drug effects , Cytoprotection/drug effects , Enzyme Activation/drug effects , Gene Silencing , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , JNK Mitogen-Activated Protein Kinases/metabolism , Lipids/analysis , Male , Mice, Inbred BALB C , Oxidation-Reduction
18.
Pharmacol Res Perspect ; 9(4): e00827, 2021 08.
Article in English | MEDLINE | ID: mdl-34337892

ABSTRACT

Sevoflurane affects on the A1 receptor in the central nervous system and potentiates the action of neuromuscular blocking agents. In the present study, we investigated whether sevoflurane (SEVO) has the ability to potentiate the neuromuscular blocking effect of rocuronium and if the specific antagonist of adenosine receptor (SLV320) can reverse this effect. In this study, phrenic nerve-hemidiaphragm tissue specimens were obtained from 40 Sprague-Dawley (SD) rats. The specimens were immersed in an organ bath filled with Krebs buffer and stimulated by a train-of-four (TOF) pattern using indirect supramaximal stimulation at 20 s intervals. The specimens were randomly allocated to control, 2-chloroadenosine (CADO), SEVO, or SLV320 + SEVO groups. In the CADO and SLV320 + SEVO groups, CADO and SLV320 were added to the organ bath from the start to a concentration of 10 µM and 10 nM, respectively. We then proceeded with rocuronium-induced blockade of >95% depression of the first twitch tension of TOF (T1) and TOF ratio (TOFR). In the SEVO and SLV320 + SEVO groups, SEVO was added to the Krebs buffer solution to concentration of 400-500 µM for 10 min. Sugammadex-induced T1 and TOFR recovery was monitored for 30 min until >95% of T1 and >0.9 of TOFR were confirmed, and the recovery pattern was compared by plotting these data. T1 recovery in the SEVO and CADO groups was significantly delayed compared with the control and SLV320 + SEVO groups (p < .05). In conclusion, sevoflurane affects on the A1 receptor at the neuromuscular junction and delays sugammadex-induced recovery from neuromuscular blockade.


Subject(s)
2-Chloroadenosine/pharmacology , Adenosine A1 Receptor Agonists/pharmacology , Cyclohexanes/pharmacology , Diaphragm/drug effects , Heterocyclic Compounds, 2-Ring/pharmacology , Neuromuscular Blockade , Phrenic Nerve/drug effects , Purinergic P1 Receptor Antagonists/pharmacology , Sevoflurane/pharmacology , Animals , Diaphragm/physiology , In Vitro Techniques , Male , Neuromuscular Nondepolarizing Agents , Phrenic Nerve/physiology , Rats, Sprague-Dawley , Rocuronium , Sugammadex
19.
Purinergic Signal ; 17(3): 503-514, 2021 09.
Article in English | MEDLINE | ID: mdl-34313915

ABSTRACT

Previous studies suggest that adenosine A1 receptors (A1R) modulate the processing of pain. The aim of this study was to characterize the distribution of A1R in nociceptive tissues and to evaluate whether targeting A1R with the partial agonist capadenoson may reduce neuropathic pain in mice. The cellular distribution of A1R in dorsal root ganglia (DRG) and the spinal cord was analyzed using fluorescent in situ hybridization. In behavioral experiments, neuropathic pain was induced by spared nerve injury or intraperitoneal injection of paclitaxel, and tactile hypersensitivities were determined using a dynamic plantar aesthesiometer. Whole-cell patch-clamp recordings were performed to assess electrophysiological properties of dissociated DRG neurons. We found A1R to be expressed in populations of DRG neurons and dorsal horn neurons involved in the processing of pain. However, administration of capadenoson at established in vivo doses (0.03-1.0 mg/kg) did not alter mechanical hypersensitivity in the spared nerve injury and paclitaxel models of neuropathic pain, whereas the standard analgesic pregabalin significantly inhibited the pain behavior. Moreover, capadenoson failed to affect potassium currents in DRG neurons, in contrast to a full A1R agonist. Despite expression of A1R in nociceptive neurons, our data do not support the hypothesis that pharmacological intervention with partial A1R agonists might be a valuable approach for the treatment of neuropathic pain.


Subject(s)
Adenosine A1 Receptor Agonists/therapeutic use , Neuralgia/drug therapy , Neuralgia/metabolism , Receptor, Adenosine A1/biosynthesis , Adenosine A1 Receptor Agonists/pharmacology , Animals , Cells, Cultured , Female , Male , Mice , Mice, Inbred C57BL , Pain Measurement/drug effects , Pain Measurement/methods , Receptor, Adenosine A1/genetics , Treatment Outcome
20.
Purinergic Signal ; 17(2): 303-312, 2021 06.
Article in English | MEDLINE | ID: mdl-33860899

ABSTRACT

The role of peripheral adenosine receptors in pain is a controversial issue and seems to be quite different from the roles of spinal and central adenosine receptors. The present study is aimed at clarifying the role of these receptors in peripheral nociception. To clarify this, studies were done on Swiss mice with adenosine receptor agonists and antagonists. Nociceptive behavior was induced by subcutaneous injection of glutamate (10 µmol) into the ventral surface of the hind paw of mice. Statistical analyses were performed by one-way ANOVA followed by the Student-Newman-Keuls post hoc test. Results showed that intraplantar (i.pl.) administration of N6-cyclohexyl-adenosine (CHA), an adenosine A1 receptor agonist, at 1 or 10 µg/paw significantly reduced glutamate-induced nociception (p<0.01 and p<0.001 vs. vehicle, respectively, n=8-10). In contrast, i.pl. injection of hydrochloride hydrate (CGS21680, an adenosine A2A receptor agonist) (1 µg/paw) induced a significant increase in glutamate-induced nociception compared to the vehicle (p<0.05, n=8), while 4-(-2-[7-amino-2-{2-furyl}{1,2,4}triazolo{2,3-a} {1,3,5}triazin-5-yl-amino]ethyl)phenol (ZM241385, an adenosine A2A receptor antagonist) (20 µg/paw) caused a significant reduction (p<0.05, n=7-8). There were no significant effects on i.pl. administration of four additional adenosine receptor drugs-8-cyclopentyl-1,3-dipropylxanthine (DPCPX, an A1 antagonist, 1-10 µg/paw), N(6)-[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)-ethyl]adenosine (DPMA, an A2B agonist, 1-100 µg/paw), alloxazine (an A2B antagonist, 0.1-3 µg/paw), and 2-hexyn-1-yl-N(6)-methyladenosine (HEMADO) (an A3 agonist, 1-100 µg/paw) (p>0.05 vs. vehicle for all tests). We also found that prior administration of DPCPX (3 µg/paw) significantly blocked the anti-nociceptive effect of CHA (1 µg/paw) (p<0.05, n=7-9). Similarly, ZM241385 (20 µg/paw) administered prior to CGS21680 (1 µg/paw) significantly blocked CGS21680-induced exacerbation of nociception (p<0.05, n=8). Finally, inosine (10 and 100 µg/paw), a novel endogenous adenosine A1 receptor agonist recently reported by our research group, was also able to reduce glutamate-induced nociception (p<0.001 vs. vehicle, n=7-8). Interestingly, as an A1 adenosine receptor agonist, the inosine effect was significantly blocked by the A1 antagonist DPCPX (3 µg/paw) (p<0.05, n=7-9) but not by the A2A antagonist ZM241385 (10 µg/paw, p>0.05). In summary, these results demonstrate for the first time that i.pl administration of inosine induces an anti-nociceptive effect, similar to that elicited by CHA and possibly mediated by peripheral adenosine A1 receptor activation. Moreover, our results suggest that peripheral adenosine A2A receptor activation presents a pro-nociceptive effect, exacerbating glutamate-induced nociception independent of inosine-induced anti-nociceptive effects.


Subject(s)
Glutamates , Nociception/drug effects , Pain/chemically induced , Pain/psychology , Peripheral Nervous System/drug effects , Receptors, Purinergic P1/drug effects , Adenosine A1 Receptor Agonists/pharmacology , Adenosine A1 Receptor Antagonists/pharmacology , Adenosine A2 Receptor Agonists/pharmacology , Adenosine A2 Receptor Antagonists/pharmacology , Animals , Female , Foot , Glutamates/administration & dosage , Injections , Inosine/pharmacology , Male , Mice , Pain Measurement/drug effects , Receptor, Adenosine A2A/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL