Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.468
Filter
1.
PLoS One ; 19(7): e0305927, 2024.
Article in English | MEDLINE | ID: mdl-39024326

ABSTRACT

Fibrotic skin diseases, such as keloids, are pathological results of aberrant tissue healing and are characterized by overgrowth of dermal fibroblasts. Remdesivir (RD), an antiviral drug, has been reported to have pharmacological activities in a wide range of fibrotic diseases. However, whether RD function on skin fibrosis remains unclear. Therefore, in our study, we explored the potential effect and mechanisms of RD on skin fibrosis both in vivo and in vitro. As expected, the results demonstrated that RD alleviated BLM-induced skin fibrosis and attenuates the gross weight of keloid tissues in vivo. Further studies suggested that RD suppressed fibroblast activation and autophagy both in vivo and in vitro. In addition, mechanistic research showed that RD attenuated fibroblasts activation by the TGF-ß1/Smad signaling pathway and inhibited fibroblasts autophagy by the PI3K/Akt/mTOR signaling pathway. In summary, our results demonstrate therapeutic potential of RD for skin fibrosis in the future.


Subject(s)
Adenosine Monophosphate , Alanine , Fibroblasts , Fibrosis , Signal Transduction , Skin , Transforming Growth Factor beta1 , Animals , Signal Transduction/drug effects , Transforming Growth Factor beta1/metabolism , Fibrosis/drug therapy , Alanine/analogs & derivatives , Alanine/pharmacology , Alanine/therapeutic use , Fibroblasts/drug effects , Fibroblasts/metabolism , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/metabolism , Mice , Skin/drug effects , Skin/pathology , Skin/metabolism , Humans , Autophagy/drug effects , Keloid/drug therapy , Keloid/metabolism , Keloid/pathology , Antiviral Agents/pharmacology , TOR Serine-Threonine Kinases/metabolism , Bleomycin , Phosphatidylinositol 3-Kinases/metabolism , Male , Proto-Oncogene Proteins c-akt/metabolism , Smad Proteins/metabolism
2.
Cardiovasc Toxicol ; 24(7): 656-666, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38851664

ABSTRACT

Antiviral therapies for treatment of COVID-19 may be associated with significant proarrhythmic potential. In the present study, the potential cardiotoxic side effects of these therapies were evaluated using a Langendorff model of the isolated rabbit heart. 51 hearts of female rabbits were retrogradely perfused, employing a Langendorff-setup. Eight catheters were placed endo- and epicardially to perform an electrophysiology study, thus obtaining cycle length-dependent action potential duration at 90% of repolarization (APD90), QT intervals and dispersion of repolarization. After generating baseline data, the hearts were assigned to four groups: In group 1 (HXC), hearts were treated with 1 µM hydroxychloroquine. Thereafter, 3 µM hydroxychloroquine were infused additionally. Group 2 (HXC + AZI) was perfused with 3 µM hydroxychloroquine followed by 150 µM azithromycin. In group 3 (LOP) the hearts were perfused with 3 µM lopinavir followed by 5 µM and 10 µM lopinavir. Group 4 (REM) was perfused with 1 µM remdesivir followed by 5 µM and 10 µM remdesivir. Hydroxychloroquine- and azithromycin-based therapies have a significant proarrhythmic potential mediated by action potential prolongation and an increase in dispersion. Lopinavir and remdesivir showed overall significantly less pronounced changes in electrophysiology. In accordance with the reported bradycardic events under remdesivir, it significantly reduced the rate of the ventricular escape rhythm.


Subject(s)
Action Potentials , Antiviral Agents , Isolated Heart Preparation , Animals , Rabbits , Female , Antiviral Agents/pharmacology , Antiviral Agents/toxicity , Action Potentials/drug effects , COVID-19 Drug Treatment , Hydroxychloroquine/toxicity , Hydroxychloroquine/pharmacology , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/physiopathology , Cardiotoxicity , Alanine/analogs & derivatives , Alanine/pharmacology , Heart Rate/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/toxicity , Adenosine Monophosphate/pharmacology , Heart/drug effects
3.
Int Immunopharmacol ; 137: 112465, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38878489

ABSTRACT

INTRODUCTION: Ulcerative colitis (UC) is a primary culprit of inflammatory bowel disease that entails prompt and effective clinical intervention. Remdesivir (RDV), a broad-spectrum antiviral nucleotide, has been found to exert anti-inflammatory effects in experimental animals. AIM: This study investigates the prospective anti-inflammatory merit of RDV on an experimental model of UC. The role of SIRT6/FoxC1 in regulating colonic cell inflammation and pyroptosis is delineated. METHOD: Rats were challenged with a single intrarectal dose of acetic acid (AA) solution (2 ml; 4 % v/v) to induce colitis. RDV (20 mg/kg, ip) and sulfasalazine (100 mg/kg, po) were administered to rats 14 days before the injection of AA. RESULTS: Administration of RDV ameliorated colonic cell injury and loss as manifested by improvement of severe colon histopathological mutilation and macroscopic damage and disease activity index scores together with restoration of normal colon weight/length ratio. In addition, RDV alleviated colonic inflammatory reactions, thereby curtailing NF-κB activation and the inflammatory cytokines, TNF-α, IL-18, and IL-1ß. Mitigation of colonic oxidative stress and apoptotic reactions were also evident in the setting of RDV treatment. Mechanistically, RDV enhanced the anti-inflammatory cascade, SIRT6/FoxC1, together with curbing the pyroptotic signal, NLRP3/cleaved caspase-1/Gasdermin D-elicited colonic inflammatory cell death. CONCLUSION: This study reveals, for the first time, the anti-inflammatory effect of RDV against experimental UC. Augmenting SIRT6/FoxC1-mediated repression of colonic inflammation and pyroptosis might advocate the colo-protective potential of RDV.


Subject(s)
Acetic Acid , Adenosine Monophosphate , Alanine , Anti-Inflammatory Agents , Colitis, Ulcerative , Colon , Cytokines , Pyroptosis , Sirtuins , Animals , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/immunology , Pyroptosis/drug effects , Rats , Male , Colon/pathology , Colon/drug effects , Colon/immunology , Sirtuins/metabolism , Alanine/analogs & derivatives , Alanine/therapeutic use , Alanine/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Adenosine Monophosphate/pharmacology , Cytokines/metabolism , Signal Transduction/drug effects , Disease Models, Animal , Guanosine Monophosphate , Humans
4.
Food Res Int ; 190: 114596, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945612

ABSTRACT

Yeast extracts (YEs) are used in foods because of their flavour properties and ability to reduce bitterness. The adenosine 5'-monophosphate (AMP) found in YEs is known to decrease the bitterness of some compounds. This study aimed to investigate the ability of YEs to inhibit bitter taste receptors (TAS2Rs) using in vitro cell-based assays. A screen of TAS2Rs activated by AMP and YEs revealed that AMP and the AMP-rich YE activated more TAS2Rs. The inhibitory effect of the AMP-rich YE on seven TAS2Rs activated by bitter agonists was studied. YE reduced TAS2R activation, increased the EC50 value and decreased the maximum amplitude, demonstrating competitive and non-competitive inhibitions. Amongst the nineteen TAS2Rs tested, seven showed 40 % or greater inhibition after treatment of AMP-rich YE. Our data provide a better understanding of the TAS2R inhibition mechanism of AMP-rich YEs and promote their use as a strategy to reduce bitterness in foods and medicines.


Subject(s)
Receptors, G-Protein-Coupled , Taste , Receptors, G-Protein-Coupled/metabolism , Humans , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/pharmacology , HEK293 Cells , Yeasts/metabolism
5.
Microbiol Res ; 285: 127750, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38761489

ABSTRACT

The progress of viral infection involves numerous transcriptional regulatory events. The identification of the newly synthesized transcripts helps us to understand the replication mechanisms and pathogenesis of the virus. Here, we utilized a time-resolved technique called metabolic RNA labeling approach called thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM-seq) to differentially elucidate the levels of steady-state and newly synthesized RNAs of BHK21 cell line in response to human coronavirus OC43 (HCoV-OC43) infection. Our results showed that the Wnt/ß-catenin signaling pathway was significantly enriched with the newly synthesized transcripts of BHK21 cell line in response to HCoV-OC43 infection. Moreover, inhibition of the Wnt pathway promoted viral replication in the early stage of infection, but inhibited it in the later stage of infection. Furthermore, remdesivir inhibits the upregulation of the Wnt/ß-catenin signaling pathway induced by early infection with HCoV-OC43. Collectively, our study showed the diverse roles of Wnt/ß-catenin pathway at different stages of HCoV-OC43 infection, suggesting a potential target for the antiviral treatment. In addition, although infection with HCoV-OC43 induces cytopathic effects in BHK21 cells, inhibiting apoptosis does not affect the intracellular replication of the virus. Monitoring newly synthesized RNA based on such time-resolved approach is a highly promising method for studying the mechanism of viral infections.


Subject(s)
Adenosine Monophosphate , Alanine , Antiviral Agents , Coronavirus OC43, Human , Transcriptome , Virus Replication , Wnt Signaling Pathway , Coronavirus OC43, Human/genetics , Coronavirus OC43, Human/drug effects , Virus Replication/drug effects , Cell Line , Humans , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/metabolism , Antiviral Agents/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Alanine/metabolism , Animals , Coronavirus Infections/virology , Coronavirus Infections/drug therapy
6.
J Med Chem ; 67(9): 7470-7486, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38690769

ABSTRACT

We assessed factors that determine the tissue-specific bioactivation of ProTide prodrugs by comparing the disposition and activation of remdesivir (RDV), its methylpropyl and isopropyl ester analogues (MeRDV and IsoRDV, respectively), the oral prodrug GS-621763, and the parent nucleotide GS-441524 (Nuc). RDV and MeRDV yielded more active metabolite remdesivir-triphosphate (RDV-TP) than IsoRDV, GS-621763, and Nuc in human lung cell models due to superior cell permeability and higher susceptivity to cathepsin A. Intravenous administration to mice showed that RDV and MeRDV delivered significantly more RDV-TP to the lung than other compounds. Nevertheless, all four ester prodrugs exhibited very low oral bioavailability (<2%), with Nuc being the predominant metabolite in blood. In conclusion, ProTides prodrugs, such as RDV and MeRDV, are more efficient in delivering active metabolites to the lung than Nuc, driven by high cell permeability and susceptivity to cathepsin A. Optimizing ProTides' ester structures is an effective strategy for enhancing prodrug activation in the lung.


Subject(s)
Adenosine/analogs & derivatives , Antiviral Agents , Cathepsin A , Lung , Prodrugs , Prodrugs/chemistry , Prodrugs/metabolism , Prodrugs/pharmacokinetics , Prodrugs/pharmacology , Animals , Mice , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Humans , Cathepsin A/metabolism , Lung/metabolism , Cell Membrane Permeability/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacokinetics , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/pharmacokinetics , Alanine/metabolism , Alanine/pharmacology , Permeability , ProTides
7.
Mol Pharmacol ; 106(1): 71-82, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38769019

ABSTRACT

Remdesivir (RDV), a broad-spectrum antiviral agent, is often used together with dexamethasone (DEX) for hospitalized COVID-19 patients requiring respiratory support. Potential hepatic adverse drug reaction is a safety concern associated with the use of RDV. We previously reported that DEX cotreatment effectively mitigates RDV-induced hepatotoxicity and reduces elevated serum alanine aminotransferase and aspartate aminotransferase levels in cultured human primary hepatocytes (HPH) and hospitalized COVID-19 patients, respectively. Yet, the precise mechanism behind this protective drug-drug interaction remains largely unknown. Here, we show that through the activation of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling, RDV induces apoptosis (cleavage of caspases 8, 9, and 3), autophagy (increased autophagosome and LC3-II), and mitochondrial damages (decreased membrane potential, respiration, ATP levels, and increased expression of Bax and the released cytosolic cytochrome C) in HPH. Importantly, cotreatment with DEX partially reversed RDV-induced apoptosis, autophagy, and cell death. Mechanistically, DEX deactivates/dephosphorylates p38, JNK, and ERK1/2 signaling by enhancing the expression of dual specificity protein phosphatase 1 (DUSP1), a mitogen-activated protein kinase (MAPK) phosphatase, in a glucocorticoid receptor (GR)-dependent manner. Knockdown of GR in HPH attenuates DEX-mediated DUSP1 induction, MAPK dephosphorylation, as well as protection against RDV-induced hepatotoxicity. Collectively, our findings suggest a molecular mechanism by which DEX modulates the GR-DUSP1-MAPK regulatory axis to alleviate the adverse actions of RDV in the liver. SIGNIFICANCE STATEMENT: The research uncovers the molecular mechanisms by which dexamethasone safeguards against remdesivir-associated liver damage in the context of COVID-19 treatment.


Subject(s)
Adenosine Monophosphate , Alanine , Antiviral Agents , Apoptosis , Autophagy , COVID-19 Drug Treatment , Chemical and Drug Induced Liver Injury , Dexamethasone , Dual Specificity Phosphatase 1 , Hepatocytes , Dexamethasone/pharmacology , Humans , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Chemical and Drug Induced Liver Injury/etiology , Antiviral Agents/pharmacology , Antiviral Agents/adverse effects , Dual Specificity Phosphatase 1/metabolism , Dual Specificity Phosphatase 1/genetics , Hepatocytes/drug effects , Hepatocytes/metabolism , Apoptosis/drug effects , Autophagy/drug effects , Cells, Cultured , MAP Kinase Signaling System/drug effects
8.
Virol Sin ; 39(3): 459-468, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38782261

ABSTRACT

Ebola virus (EBOV) and Marburg virus (MARV), members of the Filoviridae family, are highly pathogenic and can cause hemorrhagic fevers, significantly impacting human society. Bats are considered reservoirs of these viruses because related filoviruses have been discovered in bats. However, due to the requirement for maximum containment laboratories when studying infectious viruses, the characterization of bat filoviruses often relies on pseudoviruses and minigenome systems. In this study, we used RACE technology to sequence the 3'-leader and 5'-trailer of Menglà virus (MLAV) and constructed a minigenome. Similar to MARV, the transcription activities of the MLAV minigenome are independent of VP30. We further assessed the effects of polymorphisms at the 5' end on MLAV minigenome activity and identified certain mutations that decrease minigenome reporter efficiency, probably due to alterations in the RNA secondary structure. The reporter activity upon recombination of the 3'-leaders and 5'-trailers of MLAV, MARV, and EBOV with those of the homologous or heterologous minigenomes was compared and it was found that the polymerase complex and leader and trailer sequences exhibit intrinsic specificities. Additionally, we investigated whether the polymerase complex proteins from EBOV and MARV support MLAV minigenome RNA synthesis and found that the homologous system is more efficient than the heterologous system. Remdesivir efficiently inhibited MLAV as well as EBOV replication. In summary, this study provides new information on bat filoviruses and the minigenome will be a useful tool for high-throughput antiviral drug screening.


Subject(s)
Ebolavirus , Genome, Viral , Marburgvirus , Animals , Genome, Viral/genetics , Ebolavirus/genetics , Humans , Marburgvirus/genetics , Mengovirus/genetics , Virus Replication , RNA, Viral/genetics , Alanine/analogs & derivatives , Alanine/pharmacology , Chiroptera/virology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/metabolism , Filoviridae/genetics , Viral Proteins/genetics , Viral Proteins/metabolism
9.
Emerg Microbes Infect ; 13(1): 2353302, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38753462

ABSTRACT

Animal models of COVID-19 facilitate the development of vaccines and antivirals against SARS-CoV-2. The efficacy of antivirals or vaccines may differ in different animal models with varied degrees of disease. Here, we introduce a mouse model expressing human angiotensin-converting enzyme 2 (ACE2). In this model, ACE2 with the human cytokeratin 18 promoter was knocked into the Hipp11 locus of C57BL/6J mouse by CRISPR - Cas9 (K18-hACE2 KI). Upon intranasal inoculation with high (3 × 105 PFU) or low (2.5 × 102 PFU) dose of SARS-CoV-2 wildtype (WT), Delta, Omicron BA.1, or Omicron BA.2 variants, all mice showed obvious infection symptoms, including weight loss, high viral loads in the lung, and interstitial pneumonia. 100% lethality was observed in K18-hACE2 KI mice infected by variants with a delay of endpoint for Delta and BA.1, and a significantly attenuated pathogenicity was observed for BA.2. The pneumonia of infected mice was accompanied by the infiltration of neutrophils and pulmonary fibrosis in the lung. Compared with K18-hACE2 Tg mice and HFH4-hACE2 Tg mice, K18-hACE2 KI mice are more susceptible to SARS-CoV-2. In the antivirals test, REGN10933 and Remdesivir had limited antiviral efficacies in K18-hACE2 KI mice upon the challenge of SARS-CoV-2 infections, while Nirmatrelvir, monoclonal antibody 4G4, and mRNA vaccines potently protected the mice from death. Our results suggest that the K18-hACE2 KI mouse model is lethal and stable for SARS-CoV-2 infection, and is practicable and stringent to antiviral development.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antiviral Agents , COVID-19 , Disease Models, Animal , Mice, Inbred C57BL , SARS-CoV-2 , Animals , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Mice , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Humans , Lung/virology , Lung/pathology , COVID-19 Drug Treatment , Keratin-18/genetics , Viral Load , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/pharmacology , Gene Knock-In Techniques , Antibodies, Viral/immunology , Antibodies, Viral/blood , Female
10.
Cell Stress Chaperones ; 29(3): 404-424, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599565

ABSTRACT

Adenosyl monophosphate (AMP)ylation (the covalent transfer of an AMP from Adenosine Triphosphate (ATP) onto a target protein) is catalyzed by the human enzyme Huntingtin Yeast Interacting Partner E (HYPE)/FicD to regulate its substrate, the heat shock chaperone binding immunoglobulin protein (BiP). HYPE-mediated AMPylation of BiP is critical for maintaining proteostasis in the endoplasmic reticulum and mounting a unfolded protein response in times of proteostatic imbalance. Thus, manipulating HYPE's enzymatic activity is a key therapeutic strategy toward the treatment of various protein misfolding diseases, including neuropathy and early-onset diabetes associated with two recently identified clinical mutations of HYPE. Herein, we present an optimized, fluorescence polarization-based, high-throughput screening (HTS) assay to discover activators and inhibitors of HYPE-mediated AMPylation. After challenging our HTS assay with over 30,000 compounds, we discovered a novel AMPylase inhibitor, I2.10. We also determined a low micromolar IC50 for I2.10 and employed biorthogonal counter-screens to validate its efficacy against HYPE's AMPylation of BiP. Further, we report low cytotoxicity of I2.10 on human cell lines. We thus established an optimized, high-quality HTS assay amenable to tracking HYPE's enzymatic activity at scale, and provided the first novel small-molecule inhibitor capable of perturbing HYPE-directed AMPylation of BiP in vitro. Our HTS assay and I2.10 compound serve as a platform for further development of HYPE-specific small-molecule therapeutics.


Subject(s)
High-Throughput Screening Assays , Humans , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/analogs & derivatives , Endoplasmic Reticulum Chaperone BiP/metabolism , HEK293 Cells , Membrane Proteins , Nucleotidyltransferases
11.
Br J Pharmacol ; 181(15): 2636-2654, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38616133

ABSTRACT

BACKGROUND AND PURPOSE: There is a need for effective anti-COVID-19 treatments, mainly for individuals at risk of severe disease such as the elderly and the immunosuppressed. Drug repositioning has proved effective in identifying drugs that can find a new application for the control of coronavirus disease, in particular COVID-19. The purpose of the present study was to find synergistic antiviral combinations for COVID-19 based on lethal mutagenesis. EXPERIMENTAL APPROACH: The effect of combinations of remdesivir and ribavirin on the infectivity of SARS-CoV-2 in cell culture has been tested. Viral populations were monitored by ultra-deep sequencing, and the decrease of infectivity as a result of the treatment was measured. KEY RESULTS: Remdesivir and ribavirin exerted a synergistic inhibitory activity against SARS-CoV-2, quantified both by CompuSyn (Chou-Talalay method) and Synergy Finder (ZIP-score model). In serial passage experiments, virus extinction was readily achieved with remdesivir-ribavirin combinations at concentrations well below their cytotoxic 50 value, but not with the drugs used individually. Deep sequencing of treated viral populations showed that remdesivir, ribavirin, and their combinations evoked significant increases of the number of viral mutations and haplotypes, as well as modification of diversity indices that characterize viral quasi-species. CONCLUSION AND IMPLICATIONS: SARS-CoV-2 extinction can be achieved by synergistic combination treatments based on lethal mutagenesis. In addition, the results offer prospects of triple drug treatments for effective SARS-CoV-2 suppression.


Subject(s)
Adenosine Monophosphate , Alanine , Antiviral Agents , Drug Synergism , Ribavirin , SARS-CoV-2 , Alanine/analogs & derivatives , Alanine/pharmacology , Ribavirin/pharmacology , Antiviral Agents/pharmacology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , SARS-CoV-2/drug effects , Chlorocebus aethiops , Vero Cells , Animals , Humans , COVID-19 Drug Treatment , COVID-19/virology
12.
ACS Chem Biol ; 19(5): 1093-1105, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38646883

ABSTRACT

Viral macrodomains that can bind to or hydrolyze protein adenosine diphosphate ribosylation (ADP-ribosylation) have emerged as promising targets for antiviral drug development. Many inhibitor development efforts have been directed against the severe acute respiratory syndrome coronavirus 2 macrodomain 1 (SARS-CoV-2 Mac1). However, potent inhibitors for viral macrodomains are still lacking, with the best inhibitors still in the micromolar range. Based on GS-441524, a remdesivir precursor, and our previous studies, we have designed and synthesized potent binders of SARS-CoV-2 Mac1 and other viral macrodomains including those of Middle East respiratory syndrome coronavirus (MERS-CoV), Venezuelan equine encephalitis virus (VEEV), and Chikungunya virus (CHIKV). We show that the 1'-CN group of GS-441524 promotes binding to all four viral macrodomains tested while capping the 1″-OH of GS-441524-diphosphate-ribose with a simple phenyl ring further contributes to binding. Incorporating these two structural features, the best binders show 20- to 6000-fold increases in binding affinity over ADP-ribose for SARS-CoV-2, MERS-CoV, VEEV, and CHIKV macrodomains. Moreover, building on these potent binders, we have developed two highly sensitive fluorescence polarization tracers that only require nanomolar proteins and can effectively resolve the binding affinities of nanomolar inhibitors. Our findings and probes described here will facilitate future development of more potent viral macrodomain inhibitors.


Subject(s)
Antiviral Agents , Fluorescence Polarization , SARS-CoV-2 , Humans , Adenosine Diphosphate Ribose/metabolism , Adenosine Diphosphate Ribose/chemistry , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Chikungunya virus/drug effects , COVID-19/virology , COVID-19 Drug Treatment , Encephalitis Virus, Venezuelan Equine/drug effects , Encephalitis Virus, Venezuelan Equine/metabolism , Middle East Respiratory Syndrome Coronavirus , Protein Binding , Protein Domains , SARS-CoV-2/drug effects
13.
Viruses ; 16(4)2024 03 31.
Article in English | MEDLINE | ID: mdl-38675889

ABSTRACT

Remdesivir (RDV) is a broad-spectrum nucleotide analog prodrug approved for the treatment of COVID-19 in hospitalized and non-hospitalized patients with clinical benefit demonstrated in multiple Phase 3 trials. Here we present SARS-CoV-2 resistance analyses from the Phase 3 SIMPLE clinical studies evaluating RDV in hospitalized participants with severe or moderate COVID-19 disease. The severe and moderate studies enrolled participants with radiologic evidence of pneumonia and a room-air oxygen saturation of ≤94% or >94%, respectively. Virology sample collection was optional in the study protocols. Sequencing and related viral load data were obtained retrospectively from participants at a subset of study sites with local sequencing capabilities (10 of 183 sites) at timepoints with detectable viral load. Among participants with both baseline and post-baseline sequencing data treated with RDV, emergent Nsp12 substitutions were observed in 4 of 19 (21%) participants in the severe study and none of the 2 participants in the moderate study. The following 5 substitutions emerged: T76I, A526V, A554V, E665K, and C697F. The substitutions T76I, A526V, A554V, and C697F had an EC50 fold change of ≤1.5 relative to the wildtype reference using a SARS-CoV-2 subgenomic replicon system, indicating no significant change in the susceptibility to RDV. The phenotyping of E665K could not be determined due to a lack of replication. These data reveal no evidence of relevant resistance emergence and further confirm the established efficacy profile of RDV with a high resistance barrier in COVID-19 patients.


Subject(s)
Adenosine Monophosphate , Adenosine Monophosphate/analogs & derivatives , Alanine , Alanine/analogs & derivatives , Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Drug Resistance, Viral , SARS-CoV-2 , Viral Load , Humans , Alanine/therapeutic use , Alanine/pharmacology , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Viral Load/drug effects , COVID-19/virology , Male , Female , Retrospective Studies , Middle Aged , Severity of Illness Index
14.
Science ; 383(6688): eadk6176, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38484056

ABSTRACT

Obeldesivir (ODV, GS-5245) is an orally administered prodrug of the parent nucleoside of remdesivir (RDV) and is presently in phase 3 trials for COVID-19 treatment. In this work, we show that ODV and its circulating parent nucleoside metabolite, GS-441524, have similar in vitro antiviral activity against filoviruses, including Marburg virus, Ebola virus, and Sudan virus (SUDV). We also report that once-daily oral ODV treatment of cynomolgus monkeys for 10 days beginning 24 hours after SUDV exposure confers 100% protection against lethal infection. Transcriptomics data show that ODV treatment delayed the onset of inflammation and correlated with antigen presentation and lymphocyte activation. Our results offer promise for the further development of ODV to control outbreaks of filovirus disease more rapidly.


Subject(s)
Alanine , Antiviral Agents , Ebolavirus , Hemorrhagic Fever, Ebola , Nucleosides , Prodrugs , Animals , Administration, Oral , Ebolavirus/drug effects , Hemorrhagic Fever, Ebola/drug therapy , Hemorrhagic Fever, Ebola/prevention & control , Macaca fascicularis , Nucleosides/administration & dosage , Nucleosides/pharmacology , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/pharmacology , Alanine/administration & dosage , Alanine/analogs & derivatives , Alanine/pharmacology , Prodrugs/administration & dosage , Prodrugs/pharmacology , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology
15.
Cell Commun Signal ; 22(1): 138, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38374138

ABSTRACT

BACKGROUND: Applications of nonthermal plasma have expanded beyond the biomedical field to include antibacterial, anti-inflammatory, wound healing, and tissue regeneration. Plasma enhances epithelial cell repair; however, the potential damage to deep tissues and vascular structures remains under investigation. RESULT: This study assessed whether liquid plasma (LP) increased nitric oxide (NO) production in human umbilical vein endothelial cells by modulating endothelial NO synthase (eNOS) phosphorylation and potential signaling pathways. First, we developed a liquid plasma product and confirmed the angiogenic effect of LP using the Matrigel plug assay. We found that the NO content increased in plasma-treated water. NO in plasma-treated water promoted cell migration and angiogenesis in scratch and tube formation assays via vascular endothelial growth factor mRNA expression. In addition to endothelial cell proliferation and migration, LP influenced extracellular matrix metabolism and matrix metalloproteinase activity. These effects were abolished by treatment with NG-L-monomethyl arginine, a specific inhibitor of NO synthase. Furthermore, we investigated the signaling pathways mediating the phosphorylation and activation of eNOS in LP-treated cells and the role of LKB1-adenosine monophosphate-activated protein kinase in signaling. Downregulation of adenosine monophosphate-activated protein kinase by siRNA partially inhibited LP-induced eNOS phosphorylation, angiogenesis, and migration. CONCLUSION: The present study suggests that LP treatment may be a novel strategy for promoting angiogenesis in vascular damage. Video Abstract.


Subject(s)
Extracellular Matrix , Nitric Oxide Synthase Type III , Plasma , Vascular System Injuries , Humans , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/pharmacology , Angiogenesis , Extracellular Matrix/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Neovascularization, Physiologic , Nitric Oxide/metabolism , Nitric Oxide/pharmacology , Nitric Oxide Synthase/genetics , Nitric Oxide Synthase/metabolism , Nitric Oxide Synthase/pharmacology , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Phosphorylation , Protein Kinases/metabolism , Up-Regulation , Vascular Endothelial Growth Factor A/metabolism , Vascular System Injuries/metabolism , Vascular System Injuries/therapy , Plasma/metabolism
16.
Chemphyschem ; 25(3): e202300552, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37983746

ABSTRACT

Remdesivir (RDV) emerged as an effective drug against the SARS-CoV-2 virus pandemic. One of the crucial steps in the mechanism of action of RDV is its incorporation into the growing RNA strand. RDV, an adenosine analogue, forms Watson-Crick (WC) type hydrogen bonds with uridine in the complementary strand and the strength of this interaction will control efficacy of RDV. While there is a plethora of structural and energetic information available about WC H-bonds in natural base pairs, the interaction of RDV with uridine has not been studied yet at the atomic level. In this article, we aim to bridge this gap, to understand RDV and its hydrogen bonding interactions, by employing density functional theory (DFT) at the M06-2X/cc-pVDZ level. The interaction energy, QTAIM analysis, NBO and SAPT2 are performed for RDV, adenosine, and their complex with uridine to gain insights into the nature of hydrogen bonding. The computations show that RDV has similar geometry, energetic, molecular orbitals, and aromaticity as adenosine, suggesting that RDV is an effective adenosine analogue. The important geometrical parameters, such as bond distances and red-shift in the stretching vibrational modes of adenosine, RDV and uridine identify two WC-type H-bonds. The relative strength of these two H-bonds is computed using QTAIM parameters and the computed hydrogen bond energy. Finally, the SAPT2 study is performed at the minima and at non-equilibrium base pair distances to understand the dominant intermolecular physical force. This study, based on a thorough analysis of a variety of computations, suggests that both adenosine and RDV have similar structure, energetic, and hydrogen bonding behaviour.


Subject(s)
Adenosine , Alanine/analogs & derivatives , Quantum Theory , Hydrogen Bonding , Uridine , Adenosine Monophosphate/pharmacology
17.
Small Methods ; 8(7): e2301002, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38127997

ABSTRACT

Localized chemotherapy is emerging as a potential strategy for cancer treatment due to its low systemic toxicity. However, the immune evasion of tumor cells and the lack of an intelligent design of the delivery system limit its clinical application. Herein, photothermal responsive microcarriers are designed by microfluidic electrospray for colorectal tumor treatment. The microcarriers loaded with Cangrelor, 5-FU and MXene (G-M@F/C+NIR) show sustained delivery of antiplatelet drug Cangrelor, thus inhibiting the activity of platelets, interactions of platelet-tumor cell, as well as the tumor cells invasion and epithelial-mesenchymal transition (EMT). In addition, the sustained delivery of chemotherapeutics 5-FU and the photothermal effect provided by MXene enable the microcarriers to inhibit tumor cells proliferation and migration. In vivo studies validate that the G-M@F/C+NIR microcarriers significantly inhibites tumor growth, decreased the expression of Ki-67 in tumor cells and vascular endothelial growth factor (VEGF) in the tumor microenvironment, while increased the expression of E-cadherin. It is believe that by means of the proposed photothermal responsive microcarriers, the synergistic strategy of platelet inhibition, chemotherapy, and photothermal therapy can find practical applications in cancer treatment.


Subject(s)
Adenosine Monophosphate , Colorectal Neoplasms , Fluorouracil , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/therapy , Animals , Humans , Fluorouracil/pharmacology , Fluorouracil/chemistry , Mice , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Drug Carriers/chemistry , Cell Proliferation/drug effects , Cell Line, Tumor , Mice, Inbred BALB C , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays , Mice, Nude , Photothermal Therapy
18.
Circ Res ; 133(11): 944-958, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37869877

ABSTRACT

BACKGROUND: ß1AR (beta-1 adrenergic receptor) and ß2AR (beta-2 adrenergic receptor)-mediated cyclic adenosine monophosphate signaling has distinct effects on cardiac function and heart failure progression. However, the mechanism regulating spatial localization and functional compartmentation of cardiac ß-ARs remains elusive. Emerging evidence suggests that microtubule-dependent trafficking of mRNP (messenger ribonucleoprotein) and localized protein translation modulates protein compartmentation in cardiomyocytes. We hypothesized that ß-AR compartmentation in cardiomyocytes is accomplished by selective trafficking of its mRNAs and localized translation. METHODS: The localization pattern of ß-AR mRNA was investigated using single molecule fluorescence in situ hybridization and subcellular nanobiopsy in rat cardiomyocytes. The role of microtubule on ß-AR mRNA localization was studied using vinblastine, and its effect on receptor localization and function was evaluated with immunofluorescent and high-throughput Förster resonance energy transfer microscopy. An mRNA protein co-detection assay identified plausible ß-AR translation sites in cardiomyocytes. The mechanism by which ß-AR mRNA is redistributed post-heart failure was elucidated by single molecule fluorescence in situ hybridization, nanobiopsy, and high-throughput Förster resonance energy transfer microscopy on 16 weeks post-myocardial infarction and detubulated cardiomyocytes. RESULTS: ß1AR and ß2AR mRNAs show differential localization in cardiomyocytes, with ß1AR found in the perinuclear region and ß2AR showing diffuse distribution throughout the cell. Disruption of microtubules induces a shift of ß2AR transcripts toward the perinuclear region. The close proximity between ß2AR transcripts and translated proteins suggests that the translation process occurs in specialized, precisely defined cellular compartments. Redistribution of ß2AR transcripts is microtubule-dependent, as microtubule depolymerization markedly reduces the number of functional receptors on the membrane. In failing hearts, both ß1AR and ß2AR mRNAs are redistributed toward the cell periphery, similar to what is seen in cardiomyocytes undergoing drug-induced detubulation. This suggests that t-tubule remodeling contributes to ß-AR mRNA redistribution and impaired ß2AR function in failing hearts. CONCLUSIONS: Asymmetrical microtubule-dependent trafficking dictates differential ß1AR and ß2AR localization in healthy cardiomyocyte microtubules, underlying the distinctive compartmentation of the 2 ß-ARs on the plasma membrane. The localization pattern is altered post-myocardial infarction, resulting from transverse tubule remodeling, leading to distorted ß2AR-mediated cyclic adenosine monophosphate signaling.


Subject(s)
Heart Failure , Myocardial Infarction , Rats , Animals , In Situ Hybridization, Fluorescence , Heart Failure/metabolism , Receptors, Adrenergic, beta-2/genetics , Receptors, Adrenergic, beta-2/metabolism , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Cyclic AMP/metabolism , Receptors, Adrenergic, beta-1/metabolism , Microtubules/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/pharmacology
19.
Anim Reprod Sci ; 257: 107327, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37696223

ABSTRACT

This study investigated the effects of cyclic adenosine monophosphate modulating during cumulus-oocyte complexes (COCs) pre-maturation and the role of melatonin on in vitro maturation (IVM) of bovine COCs. In experiment one, COCs were pre-matured for 8 h in control medium or with 3-isobutyl-1-methylxanthine (IBMX) and forskolin, IBMX and C-type natriuretic peptide, c-type natriuretic peptide and forskolin or IBMX, forskolin and c-type natriuretic peptide. Then, meiotic progression was evaluated. In experiment two, COCs were pre-matured, followed by IVM in control medium alone or with 10-6, 10-7 or 10-8 M melatonin. After IVM, chromatin configuration, transzonal projections (TZPs), reactive oxygen species, mitochondrial distribution, ultrastructure and mRNA expression for antioxidant enzymes were evaluated. In experiment 1, COCs pre-matured with both C-type natriuretic peptide and forskolin or C-type natriuretic peptide, forskolin and IBMX had lower meiotic resumption rate when compared to control. Considering that IBMX had not an additional effect to potentiate inhibition of meiotic resumption, a combination of C-type natriuretic peptide and forskolin was chosen. In experiment 2, COCs matured with 10-8 M melatonin had greater rates of meiotic resumption when compared to the other treatments (P < 0.05). The COCs matured with 10-7 or 10-8 M melatonin had greater mitochondrial activity (P < 0.05), while those matured with 10-6 or 10-8 M of melatonin had greater levels of TZPs. Ultrastructure of oocyte and cumulus cells after IVM with melatonin was relatively well preserved. COCs matured with 10-8 M melatonin increased mRNA expression for superoxide dismutase (SOD) and catalase (CAT) (P < 0.05), when compared to non-cultured and pre-matured COCs, respectively. In conclusion, bovine COC pre-maturation with C-type natriuretic peptide and forskolin, followed by IVM with 10-8 M melatonin improves meiotic resumption rates, TZPs, mitochondrial distribution and mRNA expression for SOD and CAT.


Subject(s)
Melatonin , Animals , Cattle , Female , Melatonin/pharmacology , Melatonin/metabolism , 1-Methyl-3-isobutylxanthine/pharmacology , In Vitro Oocyte Maturation Techniques/veterinary , Natriuretic Peptide, C-Type/pharmacology , Colforsin/pharmacology , Colforsin/metabolism , Oocytes/physiology , Cyclic AMP/metabolism , RNA, Messenger/metabolism , Superoxide Dismutase/metabolism , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/pharmacology , Cumulus Cells
20.
Bull Exp Biol Med ; 175(2): 201-204, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37466859

ABSTRACT

We studied the properties of N6-chloroadenosine phosphates (ATP, ADP, and AMP chloramines) as compounds with potentially increased antiplatelet efficacy determined by their binding to the plasma membrane of platelets. Chloramine derivatives of ATP, ADP, and AMP do not differ in their optical absorption characteristics: their absorption spectra are in the range of 220-340 nm with a maximum at 264 nm. Chloramines of adenosine phosphates are characterized by high reactivity with respect to thiol compounds. In particular, the rate constants of the reaction of N6-chloroadenosine-5'-diphosphate with N-acetylcysteine, reduced glutathione, dithiothreitol, and cysteine reach 59,000, 250,000, 340,000, and 1,250,000 M-1×sec-1, respectively, and only 1.10±0.02 M-1×sec-1 with methionine. It has been found that N6-chloradenosine-5'-triphosphate is a strong inhibitor of platelet functions: it effectively suppresses ADP-induced cell aggregation (IC50 in the whole blood is 5 µM) and inhibits aggregation of preactivated platelets and induces dissociation of their aggregates.


Subject(s)
Chloramines , Platelet Aggregation , Chloramines/pharmacology , Chloramines/chemistry , Chloramines/metabolism , Sulfur Compounds/metabolism , Sulfur Compounds/pharmacology , Blood Platelets , Adenosine Diphosphate/pharmacology , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Sulfur/pharmacology , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL